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ABSTRACT We present an approach which combines the sample regenerating particle filter (SRGPF)
and unequal weight ensemble Kalman filter (UwEnKF) to obtain a more accurate forecast for nonlinear
dynamic systems. Ensemble Kalman filter assumes that the model errors and observation errors are Gaussian
distributed. Particle filter has demonstrated its ability in solving nonlinear and non-Gaussian problems. The
main difficulty for the particle filter is the curse of dimensionality, a very large number of particles is needed.
We adopt the idea of the unequal weight ensemble Kalman filter to define a proposal density for the particle
filter. In order to keep the diversity of particles, we do not apply resampling as the traditional particle filter
does, instead we regenerate new samples based on a posterior distribution. The performance of the combined
sample regenerating particle filter and unequal weight ensemble Kalman filter algorithm is evaluated using
the Lorenz 63 model, the results show that the presented approach obtains a more accurate forecast than the
ensemble Kalman filter and weighted ensemble Kalman filter under Gaussian noise with dense observations.
It still performs well in case of sparse observations though more particles are required. Furthermore, for
non-Gaussian noise, with an adequate number of particles, the performance of the approach is much better
than the ensemble Kalman filter and more robust to noise with nonzero bias.

INDEX TERMS Particle filter, Monte Carlo method, nonlinear dynamic systems, Lorenz function.

I. INTRODUCTION
Particle filter (PF) is a Monte Carlo method which calculates
the state estimation based on the samples generated from
the prior (model) or proposal distribution and obtains the
full posterior distribution by combining model states and
observations using Bayes’ theorem. Unlike the Kalman filter
which is based on a linear assumption, particle filter can
solve nonlinear and even non-Gaussian distribution prob-
lems. In real world, many problems are nonlinear, and their
analytical solutions are rarely available, so particle filter is
developed to deal with these problems [1], [2], [3]. And it
has been applied in many areas, such as air traffic control
[4], [5], meteorology [6], [7], aerospace [8], [9], oceanogra-
phy [10], autonomous vehicles [11] and robotics [12], remote
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sensing [13], computer vision [14], [15] and biomedical
research [16].

We consider the dynamic model of the form:

xt = F(xt−1)+ ξt , (1)

where F(·) is the deterministic dynamic operator, xt is the
unobserved state vector of interest in n-dimensional space at
time t , ξt is the stochastic part, also called model error which
means the model is not perfect. For simplicity of analysis,
we assume the errors in the model are Gaussian distributed
with zero mean and known covariance. In practice, initial
values at time t = 0 are not exactly known, they are esti-
mated using empirical knowledge and modeled with a mean
and known covariance. Furthermore, we assume observations
are obtained from the measurement equipment, the relation
between the state variables and observations can be described
as follows:

yt = H(xt )+ ηt , (2)
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where H(·) is the deterministic observable operator, yt is the
observed m-dimensional vector at time t , ηt represents the
stochastic observation error.

PF is a sequential Monte-Carlo technique which produces
a set of states drawn from the posterior distribution of the
system. In practice, particle filter is implemented by calcu-
lating the trajectory sequentially with pairs of particles as{
x it−1,w

i
t−1

}
, i = 1, 2, . . . ,N . In which wit−1 is the weight of

the particle and is proportional to the posterior distribution of
the variable states x it−1. The states x

i
t are calculated iteratively

using the previously estimated states x it−1 and observations.
For each iteration, the particle filter can be divided into three
phases: prediction, update and resampling. In the prediction
phase, we obtain the prior samples according to the prior
density. Next, update the weights of particles according to
the posterior distribution. Then, duplicate particles with high
weights in the resampling phase and abandon those with low
weights, which result in a set of uniformly weighted particles{
x it ,w

i
t = 1/N

}
[17]. Finally, the analysis of the states is

calculated as the mean of these particles.
Particle filter has been applied to many problems, but there

are still some challenges remaining. And one of them is
sample degeneracy [1], [18]-[21], where one particle has a
weight close to one while the weights of all other particles
are close to zero. This leads to the collapse of the method.
A lot of work has been done to tackle this problem and they
can be mainly divided into two categories [22]: A. Selecting a
suitable proposal distribution; B. Resampling. In the follow-
ing paragraphs, these two methods will be briefly described.

Selecting a suitable proposal distribution is very important
for the posterior estimation but in practice it is very challeng-
ing. There are many different ways of choosing a proposal
density, an overview of some commonly used algorithms can
be found in [1]. The simplest way is to use transition density
p(xt |xt−1) as the proposal density directly. And we term
this as standard proposal density. Another possible choice
for the proposal distribution is the optimal proposal density,
which incorporates the new observations yt when generating
the particles at t . The ’optimal’ here does not refer to the
performance of the particle filter. It refers to the variance ofwit
over different particles x it can reach theminimum value which
is zero [23]. In [23], Snyder also gave a simple analytical
example that the degeneracy of particle filter is reduced with
the optimal proposal relative to the standard proposal for
sufficiently high-dimensional systems.

The other way to deal with the degeneracy of the par-
ticle filter is resampling. The basic idea of resampling is
to choose particles according to their weights. After resam-
pling, the updated particles are more concentrated in domains
with higher posterior probability, the outcomes of the fil-
ter improve in some extent. There are different resampling
approaches, for example, multinomial resampling [24], strat-
ified/systematic resampling [25], residual resampling [26].
Li et al. [27] gave an overview of resampling algorithms, and
discussed undesired effects of resampling. One of the effects
is sample impoverishment. With resampling, particles with

high weights can be repeatedly selected while particles with
low weights are abandoned, and, thereby, the diversity of the
particles is reduced [28]. In the worst case, we have only a few
different particles in the set after resampling. In this paper,
we do not use resampling, instead we generate new particles
based on the posterior distribution. We do this to preserve
the diversity of particles with the optimization criterion of
minimizing the variance of the particle weights. It will be
presented in section 3.

Ensemble Kalman filter (EnKF) has been used for huge
dimensional state spaces in e.g., weather forecast and PF has
demonstrated the ability to deal with a strong non-linear prob-
lem without Gaussian distribution assumption in a reduced
dimensional state space. Some researchers have tried to com-
bine PF with EnKF [29], [30] to improve the filter perfor-
mance for nonlinear dynamic systems. In [30], Papadakis
et al. proposed a method named as the weighted ensemble
Kalman filter (WEnKF). The WEnKF method uses EnKF
to define a proposal density given the history measurements
for particle filter. In fact, it is a hybrid filtering proce-
dure which uses EnKF to generate samples and uses PF to
approximate the importance weights for them. The experi-
ment results in [30] show that it outperforms the traditional
EnKF with a comparable computational cost for a high-
dimensional non-linear problem. There was a mistake in the
derivation of weights computation as pointed out by van
Leeuwen et al. [31] and this method is not suitable for high-
dimensional systems.

In this paper, we propose an approach which uses EnKF
as proposal density in a different way. We consider different
weights of ensemble members instead of giving them the
same equal weight. We do this to obtain a better approxima-
tion of mean and variance of state variables especially when
the dynamic system is highly nonlinear or noise distribution
is non-Gaussian. In the next step, PF is used to update the
weights of particles and calculate the mean and variance of
the posterior distribution of states. Instead of resampling,
we regenerate particles based on the mean and variance of
the posterior distribution in order to keep the diversity of
particles.

Section 2 gives a brief review of the EnKF and intro-
duces the unequal weight ensembleKalman filter (UwEnKF).
We describe the basic idea of particle filter and the algorithm
of sample regenerating particle filter (SRGPF) in section 3.
In section 4, we combine the UwEnKF and SRGPF together
to improve the accuracy of the estimation of the state vari-
ables. Comparison between our method and several existing
methods is presented using the Lorenz 63 model in section 5.
Conclusions and future work are summarized in section 6.

II. ENSEMBLE KALMAN FILTER
A. THE ENSEMBLE KALMAN FILTER
The EnKF is proposed by Evensen [32] and later clarified by
Burgers et al. [33]. Unlike the Kalman filter, which is used
for linear system model and calculates the error covariance
analytically, EnKF approximates the covariance using a set
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of ensemble members. We use the following equations as the
dynamic model in the discussion.

xk = F(xk−1)+ ξ k , ξ k ∼ N (0,Q) (3)

yk = H(xk )+ ηk , ηk ∼ N (0,R) (4)

where xk , ξ k ∈ Rnx , yk , ηk ∈ Rny , ξ k and ηk are Gaussian
distributed noise with zero-mean and covariance matrices Q
and R, respectively. Furthermore, x0, ξ k and ηk are uncorre-
lated.

Denote an ensemble as Xf
k ∈ Rnx×N , Xf

k =

(x1,k , . . . , xi,k , . . . , xN ,k ), i = 1, 2, . . . ,N ,N is the ensemble
size [34].

xfi,k = F(xai,k−1)+ ξ i,k , (5)

the mean of the ensemble can be calculated as follows:

x fk =
1
N

N∑
i=1

x fi,k , H(x fk ) =
1
N

N∑
i=1

H(x fi,k ). (6)

And the covariance matrices can be approximated by

Pfxkxk =
1

N − 1

N∑
i=1

(x fi,k − x
f
k )(x

f
i,k − x

f
k )
T . (7)

PxkH(xk ) =
1

N − 1

N∑
i=1

(x fi,k − x
f
k )(H(x fi,k )−H(x fk ))

T .

(8)

PH(xk )H(xk ) =
1

N − 1

N∑
i=1

(H(x fi,k )

−H(x fk ))(H(x fi,k )−H(x fk ))
T . (9)

IfH(·) is linear, then the expression of the classical Kalman
filter gain can be used for the ensemble filter gain.

Kk = PfxkxkH
T (HPfxkxkH

T
+ R)−1, (10)

IfH(·) is nonlinear,

Kk = PxkH(xk )(PH(xk )H(xk ) + R)−1. (11)

In practice, a nonlinear observation operator H(·) is often
approximated by linearization, the Jacobian matrix ofH(·) is
then used for H in (10),

H =
∂H(x)
∂x

∣∣∣∣
x=xk

(12)

For a strong nonlinear operator H(·) or when the Jacobian
is hard to obtain, (11) is used to compute the Kalman gain.

In the analysis step, the following update is performed for
each ensemble member of the model state by

xai,k = x fi,k +Kk (yok + ηi,k −H(x fi,k )). (13)

The analysis state or best estimation of the state at time k
is

xak =
1
N

N∑
i=1

xai,k . (14)

In the traditional EnKF, every sample has the same weight
across all time steps. Consider in the initial step every sam-
ple is generated with Gaussian error distribution and each
sample has the same weight. For a linear or weakly nonlin-
ear system, the posterior density p(xk |y1:k ) is or close to a
Gaussian distribution, so it is just a scaling problem which
transforms prior Gaussian distribution to posterior Gaussian
distribution. Therefore, after normalization, the weights of
ensemble members (samples) are the same as in the first
step (initialization). While for nonlinear model, the ensemble
posterior is non-Gaussian distributed. It is unlikely that all
ensemblemembers still have the sameweights as the previous
step. Therefore, for strongly nonlinear problem, it is nec-
essary to recalculate the weight of every ensemble member
appropriately.

B. UNEQUAL WEIGHT ENSEMBLE KALMAN FILTER
(UwEnKF)
In the following, we describe unequal weight ensemble
Kalman filter and show how the weights are calculated.
From (5), we have

p(x fi,k |x
a
i,k−1) ∼ N (F(xai,k−1),Q), (15)

So,

p(x fi,k |x
a
i,k−1) ∝ e

−
1
2 (x

f
i,k−F (xai,k−1))Q

−1(xfi,k−F (xai,k−1))
T
. (16)

Normalize such that the sum of the weights equals 1,

p(x fi,k ) = p(x fi,k |x
a
i,k−1)/

N∑
i=1

p(x fi,k |x
a
i,k−1). (17)

Calculate the mean as follows instead of using (6),

x fk =
N∑
i=1

p(x fi,k )x
f
i,k , H(x fk ) =

N∑
i=1

p(x fi,k )H(x fi,k ). (18)

And replace (7)- (9) by

Pfxkxk =
N∑
i=1

p(x fi,k )(x
f
i,k − x

f
k )(x

f
i,k − x

f
k )
T , (19)

PxkH(xk ) =

N∑
i=1

p(x fi,k )(x
f
i,k − x

f
k )(H(x fi,k )−H(x fk ))

T ,

(20)

PH(xk )H(xk ) =

N∑
i=1

p(x fi,k )(H(x fi,k )

−H(x fk ))(H(x fi,k )−H(x fk ))
T . (21)

The Kalman gain and the ensemble can still be calculated
according to (10) and (13), respectively. We can rewrite (14)
in section II-A as follows:

xak = x fk +Kk (yok −H(x fk )). (22)

(22) gives the estimation of xk , and the covariance of the
analysis ensemble is calculated by

Pak = (I−KkH)Pfxkxk . (23)

109614 VOLUME 9, 2021



X. Li et al.: SRGPF Combined With UwEnKF for Nonlinear Systems

III. PARTICLE FILTER
A. BASIC PARTICLE FILTER
Consider the problem of forecast, we want to get the estima-
tion of xk given the measurements {y1, y2, . . . , yk}. Under the
Bayesian rule, we have [35]:

p(xk |y1:k ) =
p(yk |xk )
p(yk )

∫
p(xk |xk−1)p(xk−1|y1:k−1)dxk−1,

(24)

with the likelihood p(yk |xk ) and the prior distribution
p(xk |xk−1). Considering the Monte Carlo method by drawing
random samples from a given distribution,

p(xk ) =
N∑
i=1

wi,kδ(xk − xi,k ), (25)

where i represents the ith particle and N is the number of
particles. The particle filter approximates the probability den-
sity (24) by a set of particles {xi,k ,wi,k}Ni=1.

p(xk |y1:k )

=

N∑
i=1

wi,kδ(xk − xi,k )

=

N∑
i=1

wi,k−1
p(yk |xi,k )
p(yk )

p(xi,k |xi,k−1)δ(xk − xi,k−1), (26)

and we denote

wi,k = wi,k−1
p(yk |xi,k )
p(yk )

p(xi,k |xi,k−1). (27)

Sometimes we cannot draw samples from the prior dis-
tribution directly, in that case a proposal transition density
q(xk |xk−1, yk ) is introduced,

p(xk |y1:k ) =
p(yk |xk )
p(yk )

∫
p(xk |xk−1)

q(xk |xk−1, yk )
×q(xk |xk−1, yk )p(xk−1|y1:k−1)dxk−1, (28)

The optimal proposal density function q(xk |xk−1, yk ) is
equal to p(xk |xk−1, yk ). So, we draw random samples from the
proposal density distribution p(xk |xk−1, yk ). Equation (27)
for the weight then becomes,

wi,k = wi,k−1
p(yk |xi,k )p(xi,k |xi,k−1)
p(yk )p(xi,k |xi,k−1, yk )

. (29)

Now, we have got the pairs of particle with the associated
weight, {xi,k ,wi,k}Ni=1, the next step is resampling. In resam-
pling, a new set of N particles with equal weight is generated
from the posterior distribution. The basic idea is that particles
with high weights are multiplied while the ones with low
weights are abandoned. The total number of particles after
the resampling remains N each with a weight of 1/N .

Algorithm 1: Sample Importance Resampling Particle
Filter (SIRPF)

Result:
[{
xi,k ,wi,k

}N
i=1

]
=

SIRPF
[{
xi,k−1,wi,k−1

}N
i=1 , yk

]
1. Importance sampling
for i = 1:N

sample xi,k ∼ q(xk |xi,k−1, yk ),
evaluate the importance weight:
wi,k ∝ wi,k−1

p(yk |xi,k )p(xi,k |xi,k−1)
q(xi,k |xi,k−1,yk )

,
end for
for i = 1:N
normalize importance weight:
wi,k = wi,k/

∑N
i=1 wi,k ,

end for
2.Resampling
effective particle set size ˆNeff = 1∑N

i=1(wi,k )2
,

if ˆNeff < Nthr then
(xi,k ,wi,k )Ni=1 = resample(xi,k ,wi,k )Ni=1,
x̂k =

∑N
i=1 wi,kxi,k ,

end if

B. SAMPLE REGENERATING PARTICLE FILTER (SRGPF)
Degeneracy is a serious deficiency of the particle filter. The
main reason for this is that in (29) the weight at time tk
depends on that at the previous time step. When t increases,
most wi,t tend to approach zero and only one particle is left
with a weight approaching 1, this leads to the collapse of the
method.

Resampling is sometimes used to moderate the deficiency
of PF as in Algorithm 1. An alternative approach to avoid this
weight degeneracy is the following. Instead of using particles
directly from time step tk to time step tk+1. The particles are
regenerated after each filter step. The sample regenerating
particle filter (SRGPF) is shown in Algorithm 2.

C. WHY NOT RESAMPLING?
Resampling is an efficient way to reduce the sample degener-
acy, but it introduces bias in the estimation. There will always
be errors when a set of samples is used to represent the entire
distribution, especially when the set is small. Consequently
when particles are sampled from this set, bias between esti-
mation and truth of states occurs. The aim of resampling is to
make every particle to have the same weight, so why don’t we
choose the particles from the posterior distribution instead of
from the sample set?

However, sometimes it is not easy to draw samples from
the posterior distribution. But we can approximate the mean
and variance of the posterior distribution, so we can choose
to sample from a Gaussian distribution which has the same
mean and covariance as the posterior distribution. Note that
we do not assume the posterior distribution of the state is
Gaussian. Our aim is to regenerate particles according to the
known mean and variance of state variables to avoid sample
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Algorithm 2: Sample Regenerating Particle Filter
(SRGPF)

Result:
[{
xi,k ,wi,k

}N
i=1

]
=

SRGPF
[{
xi,k−1,wi,k−1

}N
i=1 , yk

]
1. Importance sampling
for i = 1:N
sample xi,k ∼ q(xk |xi,k−1, yk ),
evaluate the importance weight:
wi,k ∝ wi,k−1

p(yk |xi,k )p(xi,k |xi,k−1)
q(xi,k |xi,k−1,yk )

,
end for
for i = 1:N
normalize importance weight:
wi,k = wi,k/

∑N
i=1 wi,k ,

end for
2. Regenerate particles
Calculate the mean and variance of the posterior
distribution:
x̂k =

∑N
i=1 wi,kxi,k ,

Pk =
∑N

i=1 wi,k (xi,k − x̂k )(xi,k − x̂k )
T ,

sample (xi,k ,wi,k )Ni=1 ∼ N (x̂k ,Pk )

impoverishment. And Gaussian distribution has the highest
probability around the mean value, i.e., the analysis state
(x̂k in section 3.2).

IV. COMBINING UNEQUAL WEIGHT ENSEMBLE KALMAN
FILTER WITH SAMPLE REGENERATING PARTICLE FILTER
(UwEnKF-SRGPF)
A. REVIEW OF WEIGHTED ENSEMBLE KALMAN FILTER
The weighted ensemble Kalman filter (WEnKF) was pro-
posed by Papadakis et al. in [30]. The algorithm uses ensem-
ble Kalman filter as proposal density for the particle filter.
Experiments with a synthetic 2-D turbulence model show
that when observation is given at every time step, the results
of WEnKF and EnKF are very close to each other. As the
observations become sparser, e.g., one observation at every
5 timesteps, WEnKF has a faster convergence and a more
accurate estimation than EnKF. The WEnKF filter is more
suitable for the non-Gaussian distribution of ensemble mem-
bers, which may be caused by nonlinear stochastic dynam-
ics over time [36]. The algorithm can be divided into two
parts. First, use the EnKF to define a proposal density.
Second, use particle filter to calculate the weight of every
ensemble member (particle) and approximate the analysis
state.

The weighted ensemble Kalman filter algorithm is as
follows:

B. THE ALGORITHM OF UwEnKF-SRGPF
If the posterior PDF is known and it is easy to draw samples
from this PDF, then independent samples with equal weights
can be drawn. For example, a Gaussian prior combined with a
linear Gaussian likelihood, such as EnKF does [22]. In reality

Algorithm 3: Weighted Ensemble Kalman Filter
(WEnKF)

Result:
[{
xi,k ,wi,k

}N
i=1

]
=

WEnKF
[{
xi,k−1,wi,k−1

}N
i=1 , yk

]
1. Initialization (k = 0).
Generating initial values with N ensemble members
[x1,0, x2,0, . . . , xN ,0] ∼ N (x0,P0).

2. For k = 1, 2, . . .
a) Prediction step
i. Evolve each ensemble member forward using (5).
ii. Get the expectation and covariance of the state
variables according to (6) - (9).
b) Update step
i. Calculate the Kalman gain according to (10).
ii. Update the ensemble according to (13) and use them
as input for Algorithm 1.

we do not know the exact posterior distribution, so we draw
samples from a proposal density function. There are many
ways to choose the proposal density, such as a relaxation
scheme [22], weighted ensemble Kalman filter [30], optimal
proposal density [37], implicit particle filter [38], equivalent-
weights particle filter [39] and implicit equal-weights particle
filter [10]. In this paper, we use the unequal weight ensemble
Kalman filter (UwEnKF) as the proposal density to generate
samples. Then, we use the particle filter to correct the weight
of these samples.

We start with introducing the method of WEnKF which
uses EnKF to define the proposal density, as this forms
the basis of our UwEnKF-SRGPF method. For WEnKF,
an ensemble is generated as follows:

xai,k = x fi,k +Kk (yok + ηi,k −H(x fi,k )). (30)

Following this, we use PF to update the weights of the
ensemble. Assume the model and observation errors are
Gaussian distributed and independent, when H is a linear
operator we have [31]

p(xai,k |xi,k−1, yk ) ∝ e−1/2(x
a
i,k−µi,k )Σ

−1
k (xai,k−µi,k )

T
, (31)

µi,k = F(xai,k−1)+Kk (yk −H(F(xai,k−1))),

(32)

Σk = (I−KkH)Q(I−KkH)T +KkRKT
k .

(33)

Slightly different fromWEnKF, whenwe use the UwEnKF
to define the proposal density, we generate the ensemble
xai,k from the distribution N (xak ,P

a
k ) as we have obtained in

section II-B. Next, update the weights of particles according
to (29). The advantage is that we do not need to calculate the
proposal density asWEnKF does. Since it is not easy to obtain
the proposal density as it needs the inverse ofΣk which incurs
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complex computations. Now the weight can be calculated as:

wi,k ∝ wi,k−1
p(yok |x

a
i,k )p(x

a
i,k |x

a
i,k−1)

p(yk )
. (34)

The following relation between the likelihood and the prior
yields,

p(yok |x
a
i,k ) ∝ e−1/2(y

o
k−H(xai,k ))R

−1(yok−H(xai,k ))
T
,

p(xai,k |x
a
i,k−1) ∝ e−1/2(x

a
i,k−F (xai,k−1))Q

−1(xai,k−F (xai,k−1))
T
. (35)

According to (34) - (35), we get

wi,k ∝ wi,k−1p(yok |x
a
i,k )p(x

a
i,k |x

a
i,k−1), (36)

wi,k = wi,k/
N∑
i=1

wi,k , (37)

The final analyzed estimation and covariance of the system
are

x̂k =
N∑
i=1

wi,kxai,k , (38)

Pk =
N∑
i=1

wi,k (xai,k − x̂k )(x
a
i,k − x̂k )

T . (39)

For sequential importance resampling (SIR) method, after
resampling, xai,k is directly used as prior samples in the next
step. Because some particles have duplications, so these parti-
cles have a higher weight than others. We regenerate particles
to make sure at every time step each ensemble member has
the same weight of 1/N .

xi,k ∼ N (x̂k ,Pk ) (40)

Our UwEnKF-SRGPF algorithm (Algorithm 4) can be
described as follows:

V. ASSIMILATION EXPERIMENTS
The Lorenz 63 model equation was developed by Edward
Lorenz in 1963 as a simplified mathematical model for atmo-
spheric convection.

dx
dt
= σ (y− x), (41a)

dy
dt
= x(ρ − z)− y, (41b)

dz
dt
= xy− βz, (41c)

With the parameters σ = 10, β = 8/3, ρ = 28, this model
has the famous chaotic behavior and is known as the Butterfly
Attractor orbit.

Let 1t = 0.01, x = (x, y, z)T , y = (xobs, yobs, zobs)T ,
use a fourth-order Runge-Kutta scheme to integrate the
model (41a)-(41c). Denote the model error at every time step
as ξ . Furthermore, a noise term η is added to the observation.
The dynamic system becomes:{

xk+1 = Fk (xk )+ ξ, (42a)

yk+1 = Hxk+1 + η, (42b)

Algorithm 4: Unequal Weight Ensemble Kalman Filter -
Sample Regenerating Particle Filter (UwEnKF-SRGPF)

Result:
[{
xi,k ,wi,k

}N
i=1

]
=

UwEnKF-SRGPF
[{
xi,k−1,wi,k−1

}N
i=1 , yk

]
1. Initialization (k = 0).
Generate initial values with N ensemble members
[x1,0, x2,0, . . . , xN ,0] ∼ N (x0,P0).
2. For k = 1, 2, . . .
a) Prediction step
i. Evolve the ensemble forward using (5).
ii. Calculate and normalize the weight p(x fi,k ) according
to (16) and (17).
iii. Compute the mean and covariance of the state
variables according to (18) and (19).
b) Update step
i. Calculate the Kalman gain according to (10) or (11).
ii. Calculate the ensemble analysis by (22).
iii. Generate samples from N (xak ,P

a
k ) which has the

mean and covariance as defined by (22) and (23).
iv. Calculate the weights and normalize according
to (35), (36) and (37).
v. Obtain the analyzed state x̂k and covariance Pk
according to (38) and (39).
c) Regenerate samples
i. Regenerate samples xai,k ∼ N (x̂k ,Pk ) as input for
k + 1 step.

Assume ξ and η have a diagonal covariance matrix
with the diagonal elements σmodel = σobs = 2.
H is an identity matrix. The real starting point is
(x0, y0, z0) = (1.50887,−1.531271, 25.46091) while the
initial guess is x̂0 = (1.0,−1.0, 27.0)T and σinitial = 2.
The root mean square error (RMSE) of the analysis is defined
as:

Ea =

√√√√√ 1
T

T∑
k=1

 m∑
j=1

(
x truek,j − x

a
k,j

)2
/m

. (43)

where xk,j is the jth variable ofXk , the indexm represents the
number of assimilation steps, k represents the k-th time step,
T represents the total number of time steps and we choose
T = 1000 in the following experiments.

A. RESULTS
Weevaluate the performance of ourmethodUwEnKF-SRGPF
and compare with that of EnKF and WEnKF. In [30],
the authors smooth the ensemble members distribution by
adding a zero mean Gaussian perturbation whose covari-
ance depends on the mean discrepancy between the estimate
and the current measurement. Without smoothing, for a
small number of particles and large measurements latency
the WEnKF was unstable and diverged sometimes. For a
proper comparison, we do not use smoothing. And moreover,
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TABLE 1. RMSE of analysis states under Gaussian noise with different observation frequencies.

FIGURE 1. RMSE of EnKF, WEnKF, and UwEnKF-SRGPF with 100 particles
and observations at every timestep under Gaussian noise.

for WEnKF, the proposal distribution is Gaussian which
has the mean and covariance as defined in (22) and (23)
respectively. We perform experiments with different noise
distribution and observations at different time steps or
frequencies.

1) GAUSSIAN DISTRIBUTED NOISE
Assume the errors of the initial value, the dynamic model and
observations are all Gaussian distributed with zero means.
For EnKF, it samples from the posterior distribution directly
and gives all the ensemble members the same weight. For
WEnKF, it uses EnKF to define a proposal density and cor-
rects the weights of ensemble members (particles) by PF.
While UwEnKF-SRGPF considers the weight of ensemble
members to get a more accurate approximation of Kalman
gain and regenerates particles instead of resampling. In the
experiments, we performed test with different number of
particles, namely N = 5, 10, 20, 30, 40, 50, 100, 200, 500,
and with different observation frequencies. The RMSE is
computed on 10 independent trials.

In Table 1, U-SRGPF denotes UwEnKF-SRGPF to save
space. We can see when there is observation at every time
step, UwEnKF-SRGPF performs the best. UwEnKF-SRGPF
performs better than EnKF because the error caused by
the linearization step of EnKF is higher than the error of
UwEnKF-SRGPF which mainly comes from the representa-
tion error of the distribution by a small amount of samples.
ForWEnKF, resamplingwill lose diversity of the samples and
samples with useful information may be discarded. When the
observation frequency decreases to one at every 5 timesteps,

FIGURE 2. RMSE of EnKF, WEnKF, and UwEnKF-SRGPF with 100 particles
and observations at every 5-timesteps under Gaussian noise.

UwEnKF-SRGPF needs more than 100 particles to compete
with the other two methods. The reason is that for small
number of particles the variance of weights is large, the distri-
bution cannot be well represented under this condition. When
the observations become sparser with only an observation
at every 20 timesteps, UwEnKF-SRGPF can obtain better
performance than the other two methods when the ensem-
ble has 200 or more particles. This can be explained that
UwEnKF-SRGPF needs more samples to approximate the
posterior distribution, but with a sufficient large ensemble
this approximation error becomes smaller than the lineariza-
tion error in the EnKF and WEnKF methods under sparse
observations. So, with UwEnKF-SRGPF there is a strong
increase in computational effort when the observation fre-
quency decreases. In the following, we will further analyze
the performance of the three filter methods for cases when
observations are at every 1, 5 and 10 timesteps, and the
ensemble size is 100, and the case of non-Gaussian dis-
tributed errors will also be investigated using the exponential
distributed noise.

Fig. 1 and 2 give RMSE of all three methods for 100 parti-
cles with 1 or 5 timestep observations under Gaussian noise.
The red line is themedian and the green triangle is themean of
the RMSE for ten trials.When the observation is at 1 timestep,
the RMSE of the UwEnKF-SRGPF has a smaller variation
over the trials as the interquartile range is smaller than EnKF
and WEnKF. When the observation is at every 5 timestep,
the variation of RMSE for UwEnKf-SRGPF is larger than the
other two methods. But UwEnKf-SRGPF still performs well
as the mean of RMSE for the 10 trials is lower than that of
EnKF and WEnKF.
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FIGURE 3. Assimilation experiments using EnKF, WEnKF, and UwEnKF-SRGPF with 100 particles by observation at every timestep (left) and
every 5 timesteps (right) under Gaussian noise.

In Fig. 3, we present analysis and truth for all the three
methods. We can see when the observation is at every
timestep, the analysis trajectories of EnKF, WEnKF and
UwEnKF-SRGPF can closely follow the truth. When the
observation is at 5 timesteps, all the methods show small
deviations from the truth. Whereas the analysis trajectories
of UwEnKF-SRGPF are much closer to the truth. It implies
that when the observation becomes sparse, the error caused
by nonlinear transition dynamics becomes large and the per-
formance of DA methods degrades.

From the above discussions, we conclude that UwEnKF-
SRGPF have a better performance than EnKF and WEnKF
with enough particles. When observation is at every timestep,
the conclusion is obvious as shown in the table 1 since the
RMSE of UwEnKF-SRGPF is the smallest among all the
methods.When observations is at every 5 timestep, we cannot
filter out the noise when observation is not available. For
small ensemble sizes (less than or equal to 50 in Table 1),
WEnKF and EnKF performs better than UwEnKF-SRGPF.
It is because when the ensemble size is small, the variance of
the weights is large, which leads to very inaccurate ensem-
ble mean and covariance. Furthermore, UwEnKF-SRGPF
encounters this problem twice as it also requires weights

FIGURE 4. Histogram of posterior distribution for EnKF at t = 9.99 under
Gaussian noise with 100 particles and 1-timestep observations.

calculation when using UwEnKF as the proposal density.
As the ensemble sizes increase, the variance of weights is
reduced and UwEnKF-SRGPF becomes the one with the best
performance.

Fig. 4 - 6 show the ensemble distributions of the three
methods at the 1000-th timestep (t = 10) with 1-timestep
observations. The number of samples is 100 and they
are generated from the posterior distribution at previous
(999-th) timesteps which is t= 9.99. And the truth of Lorenz
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TABLE 2. RMSE of analysis states under exponential noise with different observation frequencies.

FIGURE 5. Histogram of posterior distribution for WEnKF at t = 9.99
under Gaussian noise with 100 particles and 1-timestep observations.

FIGURE 6. Histogram of posterior distribution for UwEnKF-SRGPF at
t = 9.99 under Gaussian noise with 100 particles and 1-timestep
observations.

63 at t= 9.99 is (x, y, z) = (2.0735, 3.4608, 15.9068). From
the figures, we can see that the posterior distributions at
t = 9.99 of the three methods are different but they all cover
the truth value of the model. The posterior distribution of
UwEnKF-SRGPF is basically symmetrical around the truth
value. For WEnKF, it is a little skewed and there is a bias
between the mean of posterior distribution and the truth at the
999-th timesteps. The similarity between the results of
UwEnKF-SRGPF and WEnKF is that both are unimodal
distribution and basically symmetric, whereas for EnKF,
the variance of posterior distribution is much higher. All
ensemble members have equal weights in EnKF, occasionally
some samples far from the truth are also kept resulting in a
wide distribution as shown in the Fig. 4. UwEnKF-SRGPF
and WEnKF update the weights according to a posterior
distribution, the analysis is more accurate than EnKF. And

FIGURE 7. RMSE of different ensemble sizes with 1-timestep
observations and exponential noise.

FIGURE 8. RMSE of different ensemble sizes with 5-timesteps
observations and exponential noise.

UwEnKF-SRGPF is more accurate than WEnKF since the
posterior distribution is more consistent with the system.

2) EXPONENTIAL DISTRIBUTED NOISE
Although Gaussian noise is usually used to model errors in
data assimilation applications, in some cases it cannot prop-
erly represent the actual error which might be non-Gaussian.
In order to investigate the performance of UwEnKF-
SRGPF for non-Gaussian distributed errors, we will test
our UwEnKF-SRGPF method and compare with EnKF by
assuming the error in the dynamic model is exponential
distributed. We use the same errors for the initial value and
observations as in the experiment 1) with Gaussian noise. The
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FIGURE 9. Assimilation experiments using EnKF and UwEnKF-SRGPF with 200 particles by 1-timestep (left) and 5-timesteps (right)
observations. The model noise is exponential and the observation noise is Gaussian.

probability density function of exponential distribution is

f (x; λ) =

{
λe−λx , x ≥ 0
0, x < 0

(44)

We choose λ = 0.5, the variance 1/λ2 = 4 is the
same as the variance of errors in section V-A1. The mean is
1/λ = 2, so the bias of model error is non-zero. Note that
for exponential distribution, we cannot obtain the probability
density function of the proposal distribution which is required
for implementing WEnKF, so we do not include WEnKF
in this comparison. For UwEnKF-SRGPF, we obtain the
ensemble from the proposal density (UwEnKF), and generate
particles from the Gaussian with the same mean and covari-
ance as the ensemble. Since we cannot get the analytic pdf
of the proposal density now. The reason we choose Gaus-
sian distribution is that it has the high probability around
the mean value and it is symmetric. In addition, UwEnKF-
SRGPF will update the weights of particles according to their
certainty.

Next, we do 10 independent experiments with an ensem-
ble size of 5, 10, 20, 30, 40, 50, 100, 200, 500 and 1000.
And no results are shown when observation frequency is at
every 20 timestes since the estimations are not accurate for
both methods. We use the average RMSE as a performance
indicator for the methods. Results are shown in Table 2.
From Table 2, it can be seen that UwEnKF-SRGPF out-

performs EnKF in almost all cases, except when the ensem-
ble is very small. This is because that for a very small
ensemble, a large representation error of the posterior dis-
tribution as explained in the previous section. When there
is an observation at every timestep, the performance of

UwEnKF-SRGPF increases with the ensemble size and is
better than EnKF. When observations are getting sparser,
at every 5 or 10 timesteps, the RMSE of UwEnKF-SRGPF
and EnKF are much larger than that of 1-timestep obser-
vation. Since the model error distribution is exponential,
the error mean is greater than zero. When observations are
not available, errors may accumulate and cannot be corrected,
and the performance deteriorates.

Fig. 7 and Fig. 8 show the variation of RMSE for differ-
ent ensemble sizes under 1-timestep and 5-timesteps obser-
vations respectively. When there is observation at every
timestep, the differences of the results of the ten differ-
ent runs are very small, so the curves of the 95% confi-
dence interval are hardly visible in Fig. 7. For 5-timesteps
observations as shown in Fig. 8, the 95% confidence interval
for RMSE of EnKF is much wider than that of UwEnKF-
SRGPF. With the increasing of ensemble members, the inter-
val gets narrower. The main reason is that the bias for EnKF
accumulates between two observation moments and more
ensemble members are needed to get stable estimations.
While UwEnKF-SRGPF performs much better as it is more
stable and more accurate than EnKF. We can also see when
there is observation at every timestep, the steepest decline in
RMSE occurs between ensemble of size 20 and 50, after that
the curve becomes flat. The optimal choice for ensemble size
is 100, considering the performance and computational cost.
When the observation is at every 5 timesteps, for performance
of EnKF fluctuates much more and is less stable compared
to UwEnKF-SRGPF. The performance of UwEnKF-SRGPF
is not only better than EnKF, it continues to improve until
reaching the ensemble size of 200, whereas EnKF shows
relatively little improvement after the ensemble size of 50.
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FIGURE 10. Errors of EnKF and UwEnKF-SRGPF with 200 particles by 1-timestep under exponential noise. The error is between the
analysis and the truth, the red line is the mean of error.

For comparison under different observation frequencies,
we give the analysis trajectories with 200 particles in the
following.

From Fig. 9, we can see that the accuracy of the results
are less than the case with Guassian noise (Fig. 3). The
analysis trajectories now deviate from the truth except for
UwEnKF-SRGPF with observations at every timestep. The
analysis trajectories of EnKF lie above the truth since the
noise mean is greater than zero, especially for 5-timesteps
observations. Fig. 10 gives more details of the difference
between the analysis and the truth. For EnKF, the mean
of error is large than zero which is caused by the nonzero
bias in the exponential noise. While for UwEnKF-SRGPF,
the mean of error is close to zero, because UwEnKF-SRGPF
calculates the weights of particles and it can correct the
nonzero bias in the noise distribution. When observation is
at every 5 timesteps, the analysis curves of both methods
have little spikes departing from the truth. The reason is
that the noise distribution has non-zero bias and errors accu-
mulated between two adjacent observations. The error of
UwEnKF-SRGPF is smaller than EnKF showing it is more
robust for non-Gaussian distributed noises.

VI. CONCLUSION
In this paper, we proposed the UwEnKF-SRGPF approach
which combines sample regenerating particle filter (SRGPF)
and unequal weight ensemble Kalman filter (UwEnKF).
There are two known ways for dealing with the degeneracy
of the particle filter, one is finding a good proposal density
and the other is resampling. Our approach tries to solve
the degeneracy problem by using the UwEnKF as proposal
density function for the particle filter and by regenerating par-
ticles instead of resampling to preserve the diversity. In this
way, the estimation at time tk reduces the dependence on the
previous time step. The traditional approach uses particles at
time tk−1 as input for model at time tk , while our method tries
to generate particles according to a certain assumption of the
posterior distribution of states and the diversity of particles is
kept.

We used the Lorenz 63 model to evaluate the perfor-
mance of our approach and compare with EnKF andWEnKF
under Gaussian noise. UwEnKF-SRGPF performs the best
as the ensemble size increases, WEnKF is in the second
place. Although not as good as the other two methods,

EnKF also gives a comparable performance. When the noise
is exponential distributed, we compared UwEnKF-SRGPF
with EnKF, as WEnKF cannot be directly implemented.
It shows that UwEnKF-SRGPF performs much better than
EnKF and can filter out the noise when observation is avail-
able, whereas EnKF has a bias since the noise distribution
has a long tail with a nonzero mean. UwEnKF-SRGPF has
demonstrated to be more robust in dealing with noises with
nonzero biases. One of the problems requiring further inves-
tigation is to improve the accuracy of analysis when obser-
vation is sparse, as we have seen that when the observa-
tion frequency further decreases to one observation at 10 or
20 timesteps, the performance of all the methods degrades
dramatically.
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