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ABSTRACT The paper proposes a method to construct a model for transmission line galloping prediction
using machine learning algorithms to address the transmission line galloping problem, which can result in
transmission line loss and pose a greater risk to the safety of electricity in society. First, to reduce sensor noise
interference, a unilateral sliding time window is used for micro-meteorological data correction, and then
gray correlation analysis method and the specific gravity method are used to obtain the influence weights
of micro-meteorological elements. The galloping prediction models are constructed using six algorithms,
with the GA-BP algorithm model and the SVM algorithm model having better prediction effects based
on performance metrics. The GA-BP-SVM combined model is constructed on this basis, and all of its
performance metrics are optimal. This model’s prediction accuracy in both galloping and no galloping
states reaches 95.5%; the probability of correct prediction when predicted as galloping reaches 95.1%;
the probability that actual galloping can be predicted reaches 92.5%. The F1-score of the combined model
reaches 0.938, which indicates that it has the best prediction effect. The prediction method described in the
paper is accurate and practical, and operation and maintenance personnel can flexibly develop inspection
strategies and anti-galloping measures based on the prediction results to ensure the safe and stable operation
of transmission lines.

INDEX TERMS Transmission line galloping, combined prediction, sliding time window, SVM, GA-BP
neural network.

I. INTRODUCTION
Transmission lines are built in the natural environment, and
their structural safety and stability are at risk from the ele-
ments. Galloping is one of the most common types of trans-
mission line faults, where the wire is subjected to a specific
angle of attack andwind speed, causing a large-amplitude and
low-frequency self-excited vibration, referred to as gallop-
ing. Galloping can result in a variety of hazards, including
minor ones like flashovers and tripping accidents, as well
as more serious ones like damage to fixtures and insulators,
broken wires, and even downed towers [1]–[3]. Due to the
high risk of galloping, a lot of research has been done on
galloping prevention and control in various countries. The
following are the three most important aspects: ¬ Installing
anti-galloping devices on transmission lines, such as tor-
sion dampers and inter-line spacers, to reduce the magni-
tude of galloping by altering the aerodynamic or structural
characteristics of transmission lines. ­ Galloping prediction
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is achieved by simulating the motion of transmission lines
using galloping aerodynamic theory (e.g. Den Hartog ver-
tical galloping theory, O Nigol torsion galloping theory). ®
Constructing a machine learning model to correlate galloping
with the influencing factors to achieve galloping prediction.

Because galloping is influenced by topography and
environmental factors, anti-galloping device selection and
installation differ from region to region, making it diffi-
cult to conduct a comprehensive prevention and control
study [4], [5]. Due to the flow-solid coupling between trans-
mission lines and airflow, as well as the geometric nonlinear
motion of transmission lines, it is also difficult to achieve
galloping prediction by simulating conductor motion [6], [7].
As a result, although both methods have been studied for a
long time, neither has made a breakthrough. However, with
the continuous improvement of the performance of online
galloping monitoring devices in recent years, the method of
correlating galloping with influence factors now has a large
amount of monitoring data as the foundation. Therefore, how
to use existing data to build machine learning models for gal-
loping prediction has piqued the interest of many researchers
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in the field of galloping prevention and control [8], [9].
Among machine learning algorithms, artificial neural net-
works and SVM are powerful and effective at solving com-
plex nonlinear problems. They have been used in a variety
of fields, such as predicting short-term electric loads and the
dynamic mechanical response behaviors of alloys [10]–[13],
and are now powerful methods for constructing galloping
prediction models. In the literature [14], a back-propagation
(BP) neural network model is proposed to predict the gallop-
ing features including the frequencies, vibration amplitudes,
and the maximum conductor tension using span length, initial
wind angle of attack, and wind speed as input variables.
In the literature [15], the accident probability induced by
galloping is analyzed using logistic regression analysis. The
discriminant level of the computed model is evaluated using
the AUC values of the ROC curves of the prediction model.
The results demonstrated that the logistic regression analysis
was effective in distinguishing between power lines with and
without galloping. Literature [16] proposes a support vector
machine (SVM) and AdaBoost bi-level classifier-based early
warning method for transmission line galloping. Data mining
of historical weather parameters is used to construct a predic-
tion model based on SVM classifier, and AdaBoost classifier
is used to realize the galloping warning. The effectiveness
of the proposed method is tested using historical power grid
galloping events. In the literature [17], the initial weights and
threshold of the BP neural network are first optimized using
genetic algorithm, and then a GA-BP neural networkmodel is
constructed for early warning of transmission line galloping.
Literature [18] uses a weighted gray correlation projection
method to select samples that have a high correlation with
the samples to be predicted as the training sample, and then
constructs a random forest model to determine whether to
issue a galloping warning based on the voting results of all
decision trees.

The papers mentioned above did a useful exploration of
galloping prediction, but there was no data correction of
the influencing factors, resulting in significant noise inter-
ference. And because they can only predict whether the
galloping occurs but not the magnitude of the galloping,
the prediction results are relatively broad. Furthermore, they
only used one algorithm for prediction, and the model they
constructed did not fit the galloping data well, the predic-
tion performance still has a lot of room for improvement.
Therefore, the goal of this paper is to improve the galloping
prediction effect as much as possible. To begin, the influ-
encing factors are corrected to reduce the noise interference
generated by the sensors. The weights of the influencing
factors are then calculated by the gray correlation analysis
method and the specific gravity method. After weighting the
influencing factors, we obtain weighted data that can more
clearly characterize the galloping pattern. The weighted data
is then used as input variables to construct the galloping
prediction model using various machine learning algorithms,
and the prediction results are evaluated using performance

metrics. On this basis, the GA-BP-SVM combined predic-
tion model is constructed, and it has been experimentally
proven that the model has the most ideal prediction effect,
can predict galloping amplitude in advance, and realizes the
galloping early warning function with more accurate and
practical results.

II. MICRO-METEOROLOGICAL DATA CORRECTION
Micro-meteorological sensors are installed on the towers
of overhead transmission lines to monitor environmental
information. In this paper, the influencing factors are the
various micro-meteorological elements measured by the
micro-meteorological sensors, such as temperature, humidity,
air pressure, wind direction, wind speed, and so on. Noise
interference is easily generated during sensor operation, and
it can be broadly classified into two types: one caused by
environmental factors or external interference during the
measurement process, and the other generated by the sensor
network during signal conditioning and analog-to-digital con-
version [19]. To improve the effect of galloping prediction,
the data from the micro-meteorological sensors should be
corrected first to reduce noise interference.

A. DATA CORRECTION BY UNILATERAL SLIDING TIME
WINDOW ALGORITHM
The ideal data correction method should ensure that the cor-
rected micro-meteorological element curves are smooth and
free of abrupt changes, and that the current value is related
to the previous moment’s state. The sliding time window
algorithm can provide a good balance between these two
requirements [20], [21]. Furthermore, the paper uses the uni-
lateral sliding time window algorithm for data correction.
There are two reasons for this: First, time moves in only one
direction, so data values at a given point are only related to the
previous state and not the subsequent state; second, because
sliding time windows detect data sequentially from left to
right, unilateral time windows only use data that have been
corrected before a specific point. The bilateral time window,
on the other hand, uses data before and after a specific point,
making it impossible to determine if there are any anomalies
in the data after this point.

The following are the steps to correcting the data:
1) Determine the predicted values of micro-meteorological

elements at the moment ti.
Given a temporal micro-meteorological sequence T =
{(ti−k , bi−k ), . . . , (ti−1, bi−1), (ti, bi), (ti+1, bi+1), . . .},
where t is the time and b is the value of a specific
micro-meteorological element. Take k to be the length of
the unilateral sliding time window. For the point (ti, bi),
the unilateral time window contains data for the previous k
time points of micro-meteorological element values (bi−k ,
bi−k+1, . . . , bi−2, bi−1). The squareweightingmethod is used
to assign the weights because the closer the time is to ti,
the greater the influence of the element value on bi. The
following equations are used to calculate the predicted values
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of micro-meteorological elements at the moment ti.

b′i =
k∑
j=1

wi−jbi−j

wi−j =
(k − j+ 1)2∑k
u=1(k − u+ 1)2

, j = 1, 2, . . . , k

k∑
j=1

wi−j = 1

(1)

where wi−k , . . . ,wi−1 are the weights corresponding to
bi−k , . . . , bi−1, and b′i is the predicted value of the
micro-meteorological element at the moment ti.

2) Determine the acceptable range of the micro-
meteorological element value at the moment ti.

The t-distribution is satisfied by the micro-meteorological
element values within the time window, and the confidence
interval PCI for the predicted value b′i can be written as

PCI = b′i ± tα,k−1 ×
Sk
√
k

(2)

where Sk is the standard deviation of the micro-
meteorological element data within the time window, α is
the upper quantile of the t-distribution, and the confidence
coefficient P = 100(1− α)% reflects the probability that the
actual value appears within the confidence interval.

According to PCI, the acceptable range of the micro-
meteorological element value at the moment ti is

[b′i − tα,k−1 ×
Sk
√
k
, b′i − tα,k−1 ×

Sk
√
k
] (3)

3) Data correction
If the actual value of the micro-meteorological element bi

measured by the sensor at the moment ti is within the accept-
able range, bi is normal data and no correction is required;
if bi is outside the acceptable range, bi is abnormal data and b′i
is used instead.

B. CRITERIA FOR JUDGING NOISE REDUCTION
The purpose of data correction is to reduce sensor noise
interference, and the length of the unilateral sliding time win-
dow k , as well as the acceptable range, which is related to the
confidence coefficient P, are the two most important factors
affecting the correction results. The noise reduction effect
vary depending on the k and P values. The corresponding k,
P values are optimal when the noise reduction effect is best.
The noise reduction effect is measured by H , which is the

equal-weighted sum of the corrected data curve’s curvatureQ
and deviationM after normalization.

The curvature Q reflects the unsmoothness of the change
curve of micro-meteorological elements, which is defined as
the ratio of the sum of the amplitudes when the curve exhibits
non-monotonic changes to the data volume. Suppose the total
amount of data is N , for a sequence of data (. . . , bi−1, bi,
bi+1, . . .), there are two cases:

¬ If (bi − bi−1)(bi+1 − bi) ≤ 0, then qi = |bi − bi−1| +
|bi+1 − bi|,

­ If (bi − bi−1)(bi+1 − bi) > 0, then qi = 0.

The curvature Q can be calculated according to the
equation

Q =

∑
qi

N
(4)

The deviation M indicates how far the corrected micro-
meteorological element curve differs from the original curve.
If the original sequence of the micro-meteorological element
is (. . . , bi−1, bi, bi+1, . . .) and the corrected sequence is
(. . . , b′′i−1, b

′′
i , b
′′

i+1, . . .), then the deviation M can be calcu-
lated according to the equation

M =

√√√√ 1
N

N∑
i=1

(
bi − b′′i

)2 (5)

Since Q and M have similar ability to characterize the
curve, H takes the normalized equal-weighted summation
value of Q and M with the following equation:

H = 0.5Qnormalized + 0.5Mnormalized (6)

The smoother the data, the smaller the curvature Q; the
more complete the information retained, the smaller the devi-
ationM . As a result, the data correction effect is best whenH
is the smallest, and k , P are the optimal values at this time.

C. OPTIMAL CORRECTION METHOD
In this paper, data are collected every ten minutes by the
micro-meteorological sensor of No. 150 of the 500 kV Ako
line in Tongliao, China. The value of k is chosen as 2, 3, . . . , 8
to account for the effect of data from 20, 30, . . . , 80 minutes
before a specific moment; the confidence coefficient P is
chosen as 95%, 98%, 99%, 99.5%, 99.8%. The H values of
the corrected curves are calculated using various parameter
combinations and the optimal k , P values are obtained when
H is the smallest, as shown in TABLE 1. The unilateral time
window algorithm that corresponds to the optimal k , P values
is the optimal correction method.

TABLE 1. The k, P values corresponding to the smallest H .
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III. MICRO-METEOROLOGICAL ELEMENTS INFLUENCE
WEIGHTS
Multiple micro-meteorological elements influence the gal-
loping condition of transmission lines, but different elements
have varying degrees of influence. To improve the prediction
effect, it is preferable to strengthen the effect of strong influ-
encing elements while weakening the interference of weak
influencing elements when constructing the model. In this
paper, this is accomplished by assigning influence weights
to various micro-meteorological elements.

The gray correlation analysis method is used to obtain
the correlation degree between micro-meteorological ele-
ments and galloping amplitudes. Then, the correlation degree
is converted into the influence weight by the specific
gravity method, giving the influence weight a total value
of one to clearly demonstrate the contribution of each
micro-meteorological element to the galloping. The follow-
ing are the specific calculation steps:

1) Identify the reference and comparison series: the refer-
ence series refers to the series that reflects the system’s behav-
ior characteristics (i.e. the galloping amplitude series); the
comparison series refers to the series of factors that influence
the system’ behavior (i.e. the series of micro-meteorological
elements). Assume the galloping amplitude series is Y =
{Y(k)|k = 1, 2, . . . ,N}, and the micro-meteorological ele-
ment series is Xi = {Xi(k)|k = 1, 2, . . . ,N}, i = 1, 2, . . . , 7.
2) Dimensionless processing of variables: The factors have

different magnitudes and orders of magnitude that make
comparison and calculation difficult, so the data need to be
dimensionless processed.

xi(k) =
Xi(k)
Xi(l)

, k = 1, 2, . . . ,N ; i = 1, 2, . . . , 7 (7)

3) Determine the correlation coefficient.

ξi(k) =
min
i

min
k
1i(k)+ ρmax

i
max
k
1i(k)

1i(k)+ ρmax
i

max
k
1i(k)

(8)

where 1i(k) = |y(k) − xi(k)|. ξi(k) is the correlation coeffi-
cient between xi and y at the moment k . ρ is the resolution
coefficient, which is usually set to 0.5.

4) Determine the correlation degree. The correlation
degree is the weighted average of the correlation coefficient,
and the equation is as follows

ri =
1
N

N∑
k=1

ξi(k) (9)

5) Convert the correlation degree into influence weight by
the specific gravity method.

wi =
ri
7∑
i=1

ri

(i = 1, 2, . . . , 7) (10)

TABLE 2 shows the correlation degree and influence
weight of various micro-meteorological elements.

TABLE 2. The correlation degree and influence weight of various
micro-meteorological elements.

IV. GALLOPING PREDICTION MODEL DESIGN
A. PREDICTION PROCESS
The prediction process of transmission line galloping pro-
posed in the paper is shown in FIGURE 1.

FIGURE 1. Flow chart of transmission line galloping prediction.

The historical data collected by the micro-meteorological
sensors are first corrected using the unilateral sliding time
window, after which the correlation degree between the
micro-meteorological elements and galloping amplitudes
is calculated using gray correlation analysis method, and
the correlation degree is then converted into influence
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weight using the specific gravity method. After normaliz-
ing the historical data sets, machine learning algorithms are
trained to predict transmission line galloping using weighted
micro-meteorological element values as input and gallop-
ing amplitude data as output. Following the construction of
the model, the predicted amplitude of the galloping can be
obtained from micro-meteorological forecast data and used
to determine whether or not the galloping will occur. If there
is going to be galloping, an early warning will be issued.

Transmission line galloping, in contrast to aeolian vibra-
tion, which exhibits a high frequency and small amplitude
oscillation, and subspan oscillation, which exhibits a medium
frequency and medium amplitude oscillation [22], [23],
exhibits a low frequency and large amplitude oscillation. The
majority of existing studies use fieldwork or amplitude to
determine whether galloping occurs because there is no uni-
versal standard for determining galloping. This paper takes
into account the structure of the research line (Arco line)
as well as the meteorological conditions of its location, and
considers oscillation amplitudes greater than 20 times the
diameter of the transmission line to be galloping, with a
warning issued when the predicted amplitude reaches this
threshold.

B. PERFORMANCE EVALUATION OF PREDICTION MODELS
The prediction results of the model are given in the form
of a confusion matrix because the method of constructing
models using past micro-meteorological and amplitude data
is supervised learning.

TABLE 3. Confusion matrix of prediction results.

In the table above, TP and TN represent the number that
prediction results match the actual situation, FN represents
the number that actually galloping but is predicted as no
galloping, and FP represents the number that actually no
galloping but is predicted as galloping.

To visually assess prediction performance, Accuracy, Pre-
cision, Recall, and F1-score are calculated as model per-
formance metrics based on the confusion matrix using the
following equations.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

F1-score =
2∗Precision∗Recall
Precision+ Recall

(14)

According to the definition of the confusion matrix in this
paper, Accuracy refers to the probability that the prediction
result matches the actual situation. Precision refers to the
probability of correct prediction when predicted as galloping.
Recall refers to the probability that the actual galloping can be
predicted. F1-score is a comprehensive evaluation index that
considers both Precision and Recall. The higher the value of
these four performance metrics in this paper, the more ideal
the model.

V. MODEL CONSTRUCTION AND ANALYSIS OF
PREDICTION RESULTS
A. SINGLE ALGORITHM MODEL PREDICTION RESULTS
Current machine learning-based galloping prediction meth-
ods mainly include support vector machines, neural net-
works, integration algorithms, and cluster analysis [24]–[27].
To determine a more suitable prediction method, this paper
constructs galloping prediction models using BP neural net-
work, GA-BP neural network, RBF algorithm, AdaBoost
algorithm, support vector machine (SVM), and extreme
learning machine (ELM), and compares the performance of
different models based on the prediction results.

The data for this paper was provided by the Mengdong
Maintenance Company of the State Grid Corporation of
China’s Northeast Division. The 1920 valid data sets col-
lected from the Tongliao 500 kV Ako Line No.150 sensors
over two time periods, November 2018 to April 2019 and
August 2019 to November 2019, are divided into two parts,
the training set, and the test set, which accounts for 85% and
15% of the total. The model was trained separately using the
above 6 algorithms to predict the test set, with the weighted
micro-meteorological data as the input and the amplitude
data as the output, and the prediction results are shown
in FIGURE 2.

FIGURE 2. Prediction results of different algorithm models.

FIGURE 2 is partially enlarged into FIGURE 3 to show the
prediction results more clearly. The contents of FIGURE 2’s
black dashed box correspond to the contents of FIGURE 3’s
black dashed box.
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FIGURE 3. Partial enlargement of FIGURE 2.

TABLE 4. Confusion matrices for the prediction results of each model.

TABLE 4 shows the prediction results of each model as
confusion matrices.

Accuracy, Precision, Recall, and F1-score of each model
are calculated as performance metrics using confusion matri-
ces, and the results are shown in TABLE 5.

TABLE 5. Performance metrics of each model.

As shown in TABLE 5, the GA-BP algorithm model has
the highest Accuracy and Recall values, indicating that it has
the highest prediction accuracy, fits the data best, and has the
lowest probability of missing a warning when the galloping
occurs. The SVM algorithm model has the highest Precision
value, indicating that it has the highest probability of cor-
rect prediction and the lowest probability of false warning
when the predicted result is galloping. Furthermore, these
two algorithm models have the highest F1-score values of the
six algorithms. After considering the performance metrics of
each model, it is possible to conclude that the GA-BP algo-
rithm and the SVM algorithm are more effective in galloping
prediction.

B. GA-BP-SVM COMBINED MODEL PREDICTION RESULTS
We want to construct a prediction model that has the highest
Accuracy, Precision, Recall, and F1-score values, indicating
that it is the most ideal model. As shown in TABLE 5, a single
algorithm model does not meet this requirement. To achieve
this goal, we are considering constructing a combined algo-
rithm model. The GA-BP algorithm and the SVM algorithm,
both of which have good prediction effects, are chosen for the
combined prediction using the variance-covariance weight
dynamic assignment method, with the following calculation
steps.

First, the variance of the GA-BP and SVM algorithm mod-
els are calculated separately using the equation below.

δi=
1
n
×

[
(e1−e)2+(e2−e)2+· · ·+(en−e)2

]
, i=1, 2

(15)

where n is the number of test samples for each model;
e1, e2, . . . , en is the absolute percentage error of test samples
for each model; and ē is the average absolute percentage error
of test samples for each model.

The weights for each model are then calculated using the
following equation based on the variance.

ω1 = 1/ [δ1(1/δ1 + 1/δ2)] (16)

ω2 = 1/ [δ2(1/δ1 + 1/δ2)] (17)

The prediction result of the GA-BP-SVM combined
model is

f = ω1f1 + ω2f2 (18)
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FIGURE 4. GA-BP-SVM combined model prediction results.

where fi is the prediction result of the single algorithm
model.

The combined prediction method can dynamically adjust
theweights of each predictionmodel based on each test result,
resulting in more accurate and adaptable prediction results.
FIGURE 4 shows the prediction results of the GA-BP-SVM
combined model.

TABLE 6 shows the prediction results of the GA-BP-SVM
combined model in the form of a confusion matrix.

TABLE 6. Confusion matrix for the prediction results of GA-BP-SVM
combined model.

The performance metrics of the GA-BP-SVM combined
model are calculated using the confusion matrix and com-
pared to the performancemetrics of the single algorithmmod-
els that comprise the combined model, as shown in TABLE 7.

TABLE 7. Comparison of performance metrics between GA-BP-SVM
combined model and single algorithm models.

As shown in TABLE 7, the GA-BP-SVM combined model
outperforms the GA-BP and SVM models that comprise it.
Each of the performance metrics for the combined model
is the best. The model’s Accuracy value of 0.955 indicates
that it can predict both galloping and non-galloping states
with 95.5% accuracy; Precision value of 0.951 indicates
that the probability of correct prediction, when predicted as

galloping is 95.1%; Recall value of 0.925 indicates that the
actual galloping can be predicted with 92.5 percent accuracy.
Meanwhile, the combined model’s F1-score value reaches
0.938, indicating that it has the best prediction effect.

Based on the data presented above, it is possible to con-
clude that the GA-BP-SVM combined model has the highest
prediction accuracy, fits the data best, has the lowest proba-
bility of missing warnings when gallopings occur, and has the
lowest probability of false warnings, making it the most ideal
model for predicting transmission line gallopings.

VI. CONCLUSION
This paper corrects the micro-meteorological data using the
unilateral sliding time window, and determines the influence
weights of micro-meteorological elements using the gray
correlation analysis method and the specific gravity method.
The galloping prediction models are then constructed using
various machine learning algorithms, and after analyzing
the prediction results, a GA-BP-SVM combined prediction
model is proposed. The following conclusions are drawn
from this paper.

1) The unilateral sliding time window algorithm is used
to correct micro-meteorological data. The predicted values
and acceptable ranges of the micro-meteorological elements
are obtained, resulting in the correction of abnormal data
while retaining normal data. The noise reduction effect is then
measured using the normalized equal-weighted sum value
H of the curvature and deviation, and the optimal values
of the k and P parameters in the algorithm are determined.
The method is practical and general, and it can produce
correction results that retain information while having no
abnormal mutation points, effectively completing the data
noise reduction work.

2) The gray correlation analysis method and the spe-
cific gravity method are used to calculate the influence
weights of micro-meteorological elements. Weighting the
micro-meteorological elements can result in input data that
highlights galloping patterns more clearly and assists in the
training of galloping prediction models.

3) The galloping prediction models are constructed based
on various algorithms, and the GA-BP algorithm model and
SVM algorithm model are determined to have better predic-
tion results based on the performance metrics. To achieve
more ideal prediction results, the GA-BP-SVM combined
model is constructed. This model outperforms all others in
every performance metric, with the highest prediction accu-
racy, the lowest probability of missing galloping warnings,
and the lowest probability of false warnings, demonstrating
that the model has the most ideal prediction effect.
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