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ABSTRACT An automatic recognition of discontinuities in borehole images is a desirable way to overcome
the inefficiency and inconsistency inherent in the conventional method of manual annotation. The rough
borehole walls and prominent noise failed the application of existing recognition methods to borehole
images taken in the coal-measure strata. This paper presents a novel approach to automatically convert
coal-measure strata borehole images into identified discontinuity maps. The developed procedure formed an
integrated feature representation for the borehole image through combining the color information of image
and the textural features generated from multi-channel filtering. Image regions containing discontinuities
are then separated from other regions by implementing fuzzy c-means clustering on the acquired feature
representation. The identification of discontinuities is finally accomplished by searching for four predefined
patterns (named topographic model) on the intensity transection of image regions. The proposed method
is proven to be superior in the respects of noise suppression, discontinuity positioning, and recognition
completeness.

INDEX TERMS Automatic recognition, borehole image, coal-measure strata, rock discontinuity.

I. INTRODUCTION
Coal-measure rock strata are commonly embedded discon-
tinuities such as joints, beddings, fractures and interlayers.
This inherent feature endows the rock mass with a variable
nature. The spatial geometry and mechanical property of
discontinuities is therefore fundamental to reconstruct the
structural setting of the rock mass [1], [2]. The accuracy of
this reconstruction determines the validity of the prediction
of the mechanical and hydraulical behaviors of rock masses,
which means the success or failure in many rock engineering
projects such as ground support design, surface subsidence
control, and coalmine water drainage.

The feasible in situ observations of rock mass discontinu-
ities include rock core examination and borehole logging and
imaging. From the accuracy perspective, the rock coring and
channeling can disturb the natural structure of the rock strata.
This leads to an inevitable data loss for discontinuity property
hindering the evaluations of orientation, openness, and fill-
ing [3], [4]. In comparison, the borehole logging and imaging
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can provide the geometry and distribution of discontinuities
through direct and in situ borehole observation. With the
advantages of adaptability and efficiency, this technique has
been extensively applied to the survey of underground rock
structure [5], [6]. The pioneer borehole imaging apparatus
was developed and instrumented in 1960s [7]. From then
on, the digital image and panoramic imaging technologies
have been continuously evolved and improved. As a result,
the digital panoramic borehole imaging technique emerges.
This technique can photograph the annular borehole wall
and recording the features in a two-dimensional (2D) (or
unrolled) image. The continuous record of borehole walls
provides large volumes of raw data for the quantitative dis-
continuity measurements and statistics. The most important
priority of data processing is the accuracy and efficiency of
discontinuity recognition. However, the conventional manual
annotation of borehole images suffers from three apparent
weaknesses including: (1) inefficiency associated with high
labor intensity and time consumption, (2) inconsistency of
results between different operators and even the same oper-
ator for different times; (3) requirements of the professional
experience and knowledge from operators.
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The automation of discontinuity recognition is essential for
not only the enhancement of efficiency but also the improve-
ment of consistency and accuracy. The early methods for the
automatic recognition of discontinuities formed a two-step
framework consisted of image segmentation and discontinu-
ity identification [7]–[9]. The image segmentation commonly
adopts the thresholding method (or an edge detector) to com-
pute an edge map, and then the discontinuity identification
scans for sinusoids on the map by using the Hough transform
(HT). Scholars in this field followed the two-step convention
and kept working on the automated discontinuity recognition.
The progress in this field is listed in Table 1. For the image
segmentation improvement, Van Ginkel et al. (2001) [10]
proposed an orientation space transform (OST) to include
local orientation information of the original 2D image into
the edge map, which was intended to enhance the capa-
bility of HT to recognize intersecting discontinuities. The
authors acknowledged that many bad HT local maxima were
still presented after adopting OST, therefore the anti-noise
performance of OST is not the ultimate solution for image
segmentation. Assous et al. (2014) [11] used a gradient-based
edge detector (originally proposed by Lindeberg 1998 [12])
to obtain a preliminary edge map and refined it by using
phase congruency (PC). They claimed that the algorithm
was computationally efficient and returned a false positive
rate between 2% and 5% for resistivity images. Al-Sit et al.
(2015) [13] combined a modified Canny detector with the
vector quantization network (VQN) clustering to prepare
a prior classification of image segments for establishment
of edge maps. The VQN clustering differentiated image seg-
ments in accordance with textural features generated by the
Gabor filter. The authors claimed a better recognition rate
than it of Assous et al. (2014) [11] and moderate compu-
tational efficiency. Ge et al. (2019) [14] adopted a similar
procedure to take textural features as the benchmark for the
prior classification of image segments. The textural features
were calculated by using the gray-level co-occurrence matrix
(GLCM) instead of the Gabor filter. Ge et al. (2019) [14]
claimed that this method produced a better recognition than
it of Wang et al. (2017) [15] and made high computational
efficiency. As for the discontinuity location part, Chai et al.
(2009) [16] employed discriminant function analysis (DFA)
to recognize discontinuities from resistivity images. This
process was established on a classification of GLCM fea-
tures. Wu et al. (2011) [17] used a modified HT developed
by Zou and Shi (2002) [18] to search for sinusoids on the
edge map prepared by the thresholding and morphological
operations (MO). This modified HT reduces computational
power by decomposing the searching problem from 3D to 2D.

The aforementioned techniques primarily focused on the
improvement of either image segmentation or discontinuity
identification. Recently, Wang et al. (2017) [15] proposed
a new pathway for improvement of both. They developed a
gradient-based index and used it to detect image segments
containing discontinuities, and then performed a customized
fitting procedure on the well-segmented images to locate

TABLE 1. A summary of existing methods for discontinuity recognition
from borehole images.

sinusoids representing discontinuities. The authors acknowl-
edged the algorithm easily generated flawed results from
the recognitions of intersected, filled, and incomplete dis-
continuities. In summary, most of the above techniques and
algorithms were tested on borehole images (commonly taken
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in clear drilling fluid) with well-defined discontinuities and a
low level of noise. These images are vastly different from the
images acquired in the coal-measure strata boreholes, which
are featured by poor illumination and rough borehole walls
as illustrated in Figure 1. The robustness of these methods is
challenging in the discontinuity recognition of coal-measure
strata borehole images. Moreover, a tendency can also be
observed from the right column of Table 1 suggesting the
subjective results due to the increase of parameters requiring
manual adjustments. These parameters are an inconvenience
in the creation of an automatic recognition tool. In this
study, we initially analyzed the underlying mechanisms of
the poor quality of coal measure strata borehole images.
Then we proposed an improved method for discontinuity
recognition and the new method were validated through a
series of experiments. This study offers a robust approach to
automatically identify the discontinuity of the coal-measure
strata, which are paramount for the ground control design and
optimization.

FIGURE 1. Borehole images of coal-measure strata acquired from coal
mines located at: (a) Pingliang, gansu province, (b) and (c) Yangquan,
shanxi province.

II. BOREHOLE IMAGES OF COAL-MEASURE STRATA
Three borehole images with each one recording 3.3-meter
length were exhibited in Figure 1. They were photographed
at two underground coal mines in China by using a
panoramic-optical probe (manufactured by Wuhan Chang-
sheng Coalmine Safety Technology CO., Ltd, Wuhan,
China). The horizontal and vertical resolutions are
0.1 and 0.2 mm, respectively. Figure 1 illustrates that the
coal-measure discontinuities are apparently different from
ideal planar feature due to some inherent properties of
coal-measure rocks.

First, the drilling-induced unevenness of borehole images
can be resulted from borehole wall failure. The intersection
of a discontinuity and the borehole is vulnerable for damage
during drilling because the coal-measure strata commonly
consist of weak rocks such as shale, siltstone and mudstone
(Das, 2000 [19]; Wang et al., 2019 [20]). From Figure 1a, a
drilling-induced collapse of the intersection can be observed
and it naturally alters the geometry of discontinuity displayed
on the image, which is initially believed to be a sinusoid.
Furthermore, the development of a discontinuity tends to

form an aligned crack group in the weak stratum, which
can result in multiple cracks occurring on a narrow region
(Figure 1a). These irregularities apparently violate the sinu-
soid assumption of previously proposedmethods discussed in
the literatures. Second, discontinuities can be easily hidden
in a noisy background for their recognition and identifica-
tion. The coal-measure rocks are commonly rich in dark/dull
bands due to the organic-bearing strata and therefore the
borehole wall of coal measure strata is expected to be a
dark hue. Unfortunately, the discontinuities are identified as
a dark visible curve compared to its solid rock counterparts.
Undoubtedly, the contrast between dark discontinuity and the
coal measure rock strata are significantly small compared
to other rock strata, which results in that the chance of
misidentification of discontinuities is much higher. Nonethe-
less, the uneven illumination and the fillings of discontinuity
complicate the discontinuities recognition. As an example,
the windowed area shows three fractures being filled with
dark minerals and is overlapped with a stripe-shaped shadow
in Figure 1b. These adverse factors blur the boundary between
discontinuities and the dark solid wall. Third, the shale and
mudstone are known to be water-sensitive, thus the drilling
operation easily generates a large volume of fine slurry. The
slurry can form a drilling cake for patching the discontinuities
and thus the image cannot capture the discontinuity. The
windowed area of Figure 1c shows the adverse effects of mud
to the imaging of discontinuities.

These three limitations necessitate a careful evaluation
of the information included in coal-measure strata borehole
images. The previously discussed methods in the introduc-
tion section commonly begin with conversions of images
from the true color to the grayscale intensities. This can
cause an irreversible loss of color information. As a result,
the recognition of discontinuities relies solely on a detec-
tion of the gradient of pixel intensity. This procedure was
referred to as the ‘‘crude segmentation’’ by Van Ginkel et al.
(2001) [10] and Assous et al. (2014) [11], and its failure
of the discontinuity recognition in a noisy environment was
confirmed. Therefore, we proposed our automatic method for
discontinuity recognition and identification.

III. PROPOSED METHOD FOR AUTOMATIC RECOGNITION
OF COAL-MEASURE BOREHOLE IMAGES
The proposed automatic method for discontinuity recognition
based on the coal-measure borehole images includes three
major steps and is illustrated in Figure 2. We elaborated the
detailed procedure for the method and all required parameters
are defined and specified in order to eliminate the obstacles
to automation. The detailed procedure and underly algorithms
were discussed in the subsequent sections.

A. EXTRACTION OF TEXTURAL FEATURES
The concept of the texture of image data is based on the spatial
distribution of tonal variations within a band (Haralick et al.,
1973 [21]). Mining engineers naturally use the textural
features in interpreting borehole images and discriminating
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FIGURE 2. Flow chart of the discontinuity recognition (H, S, and I indicate
the hue, saturation, and intensity components of borehole images,
respectively).

discontinuities from rock matrices. For the automation of
discontinuity recognition, a meaningful textural feature is of
primary importance for the clustering of image regions which
is the segmentation approach adopted in Section IIIB. In this
study, the multi-channel filtering technique (Saeedi et al.,
2010 [22]) is adopted to extract textural features from the
coal-measure strata borehole images. This technique enables
a multi-resolution examination of differences in dominant
sizes and orientations of different textures. This advantage is
appealing because the rock discontinuity is characterized by
the variation of size and geometry.

In our proposed method, the multi-channel filtering was
achieved by applying a set of real-valued, even-symmetric
Gabor filters (Jain and Farrokhnia, 1991 [23]) to the inten-
sity component of borehole images. These Gabor filters are
the representation of channels and can be understood as an
approximate basis for a wavelet transform, with the Gabor
function (given in (1)) as the wavelet.
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where IR is the impulse response of an even-symmetric Gabor
filter, u is the frequency of a sinusoidal plane wave along
the x-axis (i.e. the 0◦ orientation) and expressed in cycles
per image-width, σx and σy are the space constants of the
Gaussian envelope along the x and y axes, respectively. Filters
with an arbitrary orientation α (in degrees) can be obtained
through rotating the x-y coordinate system by the angle α. bu
(in octaves) and bα (in degrees) denote the bandwidths of the
frequency and orientation of the Gabor filter set, respectively.
u, α, bu, and bα are the filter parameters need to be speci-

fied for automatic recognition. It is noted that the frequency
bandwidth bu is one octave apart, whichmeans it is calculated
by the following equation:

bu = log2
(
umax

/
umin

)
(4)

where umax and umin denote the maximum and minimum
values of the frequency u. The values of u of the Gabor filter
set were determined by the equation:

un =

√
2

2C−n
W , n = 0, 1, 2, . . . ,C − 2 (5)

where W is the width of borehole images (in terms of pixel
distance), C is a fixed parameter that is related to W by the
formula:

2C ≥ W & 2C−1 < W (6)

Substitute (6) into (5), the maximum and minimum val-
ues of u can be derived as

√
2
4 W and

√
2

2C W cycles per
image-width. The rationale behind the choices of these two
values is two reasons. The first reason is that the highest
frequency selected is the upper limit of Gabor filter set
defined by Jain and Farrokhnia (1991) [23]. By setting this
value, the fine variation of image texture can be captured.
The second reason is that the selection of the lowest frequency
was based on the assumption that the largest dimension of
discontinuity-induced textural variation is of the same order
as the image width. As for the orientation α of the Gabor
filter set, four values were determined as 0◦, 45◦, 90◦, 135◦.
Accordingly, the bandwidth of orientation bα was calculated
as 135◦. Although a finer quantization of orientation is ben-
eficial to the examination of texture, the four orientations
are sufficient for detecting variations in the major directions
(i.e. horizontal, vertical, and diagonal). More importantly,
this restriction improved the computational efficiency of the
recognition method presented in this study.

The efficiency of computation was also made by apply-
ing the multi-channel filtering to the shrunken borehole
image. We used bicubic interpolation method (Carey et al.,
1999 [24]) to scale down the virgin image by a ratio of 0.25,
which reduced the size from 6600×795 to 1650×199. In this
study, the textural features were extracted from the intensity
component of borehole images. The other two components
(i.e. hue and saturation) served as two additional features in
the subsequent image segmentation. This method allows us
to incorporate true-color information (discussed in Section II)
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FIGURE 3. Hue, saturation, and intensity components calculated froms a
borehole image: (a) hue, (b) saturation, (c) intensity.

into the clustering without lost of color-to-gray image conver-
sion. Hue (H ), saturation (S), and intensity (I ) components
were calculated from the RGB image in which each color
pixel is a triplet corresponding to the red (R), green (G), and
blue (B) components at a specific spatial location. The H ,
S, and I components of shrunken Figure 1b were presented
in Figure 3 as an illustration. Conversion equations are:

H =

{
θ if B ≤ G
360− θ if B > G

(7)

with

θ = cos−1
{

0.5 [(R-G)+ (R-B)][
(R− G)2 + (R− B)(G− B)

]1/2
}

(8)

S = 1−
3

(R+ G+ B)
[min (R,G,B)] (9)

I =
1
3
(R+ G+ B) (10)

FIGURE 4. The feature image reconstructed by PCA.

Given the image width is 199 (in pixel distance), a total
of 28 Gabor filters were used in the multi-channel filtering,
resulting in 28 textural-feature images with the same dimen-
sion of the input image (1650× 199). The 28 textural-feature
and 2 color-feature images give a 30-dimensional represen-
tation of each pixel in the input image. The segmentation
algorithm described in Section IIIB requires of an integration
of this multi-dimensional representation into a 1-dimensional
magnitude value for each pixel. Here, the principal com-
ponent analysis method (PCA) is employed to achieve this
integration. PCA generated a new group of variables from
the original 30 variables of pixels. Each new variable will
be a linear combination of the original variables. These new
variables are orthogonal to each other and named princi-
pal components. Among them, the first principal component
was selected to reconstruct a single-feature image shown in
Figure 4. The first principal component was seen as a single
axis in the multi-dimensional space. When projecting each
data point on this axis, the resulting values form a new vari-
able. And the variance of this variable is the maximum among

all possible choices of the first axis. This definition indicates
that the feature image in Figure 4 captured the largest vari-
ation of data in the above-mentioned 30-dimensional repre-
sentation. Detailed descriptions of the PCA can be found in
several publications (e.g. Wold et al., 1987 [25]; Abdi and
Williams, 2010 [26]).

B. SEGMENTATION OF DISCONTINUITY REGIONS
The image segmentation is to locate the exact regions contain-
ing discontinuities, which is a guarantee of the accuracy of
subsequent identification of discontinuity. The fuzzy c-means
clustering method (FCM) was adopted to separate these
candidate regions from the intact rock-wall regions. FCM
is implemented through minimizing the following objective
function (Bezdek JC, 1981 [27]):

Jm =
∑a

i=1

∑c

j=1
pijmd2

(
xi, ej

)
(11)

where a is the number of data points, c is the number of
clusters, here, c was fixed as 2, which means the borehole
image was divided into two groups of regions with one group
representing discontinuities and the other representing intact
rock wall. m is the degree of fuzzy overlap between clusters
and is a real number greater than 1, xi denotes the ith data
point, ej is the center of the jth cluster, d2(xi, ej) denotes the
distance between xi and ej, pij is the degree of membership
of xi in the jth cluster. Given a data point, xi, the sum of the
membership values for all clusters is one.

FCM enables us to evaluate the belonging of data points
having maximum membership values below 0.6, because
these points possess a high degree of uncertainty in their
cluster membership. In our proposed method, the cluster of
candidate discontinuities was formed by including the data
points withmembership values to it greater than 0.4. This pro-
cedure was intended to increase the likelihood of containing
all image regions holding the discontinuity. If the regions are
lost in this step, they cannot be recovered in the subsequent
procedures. The overall process is specified as the following
steps: first, we represented each column of pixels in Figure 4
with five statistical parameters including arithmetic mean,
median, standard deviation, maximum, and minimum values.
And then the dataset was prepared by setting pixel columns as
data points and the five parameters as variables representing
a five-dimensional space in which d2(xi, ej) are calculated.
This step indicates that the image segmentation is realized
by clustering the pixel columns in borehole images; second,
we added the spatial sequence of the pixel columns (i.e. 1, 2,
3, . . . ) to the dataset as the sixth dimensionality. This step
encourages neighboring columns to cluster together; third,
the cluster membership values, pij is randomly initialized;
fourth, the centers of clusters were calculated by using:

ej =

∑a
i=1 p

m
ij xi∑a

i=1 p
m
ij

(12)
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fifth, we re-calculated the memberships according to (13):

pij =
1

c∑
k=1

[
d2(xi,ej)
d2(xi,ek )

] 1
m−1

(13)

sixth, the objective function, Jm was updated; finally, we
repeated steps 4 to 6 until Jm improves by less than 1× 10−5.
Figure 5 shows the obtained result from the image segmenta-
tion. The regions of rock wall were labeled with mesh-cover,
while the regions of discontinuity remained unchanged.

FIGURE 5. The result of image segmentation.

C. DISCONTINUITY IDENTIFICATION USING
TOPOGRAPHIC MODELS
From Figure 5, it is apparent that the discontinuity regions
were well segmented. The next work is to identify discontinu-
ities from each region and form a trace map that is of practical
values to the mining and geotechnical engineering. Instead of
making use of a gradient-based edge detector like themethods
listed in Table 1 did (reasons are discussed in Section IV),
we developed a method to pick out discontinuities through
recognizing typical patterns in the intensity transection of
regions. This process includes the following three steps:

FIGURE 6. Illustration of the sampling of intensity transections: (a) layout
of sampling lines, (b) processed data of the intensity transection along L5
(the blue curve indicates the intensity transection along L5; the red curve
shows the result of filtering).

First, the intensity transections of discontinuity regions
were sampled. The image region in Figure 6a is taken as an
example to illustrate the procedure. This region is a segment
of the intensity component of the virgin borehole image (viz.
the image has not been shrunken in Section IIIA). It was
located by substituting the numbers of leftmost and rightmost
pixel columns of a segmented region of Figure 5 into (14)
and (15), respectively. As shown in Figure 6a, the sampling
lines were evenly spaced and therefore the spacing can be
calculated as 132 (in pixel distance). The sampling rate (or
spacing) can be customized in order to satisfy different engi-
neering purposes. The blue curve in Figure 6b is the result of

the intensity transection along L5 subtracted its mean.

N ′l = Nl × 4− 3 (14)

N ′r = Nr × 4 (15)

where the Nl’ and Nr ’ are the numbers of leftmost and right-
most pixel columns of regions in the virgin borehole image.
Nl and Nr are the corresponding column numbers of regions
in the shrunken borehole image.

Second, the intensity data was smoothed by using zero-
phase moving-average filtering (ZMF). ZMF is developed
from the moving-average filtering (MAF) which calculates
a local mean value for each element of input data. Each
mean is derived by averaging neighboring elements within a
sliding window of length h. ZMF reduces the phase distortion
through performing MAF in both forward and backward
direction, i.e. filter the input data, then reverse the data array
and filter again, and then reverse again. The detailed descrip-
tions of ZMF and MAF can be found in Mitra (2001) [28].
The red curve in Figure 6b is the result derived from applying
ZMF to the data shown in the blue curve. It can be observed
that ZMF filtered the high-frequency component of input
data and therefore reduced the number of zero-crossings from
seven to three. The zero-crossing is themost important feature
used in the next step to identify discontinuities. Another
benefit from ZMF is the preservation of the spatial-domain
features of input data, to be specific, the red curve shows no
clear horizontal shift to the blue curve, which is a guarantee
for the accuracy of the location of discontinuities. The length
of sliding window, h, was set as the one-twelfth of the total
number of pixel columns (for a decimal, round it toward
negative infinity) in the image region under consideration.

FIGURE 7. Four topographic models corresponding to different
discontinuities: (a) a ravine, (b) an up-ramp, (c) a down-ramp, (d) a peak.

Third, discontinuities were identified by using topographic
models. Four models for the intensity transection of image
regionwere developed and illustrated in Figure 7. Eachmodel
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represents a type of discontinuity trace shown on the borehole
image. Figure 7a is the typical pattern for fractures, cracks,
and separation of layers. Their intensity transections are char-
acterized with a low middle and two high sides, which can be
likened to a ‘‘ravine’’. There are two zero-crossings in this
model, and the change of sign starts from positive to negative
and then back to positive. Figure 7b and c are the represen-
tation of the boundary of layers, which involves a transition
between two intensity levels. This model is named as ‘‘ramp’’
and has one zero-crossing from negative to positive and vice
versa. The model in Figure 7d is commonly seen at discon-
tinuities filled with reflective minerals or other interlayers.
The curve of intensity transection is featured by a ‘‘peak’’
shape, and has two zero-crossings involving a transition from
negative to positive and back to negative. Use the model
in Figure 7 to recognize discontinuities in each intensity
transection (after the smoothing process), and the priority
is: the ravine after by the ramp, and then the peak. This
sequence was determined based on the fact that the separation
of layers and beddings are the most prevailing discontinuity
in coal-measure formation. For example, a ravine type can
be found at the right side of red curve in Figure 6b, while
a ramp type is observed at the left side. The exact location
of discontinuity is calculated as the location corresponding
to the highest or lowest intensity value for the ravine or peak
type, to the zero-crossing for the ramp type. Figure 8 presents
the discontinuity traces (in yellow) identified from the image
region shown in Figure 6a.

FIGURE 8. Identified discontinuity traces (in yellow) by using the
topographic model.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
An evaluation of the performance of our proposed method
was conducted with reference to the three borehole images
in Figure 1. Figure 9-11 shows the experimental results
produced by the proposed method and other three previous
methods—Assous et al. (2014) [11], Al-Sit et al. (2015) [13],
and Ge et al. (2019) [14] (see Table 1). As described in
Section I, the previous methods postulated a planar feature
for discontinuities, and therefore included a step of sinu-
soid searching. Since this assumption was invalidated by
the geometrical irregularities of discontinuities as explained
in Section II, we discarded the sinusoid searching step and
presented the results generated from the image segmentation

FIGURE 9. Results generated from the borehole image acquired at
pingliang, gansu province by using different recognition methods:
(a) manual tracing, (b) the proposed method (the dotted frames show the
collapse and multiple cracks, respectively), (c) Assous et al. (2014) [11],
(d) Al-Sit et al. (2015) [13], and (e) Ge et al. (2019) [14].

FIGURE 10. Results generated from the borehole image acquired at
yangquan, shanxi province by using different recognition methods:
(a) manual tracing, (b) the proposed method (the dotted frame shows the
dark area), (c) Assous et al. (2014) [11], (d) Al-Sit et al. (2015) [13], and
(e) Ge et al. (2019) [14].

part of the previous methods. The parameters of them (as
listed in Table 1) are manually adjusted in order to reach
the optimal result. The experiments were carried out on a
standard personal laptop with an Intel Core i7 CPU running
at 2.3GHz and an 8.00 GB RAM. The computational time for
the proposed method was 32 s for 3.3 m of 0.1 mm sampled
data. This computational efficiency can be improved by using
parallel computing techniques. Due to the interruptions of
manual adjustments, the computational time of other previous
methods was hardly recorded. Furthermore, at the top of
each figure, a hand-drawn discontinuity trace map was sup-
plemented as a benchmark for the performance assessment
of our proposed method as well as the previous methods.
A geologist was invited to prepare these trace maps by using
a printed copy of the borehole image, a sheet of transparent
tracing paper, and a pen. He worked independently and no
other instructions were given. The obtained trace maps were
then digitized and exhibited in Figure 9a-11a.
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FIGURE 11. Results generated from the borehole image acquired at
yangquan, shanxi province by using different recognition methods:
(a) manual tracing, (b) the proposed method (the dotted frame shows the
mud-covered area), (c) Assous et al. (2014) [11], (d) Al-Sit et al.
(2015) [13], and (e) Ge et al. (2019) [14].

Through a comparison between the results of previ-
ous methods (Figure 9c d e-11c d e) and manual trac-
ing (Figure 9a-11a), it can be observed that the erroneous
responses dominate the edge maps of previous methods.
These noises hindered the attempt to determine whether a
discontinuity was recognized as a corresponding edge or the
edge was just a random noise. Therefore, the quantitative
characterization of the performance of previous methods was
hardly realized. Another obvious feature of the edge maps
of previous methods is the incompleteness of edges. This
incompleteness can be attributed to two reasons: (1) uneven
illumination and (2) rough borehole walls. As mentioned in
Section II, the uneven illumination commonly interferes the
imaging of borehole walls, leaving stripe-shaped shadows at
the center or the sides of images (see Figure 1). The presence
of shadow would dramatically deteriorate the performance
of a gradient-based edge detector like the canny detector
adopted in Al-Sit et al. (2015) [13] and Ge et al. (2019) [14]
(see Table 1), and thus leads to the loss of edge information
at the corresponding location as shown in Figure 9d e-11d e.
For edge maps of Assous et al. (2014) [11] (Figure 9c-11c),
the effect of shadow was greatly weakened, but the edges
were broken into a high number of small curve segments,
which is a result of the poor image contrast induced by
rough borehole walls. The exposed problems of incomplete-
ness of recognition and erroneous responses are consistent
with the findings of a previous evaluation test (Yang et al.
2021 [29]) on gradient-based edge detectors to rock discon-
tinuity recognition.

TABLE 2. Performance of the proposed method for the investigated
images. (unit: %).

The detected discontinuities of our proposed method are
shown in Figure 9b-11b. Apparently, these results demon-
strate a superior performance of the proposed method for
noise suppression, discontinuity positioning, and recognition
completeness. The trace maps produced by the method and
the manual drawing are matched to a relatively high degree.
This indicates that the proposedmethod overcame the adverse
conditions described in Section II and yielded quite satis-
factory results for various types of discontinuities including
filled and unfilled fractures, cracks, beddings, interlayers,
etc. More notably, the discontinuities identified in dashed
boxes of Figure 9b-11b can be one-to-one corresponding to
discontinuities traced in Figure 9a-11a. These dashed boxes
covered the areas of rough cuts, uneven illumination, and
mud contamination shown in Figure 1a b c, therefore, these
results of recognition demonstrate that the adaptability of the
proposed method to the coal-measure environment is as good
as it of the manual tracing. It should be also noted in this
comparison that the digitized traces of manual drawing are
not recognized objects representing discontinuities but pixel
aggregates need further processing before they can be utilized
for the automated computation of discontinuity parameters.
For results generated by the proposed method, this problem
is untroubled, since the image coordinates of all pixels con-
stituting a particular discontinuity are obtained and can be
directly used for an automated computation.

A quantitative evaluation of the performance of the
proposed method was conducted based on two criteria—
recognition and error rates (RR and ER) and the results are
summarized in Table 2. The two rates are defined as (16) and
(17), as shown at the bottom of the page.

In Table 2, the No. 1 2 3 images refer to Figure 1a b c,
respectively. It can be seen that the average RR is as high as
85.0 % but the average ER is unsatisfactorily equal to 18.8 %.
This moderately high value of ER is obviously a result of
the high value of ER attained in the recognition of No. 3
image. The RR of No. 3 image is also lower than it of either
No. 1 or 2 images. The high ER and low RR demonstrate
that, compared with rough cuts and uneven illumination,

RR =

∑
(detected discontinuities matched with manual traces)∑

(discontinuities traced by manual drawing)
× 100% (16)

ER =

∑
(detected discontinuities not matched with manual traces)∑

(discontinuities traced by manual drawing)
× 100 (17)
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the interference of drilling mud posed a stronger deteriorating
effect to the performance of the method.

Although the RR of 73.3 % is acceptable, further improve-
ment of the proposed method is considering establishing a
preprocessing procedure for borehole images in order to min-
imize the contamination of drilling mud. Ongoing research
also intends to conduct a comprehensive evaluation test on
the robustness of the proposed method to various kinds of
geological environments, especially to water-filled boreholes
in petroleum engineering and high-temperature formations in
geothermal engineering.

V. SUMMARY AND CONCLUSION
A novel method for the automatic recognition of disconti-
nuities from borehole images taken in coal-measure strata is
presented. A series of algorithms were designed to overcome
the disadvantages of imaging conditions in the borehole. The
robustness and accuracy of the proposedmethod are validated
by several experimental tests. Based on results, the following
conclusions can be drawn:

(1) The combined effect of drilling disturbance and weak
rock strength distorted the geometry of discontinuities shown
on the coal-measure strata borehole image, and therefore
invalidated the sinusoid assumption of ideal planar feature.
Furthermore, the image degradation from uneven illumina-
tion and mud contamination complicated the already chal-
lenging problem of recognition.

(2) The proposed method is superior in the respects of
noise suppression, discontinuity positioning, and recognition
completeness. Under the adverse conditions of coal-measure
strata borehole imaging, this method was able to detect var-
ious types of discontinuities including filled and unfilled
fractures, cracks, beddings, interlayers, etc.

(3) The incorporation of textural features and color infor-
mation into the segmentation of discontinuity region gave rise
to an accurate positioning of discontinuity in noisy borehole
images.

(4) The concept of considering an intensity transection
of the image region as a 1-dimentional representation of
the variation tendency in elevation, and then identifying dis-
continuities through searching for four predefined patterns
(named topographic model) was shown to be valid for the
coal-measure strata borehole images.
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