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ABSTRACT Visual simultaneous localization and mapping (vSLAM) are considered a fundamental tech-
nology for augmented reality and intelligent mobile robots. However, rigid scene assumption is common in
vSLAM, which limits the wide usage in populated real-world environments. Recently, with the widespread
use of artificial neural networks, many solutions have tried to eliminate the influence of dynamic objects
using semantic information provided by object detection or semantic segmentation. Mask R-CNN is popular
in many applications, but is usually slow and limits the speed of vSLAM because it waits for the semantic
results before camera ego-motion estimation. We had previously introduced a real-time vSLAM, RDS-
SLAM, which isolates tracking and semantic segmentation by adding a semantic thread and moving prob-
ability estimation. However, Mask R-CNN only supplies a small amount of semantic information because
only a few keyframes can be segmented within a short time. Therefore, in this study, we propose a novel
vSLAM, RDMO-SLAM, which can leverage more semantic information while ensuring the real-time nature
by adding semantic label prediction using dense optical flow. Besides, we also estimate the velocity of each
landmark and use them as constraints to reduce the influence of dynamic objects in tracking. Demonstrations
are presented, which compare the proposedmethod to comparable state-of-the-art approaches using dynamic
sequences.We improved the real-time performance from 15 Hz (RDS-SLAM) to 30 Hz while keeping robust
tracking in dynamic scenes.

INDEX TERMS Visual SLAM, semantic segmentation, real-time, dynamic environments, RDS-SLAM.

I. INTRODUCTION
Visual simultaneous localization and mapping (vSLAM) has
been a hot research topic in computer vision, augmented
reality (AR), unmanned autonomous vehicles, and robotics.
vSLAM [1] is a fundamental technology for estimating the
pose of sensors and reconstructing structures in an unknown
environment using onboard sensors, such as mono, RGB-D,
and stereo cameras. vSLAM can be classified into feature
based approaches, such as ORB-SLAM [2] and RGB-D
SLAM [3], and direct approaches, such as LSD-SLAM [4]
and DSO [5]. As we know, there is usually a strong assump-
tion in vSLAM, the rigid scene assumption. vSLAM assumes
that the camera is the only moving object. However, the cam-
era is not the only moving object in the real environment,
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and this assumption may result in unstable tracking or even
tracking failure. For instance, humans are dynamic objects
in indoor environments. The motion of features or points on
the dynamic objects is unknown and cannot be accurately
estimated. Dynamic objects may influence feature match-
ing and BA (bundle adjustment) and eventually resulting
in non-robust pose estimation and map building. As shown
in Fig. 1, vSLAM by default cannot sense the motion of
dynamic objects or dynamic features, e.g., mjt−1 moved to
mjt . Unfortunately, it still use the old map point mjt−1 and its
observed features xt−1,j and xt,j to estimate the pose using
BA by minimizing the reprojection error for every selected
features. The problem is that the newly observed feature,
xt,j, no longer matches mjt−1 but matches a new landmark
mjt that is unknown for vSLAM. This phenomenon can be
somehow detected and reduced using geometric algorithms
such as RANSAC (random sample consensus) [6] and BA if
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FIGURE 1. Rigid scene problem in vSLAM. The j-th map point mj
t−1 on a

dynamic object matched with the feature xt−1,j in the previous image.

Assume that this map point moved to a new position mj
t and is observed

as xt,j in the current image. x ′t,j is the position if the feature is static. Ct−1
and Ct are the camera centers of previous (It−1) and current (It ) images.

FIGURE 2. Example of dynamic environments (TUM).

dynamic features move very fast. However, outliers cannot
be efficiently detected if they move slowly or occupy a major
part of the scene. As shown in Fig. 2, one person is walking
slowly at the center of the image, and many features are
detected on his T-shirts. vSLAM may mistakenly trust these
features and result in non-robust pose estimation because
these features are unstable.

In recent years, vSLAM is useful in scene under-
standing, semantic mapping, robot navigation, and decision
making with the aid of object detection, convolutional
neural network (CNN), deep learning, and machine learning.
The benefits between these semantic applications/systems
[7] and vSLAM are mutual. VSLAM can support pose
estimation and map building for these semantic applica-
tions (SLAM helps semantic), whereas the semantic methods

FIGURE 3. Blocked model vs non-blocked model. The optical flow model
is optional. The semantic model can be Mask R-CNN, SegNet, SSD or
others. Segmentation and optical flow can run in parallel for frames or
keyframes. The feedback, motion information, is optional for the blocked
model.

can be applied to improve tracking performance (semantic
helps SLAM). Many studies try to eliminate or reduce the
influence of dynamic objects using various segmentation
methods. For example, Detect-SLAM [8] uses the object
detection (SSD [9]) approach to improve tracking perfor-
mance; similarly, DynaSLAM [10] and DM-SLAM [11] use
Mask R-CNN [12], DS-SLAM [13] uses SegNet [14], and
KMOP [15] uses Open-Pose [16] and k-means [17].

To the best of our knowledge, the execution speeds of
these methods are limited by the semantic model used, e.g.,
Mask R-CNN, SSD, and OpenPose, because these methods
need to wait for the semantic result/information, e.g., label,
bounding box, before tracking. Such an architecture is called
a blocked model, as shown in Fig. 3 (a). In our previous
study, we proposed a novel real-time vSLAM architecture,
RDS-SLAM [18], validated using both Mask R-CNN and
SegNet using non-blocked model, as shown in Fig. 3 (b).
RDS-SLAM can guarantee the speed of tracking free from
speed limitation of semantic models using multi-thread and
moving probability estimation of each map point. However,
it has some shortcomings: a) Mask R-CNN is slow (approx-
imately 200 ms) and cannot segment every keyframe to use
more semantic information in a limited time. It cannot run
stably at 30 Hz using the TUM [19] dataset because insuffi-
cient semantic information obtained at 30 Hz for some of the
dynamic scenes of the TUM dataset, which are very short,
only about half a minute; b) only predefined objects trained
by Mask R-CNN are handled. In this study, we try to ensure
real-time performance (30 Hz) while keeping robust tracking
by exploiting optical flow.

One critical challenge of using semantic information is
time complexity. Although there are some lightweight seman-
tic segmentation models, e.g., SegNet, the total time of track-
ing one frame is still more than the original ORB-SLAM3.
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Besides, sometimes a complex CNN architecture is required
for robots to perform high-level tasks, e.g., human-robot
interaction and semantic mapping. To acquire more semantic
information in a limited time, we use dense optical flow for
each pixel to predict the semantic label of Mask R-CNN.
Another challenge is that only predefined objects trained by
CNN are used to judged outliers. Optical flow can estimate
the pattern of motion for every feature, including features
on the undefined objects. The velocity of map points can be
estimated by optical flow and used as a constraint to reduce
the influence of outliers from the tracking process.

In this study, we propose a semantic label prediction
algorithm to generate more semantic information for the
keyframes that are not segmented. Real-time tracking under
dynamic environments is achieved while keeping robust
tracking using a heavy CNN architecture. Besides, the veloc-
ity of landmarks is estimated with the aid of scene flow
and Kalman filter. These two constraints (the semantic label
and velocity) can reduce the influence of dynamic objects in
vSLAM.

The main contributions of this paper are as follows.
(1) We propose a novel semantic-based real-time vSLAM

algorithm using Mask R-CNN and PWC-Net for dynamic
environments, RDMO-SLAM, an extension of RDS-SLAM,
which can achieve both good tracking performance and the
real-time nature.

(2) We predict the semantic result of Mask R-CNN using
optical flow to obtain more semantic information so that
the tracking thread uses as much semantic information as
possible.

(3) We demonstrate the real-time performance (30 Hz)
under dynamic environments using the TUM dataset and an
AR demo in the case of using a heavy CNN architecture,
Mask R-CNN.

The rest of this article is structured as follows. Section II
presents related work. Sections III - VIII detail the imple-
mentation of the proposed method. Section IX shows the
experiment results. Finally, Section X presents conclusions
and discusses future work.

II. RELATED WORK
In this section, we explore related works on vSLAM
and state-of-the-art solutions to the rigid scene assump-
tion in vSLAM under dynamic environments. We clas-
sify the methods into purely geometric, reconstruction, and
semantic-based approaches. The semantic-based approaches
leverage semantic information to detect and segment objects
and remove outliers from tracking. Notably, these approaches
may share some common ideas, such as the use of geometric
checking.

A. VISUAL SLAM
Feature-based methods rely on salient point matching and
can only perform a sparse reconstruction. Parallel tracking
andmapping (PTAM) [20] that implements a keyframe-based
monocular SLAM system on a cell phone is a promising

platform for hand-held AR. ORB-SLAM [2], a monocular
vSLAM that estimates camera ego-motion by matching ORB
[21] features extends the versatility of PTAM to environ-
ments that are intractable for PTAM. Based on ORB-SLAM,
ORB-SLAM2 [22], a complete SLAM system for monoc-
ular, stereo, and RGB-D camera was presented, which can
work in real-time in various environments. Carlos et al. pro-
posed the latest version of ORB-SLAM, ORB-SLAM3 [23],
which tightly integrates visual and inertial information and
adds a multiple map system (ATLAS [24]). Our previous
work, a real-time dynamic SLAM using semantic segmen-
tation methods (RDS-SLAM) [18], is implemented based on
ORB-SLAM3. It adds a novel semantic tracking thread that
leverages semantic information to improve tracking accuracy
and retain the real-time property in dynamic environments.
This study extends RDS-SLAM by adding two more threads
(optical flow and velocity estimation) to generate more
semantic information.

Apart from feature-based methods, many direct vSLAM
approaches [4], [5], [25], [26], which can estimate, in prin-
ciple, a completely dense reconstruction by the direct mini-
mizing of the photometric error, have also been proposed. For
example, Kerl et al. proposed a dense visual SLAM method,
DVO (Dense Visual SLAM) [26], using an RGB-D camera,
which minimizes both photometric and depth error over all
pixels.

However, rigid scene assumption is a common problem
for both the feature-based and the direct methods. Detecting
and handling outliers in real-time is challenging in vSLAM.
Although there are some strategies, such as selecting rela-
tive good features and RANSAC-based checking, in some
vSLAMs, e.g., ORB-SLAM3. However, they are still not well
suitable for dynamic environments.

B. GEOMETRIC-BASED APPROACHES
Li and Lee [27] proposed a depth edge-based RGB-D
SLAM system for dynamic environments based on the frame-
to-keyframe registration, which only uses weighted depth
edge points. Sun et al. [28] proposed a novel online RGB-D
data-based motion removal approach that uses optical flow.
It is integratedwith the front end of an RGB-DSLAMsystem,
acting as a preprocessing stage to filter data associated with
dynamic objects. They also proposed a monocular vSLAM
algorithm [29] that uses optical flow to improve tracking
performance with a monocular camera in dynamic environ-
ments. Also, they integrated their method into ORB-SLAM.
However, their methods have some limitations. For example,
the threshold used to distinguish dynamic points is set to a
fixed value, which may not be an optimal value for some
sequences. Kim et al. [30] proposed an IMU-based solution.
They classified the features into dynamic and static using the
IMU rotation component between two consecutive images.
However, for many use cases, it is desirable to improve
the accuracy of pose tracking and map building using only
a single camera. Besides, IMU has drift and accumulated
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errors over time. Sun et al. [31] classified pixels using the
segmentation of quantized depth images and calculated the
difference in intensity between consecutive RGB images.
Tan et al. [32] proposed a novel online keyframe rep-
resentation and updating method to adaptively model the
dynamic environments, where an appearance or a structure
change could be effectively detected and handled. Although
geometric-based methods can eliminate outliers to some
extent, there is room for further optimization of tracking
performance using semantic information.

C. RECONSTRUCTION-BASED APPROACHES
Visual odometry and scene flow (VO-SF) [33], an odometry-
based method designed for dynamic scenes proposed by
Jaimez et al., combines visual odometry, k-means, and
scene flow and reconstructs a 3D model of the rigid scene.
Co-Fusion [34] proposed an approach to track and reconstruct
multiple moving objects using SharpMask [35]. BaMVO
[36] proposed a background model-based visual odometry.
StaticFusion [37], a method for dense RGB-D SLAM pro-
posed by Raluca et al., tried to address the rigid scene
assumption by jointly estimating the motion of an RGB-D
camera and segmenting the scene into static and dynamic
parts. StaticFusion is conceptually related to BaMVObut uses
a frame-model alignment instead of a multi-frame strategy.
Similar to ElasticFusion [38], camera tracking is performed
by aligning incoming frames with a dense surfel-based model
of the environment. A background model that fuses only the
static elements by decoupling the static and dynamic parts
is built. K-means is used to segment geometric clusters in
StaticFusion, and it is difficult to find the optimal K value
for a specific scene. This problem also exists in other
k-means-based algorithms, such as KMOP-vSLAM [15].
Also, StaticFusion assumes each cluster is a rigid body
to reduce the overall computational complexity, and then
solves the static/dynamic segmentation problem cluster-wise
as opposed to pixel-wise. Moving people are not rigid bodies
in many cases. We do not use such an assumption because
we focus on improving the tracking accuracy by eliminating
outliers both on rigid objects and dynamic objects in real-time
rather than focusing on building a conservative reconstruction
of the static structures of the scene.

In this study, the camera pose is estimated using sparse
ORB features because it is usually more lightweight than
the dense RGB-D SLAM, and we do not build the dense
surfel-based model.

D. SEMANTIC-BASED APPROACHES
We classify the semantic-based methods into the blocked
and non-blocked models. As shown in Fig. 3, in the blocked
model, the semantic information needs to be obtained before
the tracking, which limits the real-time performance.We have
proposed a non-blocked model in RDS-SLAM [18], where
the tracking is not blocked to wait for semantic information,
and the camera pose is optimized after obtaining semantic
information.

1) BLOCKED MODEL-BASED APPROACHES
DynaSLAM [10], based on ORB-SLAM2 and Mask R-CNN
has capabilities of dynamic object detection and background
inpainting, which can detect dynamic objects either by multi-
view geometry, deep learning, or both and then reconstructs
frame backgrounds occluded by dynamic objects using a rigid
scene map. DP-SLAM [39] combines the results of geometry
constraints andMask R-CNN to track the dynamic key points
in a Bayesian probability estimation framework. DP-SLAM
was integrated into the front-end of the ORB-SLAM2 to
inpaint frame background occluded by the detected dynamic
objects. KMOP-vSLAM [15], also implemented on ORB-
SLAM2, has capabilities of unsupervised learning segmenta-
tion (k-means [17]) and human detection (OpenPose [16]) for
robust tracking in dynamic environments. Outliers belonging
to dynamic objects are detected and eliminated from tracking.
One problem is that the number of clusters of k-means is
given manually and it may not be optimal for the current
environment. DS-SLAM [13], based on ORB-SLAM2 and
SegNet [14], uses a moving consistency check to reduce the
impact of dynamic objects by assuming that feature points
on people are most likely to be outliers. Detect-SLAM [8],
based on ORB-SLAM2 and SSD [9], classifies keypoints
into four states: low-confidence static, high-confidence static,
low-confidence dynamic, and high-confidence dynamic.
It only detects keyframes to save time and then insert the
keyframes into the local map and update the moving prob-
ability into the local map. DM-SLAM [11], also based on
ORB-SLAM2, employs Mask R-CNN, optical flow, and
epipolar constraints to judge outliers. It uses features in
dynamic objects if they are not moving very fast to reduce
the feature-scarce cases that may happen by eliminating the
features on dynamic objects. Fan et al. [40] proposed a
novel semantic SLAM system with a more accurate point
cloud map in dynamic environments by exploiting ORB-
SLAM2 and BlizNet [41].

Most existing algorithms operating in complex dynamic
environments simplify problems by eliminating dynamic
objects from tracking or tracking them separately. However,
VDO-SLAM [42] presented a novel formulation to model
dynamic scenes in a unified estimation framework over robot
poses, static and dynamic 3D points, and object motions.
DynaSLAM II [43] is a similar work with VOD-SLAM
that tracks multiple rigid objects such as cars and bicycles.
According to the data provided in their papers, DynaSLAM
II is a little faster and more robust than DVO-SLAM if not
considering the time complexity of semantic segmentation.
However, these methods only work for rigid objects and
neither of them is suitable for indoor dynamic environments
where people are the major dynamic objects. For example,
In the dynamic scene of the TUM [19] dataset, people change
their shape sometimes by standing or sitting. Besides, these
methods are not real-time because the semantic segmentation
and optical flow information need to be prepared beforehand.

All the methods that use the blocked model wait for the
semantic results of each frame or keyframe before estimating
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the camera pose, thereby resulting in their processing speed
being limited by the segmentation method used. To further
clarify this, we compared the tracking performance and time
complexity with state-of-the-art works.

2) NON-BLOCKED MODEL-BASED APPROACHES
Our previous work, RDS-SLAM [18] implemented based on
ORB-SLAM3, adds a novel semantic tracking thread that
segments objects with the aid of Mask R-CNN or SegNet,
and then uses the semantic information to update and propa-
gate the moving probability of map points in ATLAS [24].
We follow the ideas of RDS-SLAM and mainly solve the
insufficient semantic information problem when using Mask
R-CNN. In this study, the concepts of frames, keyframes,
BA, and global maps are derived from RDS-SLAM and
ORB-SLAM3.

III. RIGID SCENE ASSUMPTION PROBLEM
As shown in Fig. 1, given a 3D point in world coordinate
mjt−1 = (x, y, z)T ∈ R3 at time t − 1, the reprojection error
of the predicted and the observed pixels at time t is defined
as follows:

et,j(ξ ) = xt,j − π (Twt (ξ ),m
j
t−1), (1)

where, xt,j ∈ R2 is the observed feature point; Ttw(ξ ) =
exp(ξ^) ∈ SE(3) is the pose of camera t under the world
coordinate with exp(.) as a mapping from se(3) to SE(3);
ξ ∈ R6 is a 6D vector (3 for position and 3 for rotation),
which is the target variable to be solved and optimized; π
is a project function that projects a map point from the 3D
space to the 2D image plane. In a static scene, xt,j should be
in the position of x ′t,j or very near position (influenced by the
noise). vSLAM performs camera ego-motion estimation by
minimizing the reprojection error using the matched feature
and landmark pairs. In practice, usually, BA is used to find an
optimal solution using the error termEq. (1) and the following
cost function:

C =
∑
t,j

ρh(et,j(ξ )T�
−1
t,j et,j(ξ )), (2)

where a robust Huber kernel ρh is used to reduce the influence
of spurious matching. For example, in ORB-SLAM3, g2o
[44] is used to solve this BA problem. However, in dynamic
environments, the observed and predicted positions may
be different due to the movement of dynamic objects. For
example, the old map point mjt−1 moves to a new posi-
tion/point mjt . By default, the traditional vSLAM cannot
detect the motion and still use the old map point mjt−1 to
estimate the cameramotion. If themotion of objects is consid-
ered, the error term should be defined as follows:

et,j(ξ ) = xt,j − π (Twt (ξ ),m
j
t ) (3)

= xt,j − π (Twt (ξ ),H
t
t−1m

j
t−1), (4)

where, H t
t−1 is the motion of the landmark mjt−1 from the

previous time t − 1 to the current time. BA cannot optimize

the camera pose correctly in dynamic environments due to the
unknown motion H t

t−1 of landmarks. Usually, this operation
will cause a non-robust camera pose estimation or tracking
failure due to the large reprojection error.

To the best of our knowledge, there are two kinds of solu-
tions. One solution [42], [43] jointly optimizes the motion H
of the object and the camera pose T (ξ ) using multi-object
tracking by assuming the object is rigid and the points on
it have the same or consistent motion. It has been reported
that this assumption works in outdoor where the distances of
objects are relatively large. However, this assumption does
not hold for non-rigid objects, e.g., people in indoor envi-
ronments. Besides, such methods are offline or not real-time
because they use the blocked model.

Another solution is to detect outliers and remove them
from tracking, which is widely employed in the geometric and
semantic-based approaches. In this case, the cost function is
defined as follows:

C =
∑
t,j

Wjρh(et,j(ξ )T�
−1
t,j et,j(ξ )). (5)

In some studies,Wj is assigned to 0 and 1 for dynamic and
static points, respectively. In RDS-SLAM, we set Wj to the
static probability (1 - moving probability) of each matched
landmark in BA. We do not delete the dynamic map points
because they are useful to reduce the situation that too few
matches are left by directly deleting the outliers from the
map. We keep updating the moving probability of each map
point over time and reduce the influence of dynamic objects
in tracking. Usually, semantic-based approaches can achieve
more robust tracking performance using high-level semantic
information. In this study, we also use this idea and focus on
the indoor environment where people are the main dynamic
objects.

IV. SYSTEM OVERVIEW
Fig. 4 shows the architecture of RDMO-SLAM, which
is implemented based on ORB-SLAM3 and RDS-SLAM.
There are four threads in ORB-SLAM3: tracking, local map-
ping, loop closing, and full BA. In RDS-SLAM, we add
a semantic thread to request the semantic information and
update the moving probability of map points into ATLAS.
We classify these landmarks into three subsets, unknown,
static, and dynamic according to their moving probability,
and then use as many static ones as possible in the tracking
thread. In this study, we follow the basic idea of RDS-SLAM,
add two new threads, optical flow, and velocity estimation
threads, and modify somemodules of RDS-SLAM and ORB-
SLAM3.

The tracking thread aims to estimate the initial camera
pose via feature matching and select keyframes used by the
local mapping thread to update the map and further opti-
mize the pose estimation via BA. In the semantic thread,
first, we request semantic labels of selected keyframes, then
generate mask images of predefined dynamic objects, and
finally calculate as well as update the moving probability of
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FIGURE 4. System architecture. Models with orange color are the ones that are modified from RDS-SLAM or new blocks. Models with magenta color
are derived from RDS-SLAM but different from ORB-SLAM3. Blocks in blue are important data structures.

map points in the global map using semantic information.
Different from RDS-SLAM, we add a new module called
Label Prediction, which is designed to predict semantic labels
using optical flow while waiting for the semantic result. In
the optical flow thread, we estimate the dense optical flow for
each keyframe and use the optical flow to predict the semantic
label and estimate the scene flow of landmarks. The velocity
estimation thread aims to calculate and update the velocity of
map points using the scene flow of map points. The velocity
of landmarks is used as another constraint to filter bad data
associations from tracking. Finally, this semantic information
expressed by the moving probability and the velocity of
landmarks is used to filter the outliers.

V. OPTICAL FLOW THREAD
Optical flow estimation is a basic computer vision prob-
lem and has many applications, such as autonomous driv-
ing, multi-object tracking, and vSLAM. PWC-Net [45] is
a compact but effective CNN model for optical flow esti-
mations. It adopts a fast, scalable, and end-to-end trainable
CNN framework [46]. It is designed using well-established
principles, pyramidal processing, warping, and the use of a
cost volume. It warps the CNN features of the second image

toward the first image. Then uses the warped features and the
features of the first image to construct a cost volume, which is
processed by a CNN to estimate the optical flow. PWC-Net is
more lightweight and easier to train than the recent FlowNet2
[47] model and can run at about 35 fps [45] on Sintel [48]
resolution (1024 × 436).

Each pixel of optical flow result stores two float values
F = (fx , fy) ∈ R2, which indicate the displacement of each
pixel between a previous and current image. Formally, for
each pixel (x1, y1) in the previous image, the corresponding
pixel in the current image is given by:

(x2, y2)T = (x1 + fx , y1 + fy)T . (6)

A ROS version of PWC-Net1 (Caffe models2) is used
to predict the optical flow for each pixel of consecutive
keyframes. The input is the consecutive twoRGB images, and
the output is the optical flow, as shown in Fig. 5. Optical flow
can only detect the motion part of the body, e.g., hand and
leg. However, the unstable features on the static parts of the

1https://github.com/ActiveIntelligentSystemsLab/pwc_net_ros
2https://github.com/NVlabs/PWC-Net/blob/master/Caffe/model/pwc_

net.caffemodel
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FIGURE 5. Optical flow estimation example using the TUM dataset.
(a) and (b) are images from consecutive keyframes, and (c) is their optical
flow visualized using HSV color constructed by flow direction and flow
magnitude.

body cannot be detected. This problem can be solved together
using semantic segmentation.

Later, we use the result of optical flow to predict the seman-
tic label of keyframes in the semantic thread to increase the
speed of semantic information generation. Besides, the result
is also used by velocity thread to calculate the velocity of map
points.

VI. SEMANTIC THREAD
This thread aims to provide semantic information and use
them to update the moving probability of map points. Fig. 4
(semantic modules) shows the general flow. First, we select
one keyframe to request a semantic label usingMask R-CNN.
However, it requires a very long time (about 200ms) to obtain
the semantic result/label. To obtain more semantic informa-
tion, we propose an algorithm to predict the semantic label
of the keyframes using the previous obtained semantic label
and optical flow patterns of the reference keyframes, while
waiting for the result of the current semantic request. After
obtaining the semantic label, we generate a mask of dynamic
objects, which will be used to update the moving probability.
We will explain in detail in the following sub-sections.

A. SEMANTIC KEYFRAME SELECTION
The semantic delay [18] between the semantic and tracking
threads will increase over time if all keyframes are segmented

FIGURE 6. Semantic timeline. The left side is the contents inside the
keyframe queue KF , and the right side is the timeline of requesting
semantic labels. S(.) is the semantic label returned from the semantic
server. The keyframes in yellow are the ones that need to predict. The
keyframes in pink are the ones that request the semantic label from the
semantic server, and those in green are the ones that have obtained
semantic results in the previous rounds.

FIGURE 7. Semantic segmentation result.

sequentially. The tracking thread cannot obtain the latest and
enough semantic information in real-time. To decrease the
semantic delay, only the keyframes from the front and back
of the keyframe queue KF are selected to request seman-
tic labels in RDS-SLAM. However, this will cause many
keyframes not able to obtain semantic results. In other words,
not all the keyframes can have the chance to get a semantic
result. This may result in non-robust or unstable tracking
under complex environments. RDS-SLAM has been only
evaluated at 15 Hz rather than 30 Hz in TUM dataset because
adequate semantic information cannot be obtained within a
short time using Mask R-CNN. To handle this drawback,
in this study, we try to ensure that almost all keyframes can
obtain semantic labels. We always select the latest keyframe
from the back of the KF queue to request semantic results.
Fig. 6 shows an example of keyframe selection policy.

In round 1, we select the first keyframe KF0 to request
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FIGURE 8. Predicted mask. (a) is the reference keyframe, and (b)-(d) are the keyframes that need to predict.

a semantic label from a semantic server (Mask R-CNN).
In round 2, we select the latest keyframe (KF3) in the queue
to request semantic labels. We predict the semantic label for
others (KF1−KF2). Similarly, in the next round, we take the
elementKF7 from the back of the queue to request and predict
the others sequentially (KF4 - KF6).

B. SEMANTIC SEGMENTATION
We use Mask R-CNN3 trained with the MS COCO [49]
dataset as the semantic server. Fig. 7 shows an example
of a semantic segmentation result. However, the semantic
segmentation result is not always correct, and the edge of the
object is difficult to classify. Besides, only pretrained objects
can be segmented. Therefore, we dilate the mask to cover the

3https://github.com/matterport/Mask_RCNN

features on the boundary and use the velocity of map points
as another constraint to remedy this insufficiency.

C. SEMANTIC LABEL PREDICTION
To ensure that more keyframes can obtain the semantic
label, we predict the semantic labels for not-yet-segmented
keyframes using optical flow. As shown in Fig. 6 (round 2),
KF0 is the reference keyframe that has already been seg-
mented, KF3 the current request, and KF1−KF2 are the pre-
dicted ones using the reference keyframe. Given a reference
keyframe label Ir (xr , yr ) and the corresponding optical flow
vector (fx , fy), the predicted label Ip(xp, yp) is calculated as
follows:

Ip(xp, yp) = Ip(xr + fx , yr + fy) = Ir (xr , yr ). (7)

Fig. 8 shows an example of semantic label prediction.
From the label of the reference keyframe (a) and the optical

106988 VOLUME 9, 2021



Y. Liu, J. Miura: RDMO-SLAM: Real-Time vSLAM for Dynamic Environments Using Semantic Label Prediction

flow (f-h), we predict semantic labels of the subsequent
keyframes and generate their mask images, as shown
in (j-l).

D. SEMANTIC MASK GENERATION
Wegeneratemask images of predefined dynamic objects such
as persons and animals by applying dilation operation to the
predicted semantic labels to fill the holes and expand object
boundaries. As shown in Fig. 9, since the features around the
boundary of dynamic objects can also be the outliers, they
will be covered after dilating the mask. The noise or holes
on the predicted labels can also be smoothened, as shown in
Figs. 8 (n-p).

E. MOVING PROBABILITY UPDATE
We define the moving probability p(mjt ),m

j
t ∈ M whereM =

{static (s), dynamic (d))}, for a map point j that matches with
features in the keyframe, as shown in Fig. 10 [18]. We omit
the superscript j in the following derivation. We update the
moving probability in the semantic thread using Bayesian
filter [50] as follows:

bel(mt ) = p(mt |z1:t ,m0)

= ηp(zt |mt )
∫
p(mt |mt−1)bel(mt−1)dmt−1, (8)

where η = 1/(bel(mt = d) + bel(mt = s)) and p(m0) =
0.5 is the initial probability and p(zt |mt ) is the observation
likelihood, which is set according to the semantic label. It is
reasonable to assume that the current observation is indepen-
dent of the previous ones. Thus, we define the observation
model as follows:

p(zt = d |mt = d) = α, (9)

p(zt = s|mt = s) = β, (10)

where α is given a fixed value in RDS-SLAM. Usually,
the segmentation accuracy is influenced by the camera rota-
tion around the optical axis, as shown in Fig. 11, if CNN is
not trained using enough data for such cases.

The rotation of the camera is presented as follows:

R(r) = rot(T (ξ )) = exp(r^), (11)

where, r is the Euler angle (roll, pitch, yaw) and r^ ∈ so(3).
We heuristically adjust the reliability of semantic segmenta-
tion (α) according to the roll component and set α to a small
value when the rotation is huge. We set α according to the roll
component when it is greater than a threshold γ .

α =

{
max{min{0.9, 1

exp(||roll(r)||−2)
}, 0.1} ||roll(r)|| > γ

0.9 others.
(12)

In our experiment, γ is set to 1.5 to omit the relatively small
camera rotation and β to 0.9 by assuming the observation is
fairly robust for static objects.

FIGURE 9. Dilation example. Features in red are outliers after dilation
operation, and in blue are the observed static features.

FIGURE 10. Moving probability. θs and θd are threshold values.

F. ALGORITHM IMPLEMENTATION
Alg. 1 shows the detailed implementation of semantic
thread. To maintain the information exchange of optical
flow and semantic segmentation threads, checking functions
‘‘IsOpticalFlowReady()’’ and ‘‘IsSemanticReady()’’ are used
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FIGURE 11. Segmentation accuracy is not correct in the case of a large
camera rotation. (a) the right person is not segmented, and the head of
the left person is wrongly segmented. (b) the head of the left person is
wrongly segmented.

FIGURE 12. Semantic prediction algorithm. The workId is the current
working pointer that walks through every keyframe sequentially. The
refId is the id of the reference keyframe, and reqId is the id of the last
semantic request. lstestId is the id of the latest keyframe by now.

respectively to sync the data flow. To handle each keyframe
incrementally, we designed some indicators/pointers to con-
trol the flow of the algorithm, as shown in Fig. 12. The
keyframes in yellow that need to predict are located between
the reference keyframe (refId) and the last semantic request
keyframe (reqId). First, we take out the current keyframe
(line 5) and the latest keyframe (lines 6-7) from the back of
the KF queue. Then, we segment the first few keyframes
(initNum), as shown in Alg. 1 (lines 8-17) considering some
datasets are short. The tracking is blocked to wait for the
semantic results for these keyframes. Besides, it will consume
more time (>300ms in our experiment) to segment the first
image due to the GPU initialization. Therefore, we suggest
waiting for the segmentation result of the first few keyframes.
In the experiment, initNum is set to 1 when evaluating the
TUMdataset and 0 for a real camera. Lines 21-25 are to select
the latest keyframe to request the semantic label non-blocked
when 1) the last request reqKF has already obtained the
semantic label and 2) there are new elements in the KF
queue waiting to segment. Lines 26-39 are to predict the
semantic labels using the selected reference keyframe that
have already obtained the semantic result (lines 26-28), and
the keyframes that need to predict have already got the
optical flow (lines 31-33). The keyframe is predicted when
the semantic segmentation processing speed is slower than
the new keyframe enqueuing speed. This algorithm predicts
semantic labels while waiting for the semantic label. We wait
for the segmentation result (lines 18-20) when 1) no new
enqueued keyframe exist, or 2) all the keyframes before the
last request reqId are already handled.

We update the semantic information after the seman-
tic label is obtained either by semantic segmentation or

Algorithm 1 Semantic Thread
Require: vector<Keyframe*> KF

Keyframe *requestKF, *workKF, *latestKF
int workId, latestId, refId, reqId = 0
int initNum = 1
thread* segmentThread

1: while notRequestFinish() do
2: if KF.size() < 1 + workId then
3: continue
4: end if
5: workKF = KF[workId]
6: latestKF = KF.back()
7: latestId = latestKF->id
8: if workId < initNum then
9: reqKF = workKF

10: reqId = workId
11: segment(reqKF)
12: updateSemantic(reqKF)
13: refKF = reqKF
14: refId = reqId
15: workId++
16: continue
17: end if
18: if (refId>= reqId) || (latestId== reqId) || (workId>=

reqId) then
19: segmentThread->join()
20: end if
21: if reqKF->isSemanticReady() && (workId > reqId)

&& (latestId > reqId) then
22: reqKF = latestKF
23: reqId = latestId
24: segmentThread = new thread(&segment, reqKF)
25: end if
26: if workKF->isSemanticReady() then
27: refKF = workKF
28: refId = workId
29: else
30: if (refId<reqId) && (workId>refId) &&

(workId-refId == 1) then
31: while !workKF->IsOpticalFlowReady() do
32: sleep(1)
33: end while
34: end if
35: workKF->label = predictLabel(refKF)
36: updateSemantic(workKF)
37: refKF = workKF
38: refId = workId
39: end if
40: workId++
41: end while

prediction, as shown in Alg. 2. Similarly to RDS-SLAM,
we generate the mask images of dynamic objects and update
the moving probability of map points using the generated
mask.
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Algorithm 2 Update Semantic
Require: Keyframe* pKF
1: pKF->mask = generateMask(pKF->label)
2: pKF->informSemanticReady()
3: pKF->updateMovingProbability()

FIGURE 13. Optical and scene flows. The blue vector is the original
optical flow vector, orange is the rigid flow, and red is the non-rigid flow.
The purple vector is a scene flow vector.

VII. VELOCITY ESTIMATION THREAD
Semantic segmentation can only handle predefined dynamic
objects, and the segmentation is not always accurate. In this
study, we add velocity constraints for objects to further reduce
the influence of outliers.

As shown in Fig. 13, given a pixel xt,j in the previous
image, we can estimate the corresponding pixel in the next
image using

xt,j = xt−1,j + Fxt,j , (13)

where Fxt,j is an optical flow vector shown in Fig. 13 (blue
vector) and x ′t,j is the estimated point using the camera motion
assuming the camera is the only moving object. The motion
of the camera needs to be subtracted from the optical flow.
Then, the sparse scene flow of landmarks is calculated by

s = mt − mt−1 (14)

= π−1(xt,j,D(xt,j),Twt (ξ ))

−π−1(xt−1,j,D(xt−1,j),Twt−1(ξ )), (15)

where π−1 is a function that back project one 2D point in the
image to the 3D world space using the camera pose and depth
image.

The velocity of each map point is calculated by:

zt =
‖s‖
1t
, (16)

where 1t is the time difference between consecutive
keyframes.

Some velocities are very large due to inaccurate camera
pose estimation, inaccurate depth data, and wrongly matched

feature points. Besides, the features are extracted from dif-
ferent pyramid layers of the image. This also results in inac-
curate or wrong velocity estimation. We update the velocity
using Kalman Filter [50] by:

v̄t = vt−1, (17)

vt = v̄t + Kt (zt − v̄t ), (18)

where Kt is the Kalman gain and zt is the newly calculated
velocity. We assume the map points move at a constant speed.
The predicted velocity v̄t is equal to the previous speed.
Ideally, the speed of static map points should be nearly zero.

We use the velocity of map points as another constraint to
further filter outliers. As we knew, it is difficult to find an
optimal threshold to judge outliers. Not enough features may
be left if the threshold is set too small. In our view, there is
no close form to decide the optimal value for all the frames
or scenes. In our experiment, we set a large value to remove
only obvious outliers with very large velocity.

VIII. TRACKING
To let vSLAM run in real-time, we separated the semantic
thread and the velocity estimation thread from the tracking
thread, so as not to block the tracking. Themoving probability
and the velocity of landmarks are stored in the map. We use
them as constraints to filter outliers from camera ego-motion
estimation.

As shown in Fig. 10, we judge the status of objects using

Status(mt ) =


dynamic bel(mt ) > θd

static bel(mt ) < θs

unknown others.

(19)

This is used as a constraint to select relatively good data
associations (see robust data association algorithm in [18])
and reduce the influence of dynamic objects in tracking for
every frame. In the experiment, θd is set to 0.6 and θs to 0.4.

This module is to estimate the initial camera pose by
matching the features between the previous frame and the
current frame. Similar to RDS-SLAM, we use the moving
probability as the constraint as defined in Eq. (19). First,
we use features in the static subset. If the matched feature
pairs are not enough, we use the features in the unknown
subset. If they are still not enough, the features in the dynamic
feature subset can also be used such as the ones of a per-
son who is sitting. In the experiment, the dynamic feature
subset was not used when evaluating the TUM dataset. The
estimated initial pose may not be very reliable; however, it is
further optimized via tracking local map and BA.

BA is used in the local mapping thread (local BA), the loop
closing thread, and the full BA thread. We use moving prob-
ability and velocity constraints to filter outliers from them.

IX. EXPERIMENTAL RESULTS
We demonstrated the real-time performance and the tracking
accuracy by comparing with state-of-the-art vSLAMs using
the indoor dynamic scenes of the TUM dataset.
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Our system was evaluated using GeForce RTX 2080Ti
GPU, Cuda 11.1, and an RGB-D camera (Kinect V2).We also
showed a demo of AR using a Kinect v2 camera in the real
environment.

A. TRACKING ACCURACY EVALUATION
There are both high and low dynamic office sequences in the
TUM RGB-D dataset [19] recorded with a Microsoft Kinect
sensor at full frame rate (30 Hz). RGB (640 × 480), depth
images, together with ground-truth trajectory, recorded by a
high-accuracy motion capture system. There is a low degree
of motion in the sequence named fr3/sitting_* (s/*), where
two people are sitting in front of a desk while speaking with
gestures. Two people are walking both in the background
and foreground, and they sometimes sit down in front of the
desk in the sequences named fr3/walking_* (w/*). There are
four types of camera motions, 1) half-sphere (half): moved
on a small half-sphere of approximately one-meter diameter,
2) xyz: manually moved along three directions (xyz) while
keeping the same orientation, 3) rpy: rotated along the princi-
ple axes (roll-pitch-yaw) at the same position, 4) static: kept
in a place manually.

In this stdudy, we compared the trajectories of our proposal
with state-of-the-art vSLAM algorithms, as shown in Fig. 14,
using their source codes when possible, ORB-SLAM3,4

DS-SLAM,5 Dyna-SLAM,6 KMOP-vSLAM [15], and
RDS-SLAM7 using only an RGB-D camera (no IMU).

We evaluated the tracking performance using absolute
trajectory error (ATE) and relative pose error (RPE) [19].
The root means squared error (RMSE) and standard devi-
ation (S.D) are used as the error metrics. Given the esti-
mated trajectory:P1, . . . ,Pn ∈ SE(3), ground truth trajectory
Q1, . . . ,Qn ∈ SE(3), and a fixed time interval 1. The RPE
at time i is defined as follows:

Ri = (Q−1Qi+1)−1(P
−1
i Pi+1). (20)

The RMSE of RPE over all time is defined as follows:

RMSE(R1:n) =
1
n

n∑
1=1

(
1
m

m∑
i=1

‖trans(Ri)‖2)
1
2 . (21)

The ATE error is defined as follows:

Ai = Q−1i SPi, (22)

where S ∈ Sim(3), which corresponds to the least squares
solution that maps the estimated trajectory onto the ground
truth trajectory. The RMSE of ATE over all time indices is
defined as follows:

RMSE(Ai:n,1) = (
1
n

n∑
i=1

‖trans(Ai)‖2)
1
2 . (23)

4https://github.com/UZ-SLAMLab/ORB_SLAM3.git
5https://github.com/ivipsourcecode/DS-SLAM.git
6https://github.com/BertaBescos/DynaSLAM
7https://github.com/yubaoliu/RDS-SLAM

We compared the tracing performance with counter-
part state-of-the-art vSLAMs: ORB-SLAM3 [23], KMOP
[15], Detect-SLAM [8], VO-SF [33], Elastic Fusion [38],
CO-Fusion [34], Static Fusion [37], DP-SLAM [39],
DynaSLAM [10], SLAM-PCD [40], DM-SLAM [11], and
RDS-SLAM [18], using, when possible, results published in
the original papers, as shown in Tab. 1, Tab. 2 and Tab. 3.
We achieved a similar tracking performance with state-of-
the-art semantic-based methods in dynamic environments
using a heavy segmentation method, Mask R-CNN.

We achieved similar tracking performance compared with
the methods that use the blocked model. However, these
methods cannot achieve good real-time performance. The
proposed method can run the Mask R-CNN version vSLAM
in real-time while keeping the robust tracking. We will
demonstrate the real-time performance later.

B. OUTLIERS REMOVING USING TUM DATASET
We qualitatively checked the feature classification perfor-
mance by evaluating the TUM dataset. The features can be
classified into three subsets according to the moving proba-
bility (Eq. (19)), as shown in Fig. 15. The static features are
mostly distributed on static objects, and the unstable features
(green and red) are mostly on the moving people. In the
tracking thread, we try to use as static features as we can.
An example is shown in Fig. 16, wherein only selected good
static features are used in the initial camera pose estimation
stage in the tracking.

C. AR DEMO
We qualitatively evaluated our system using an AR demo,
as shown in Fig. 17, where a virtual cube is put on the
desk. One person is sometimes sitting down and standing
up, and sometimes the person occupies half of the camera
view. The tracking is very unstable or even tracking lost in
the situation such as Figs. 17 (b-d) when using the origi-
nal ORB-SLAM. In this demo, the position of the virtual
object is somehow influenced by the person due to the
occlusion (e.g., Figs. 17 (b) and (d)); however, it recovers
to its original position after the person leaves (Fig. 17 (e)).
We also try to disturb the tracking by moving the keyboard
(Fig. 17 (f)) and moving the hand (Figs. 17 (g) and (h)).
Tracking in Figs. 17 (f-h) is not influenced by the hands
because features on the hands are detected and removed using
semantic and motion information.

D. VELOCITY CONSTRAINT VS SEMANTIC INFORMATION
We have evaluated the ATE of TUM only using velocity
constraint or semantic information, as shown in Tab. 4.
The tracking performance is much better than that of ORB-
SLAM3with the velocity constraint. This constraint can filter
the landmarks (matched with features) that have large veloc-
ities on the objects, and it is a little faster than Mask R-CNN
segmentation. We also evaluated the tracking performance
that only uses segmentation. The performance may be not
good if the camera rotates and translates rapidly because it
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FIGURE 14. Trajectory comparing frame by brame. ‘‘M’’ stands for ‘‘Mask R-CNN’’ and ‘‘S’’ for ‘‘SegNet’’. RDS-SLAM is executed in 15 Hz and ours
in 30 Hz.
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TABLE 1. Evaluation of absolute trajectory error (ATE) of TUM (m). k-means (K), SegNet (S), Mask R-CNN (M), SharpMask (SM), OpnePose (O) are
segmentation or detection methods. RDS-SLAM is evaluated in 15 Hz and ours is evaluated in 30 Hz.

TABLE 2. Evaluation of translational relative pose error (RPE) (m) of TUM.

TABLE 3. Evaluation of rotational pose error (RPE) (m) of TUM.

FIGURE 15. Classify objects according to the moving probability (w/half). Green features are unknown and red ones are dynamic, and blue ones are
static.

FIGURE 16. Use robust features in tracking (w/half).

does not have enough time to obtain semantic information.
That is why the tracking performance is a little lower in
w/rpy and w/half. This problem can be solved by combining
velocity constraints and semantic information. The tracking
performances for other scenarios are very similar in the case
of only using semantic and using both, especially in the
standard deviation.

E. VELOCITY CONSTRAINT THRESHOLD
It is challenging to decide the threshold of the velocity to sup-
port robust tracking. We analyzed the landmark distribution

TABLE 4. Evaluation of absolute trajectory error (ATE) of TUM (m) with or
without velocity and semantic mask. ‘‘V’’ means only use velocity and ‘‘M’’
only use the semantic mask.

that matched with features on the keyframes in the terms of
the velocity. As shown in Fig. 18, the velocity of about a
half of landmarks is less than 2.0 in TUM w/xyz. We use the
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FIGURE 17. AR demo.

TABLE 5. The execution time comparison of the TUM dataset. We use the data in their original paper as possible. If not provided, we approximate the
processing time.

FIGURE 18. Landmark distribution according to the velocity range
(w/xyz).

landmarks that have a relatively small velocity to optimize the
camera pose in BA. A very small number of landmarks will
be left when setting the threshold too small, and too much
noise data are used when setting it too large. We suggest
setting the velocity threshold to 1.0-2.0 (see Fig. 19 (orange,
red, and green lines)) because the number of landmarks used
is reasonable in the optimization. To avoid the tracking loss
due to the few landmarks, we do not use this constraint in
the ‘‘track last frame’’ and ‘‘track local map’’ models in the
tracking thread. We only use this constraint in the local BA
where many landmarks are used together for optimization.

FIGURE 19. The number of landmarks in the different velocity ranges
(w/xyz).

F. TIMING ANALYSIS
Tab. 5 shows the comparison result of the real-time
performance. We compared the time required for the
original ORB-SLAM3 (RGB-D camera only), blocked
model-based solutions (e.g., DP-SLAM, Detect-SLAM,
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DS-SLAM, DynaSLAM, DM-SLAM), and non-blocked
model-based solutions (e.g., RDS-SLAM). The time required
for the blocked model is limited by the time-consuming
semantic segmentation, which significantly lowers their
real-time performance. Our previous study, RDS-SLAMonly
can evaluate the TUM dataset at 15 Hz because the TUM
dataset is usually short (about half a minute) and Mask
R-CNN only can segment very few keyframes, which results
in inadequate semantic information when running at 30 Hz.
We mitigate this limitation via predicting the semantic label,
which enables almost all the keyframes to obtain semantic
results even when executing at 30 Hz.

The tracking performance may be influenced by the hard-
ware configuration because the speed of Mask R-CNN and
PWC-Net rely on the GPU. However, the time required for
tracking each frame is not influenced due to the non-blocked
architecture.

X. CONCLUSION
We proposed RDMO-SLAM, a novel real-time vSLAM for
the real environment exploiting RDS-SLAM, Mask R-CNN,
and dense optical flow. To overcome the problem of inade-
quate semantic information obtained within a short time due
to the slow speed of Mask R-CNN segmentation, we predict
semantic labels using optical flow so that almost all the
keyframes can acquire the semantic information. To reduce
the influence of dynamic objects untrained by semantic seg-
mentation models, we add a velocity constraint by estimating
the velocity of landmarks using optical flow. The tracking
and real-time performances are evaluated using the dynamic
scenes of the TUM RGB-D dataset and compared with coun-
terpart state-of-the-art vSLAMs with similar motivation. As
a result, our proposal that uses a non-blocked model can
maintain real-time nature (30 Hz) even with a very heavy
segmentationmethod. In future works, wewill 1) consider the
outdoor environment and 2) build a static dense map without
dynamic objects.
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