
Received July 2, 2021, accepted July 20, 2021, date of publication July 26, 2021, date of current version August 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3100369

Adaptive Feature Pyramid Networks
for Object Detection
CHENGYANG WANG AND CAIMING ZHONG
College of Science and Technology, Ningbo University, Ningbo 315300, China

Corresponding author: Caiming Zhong (zhongcaiming@nbu.edu.cn)

This work was supported by K.C. Wong Magna Fund through the Ningbo University.

ABSTRACT In general object detection, scale variation is always a big challenge. At present, feature
pyramid networks are employed in numerous methods to alleviate the problems caused by large scale range
of objects in object detection, which makes use of multi-level features extracted from the backbone for
top-down upsampling and fusion to acquire a set of multi-scale depth image features. However, the feature
pyramid network proposed by Ghiasi et al. adopts a simple fusion method, which fails to consider the fusion
feature context, and therefore, it is difficult to acquire good features. In addition, the fusion of multi-scale
features directly by traditional upsampling is prone to feature misalignment and loss of details. In this
paper, an adaptive feature pyramid network is proposed based on the feature pyramid network to alleviate
the foregoing potential problems, which includes two major designs, i.e., adaptive feature upsampling and
adaptive feature fusion. The adaptive feature upsampling aims to predict a group of sampling points of
each pixel through some models, and constitute feature representation of the pixel by feature combination
of sampling points, while adaptive feature fusion is to construct pixel-level fusion weights between fusion
features through attention mechanism. The experimental results verified the effectiveness of the method
proposed in this paper. On the public object detection dataset MS-COCO test-dev, Faster R-CNN model
achieved performance improvement of 1.2 AP by virtue of the adaptive feature pyramid network, and FCOS
model could achieve performance improvement of 1.0 AP. What’s more, the experiments also validated that
the adaptive feature pyramid network proposed herein was more accurate for object localization.

INDEX TERMS Object detection, feature pyramid network, adaptive feature pyramid network.

I. INTRODUCTION
Image object detection algorithm will analyze a given input
image and output the category and accurate localization of
each object contained in the image. In recent years, with rapid
development of convolutional neural network, the object
detection algorithms [1]–[8] based on deep convolutional
neural network have made a great progress. At present, as the
basic task of computer vision, object detection algorithm has
been widely applied to the industry and our life. For example,
the booming automatic drive cannot identify surrounding
pedestrians, cars or other objects without object detection
techniques.

Detecting objects with different scales has always been
a big challenge to object detection. The traditional deep
convolutional neural network is not of scale invariance, but
is extremely sensitive to scale variation of objects. Affected
by scale variation of objects, the dense object detection
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method based on pixel regression classification is prone to
imbalance of training. According to the matching strategy [2]
based on IoU, large objects have more positive sample pixels
than small ones, and such imbalance of pixels will seriously
affect the performance of detection algorithms. To solve this
problem, a number of algorithms [3], [5], [9]–[14] propose
to alleviate the problem of scale variation of objects by
multi-scale features. For example, Lin et al. proposed to build
a feature pyramid network [3] (referred to as FPN) based on
the backbone to provide multi-scale features, and simultane-
ously allocate the objects of different scales to the features
at different levels, with the features at each level responsible
for processing the objects within a certain scale range. This
multi-scale pyramid features can alleviate the impact imposed
by object scale to a great extent. At present, feature pyramid
network has become an essential module of object detection
algorithms.

However, the feature pyramid network widely applied to
object detection algorithms is still subject to certain defects.
It can acquire high-resolution features by upsampling of
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high-level low-resolution features, and then fuse them with
low-level high-resolution features by means of addition.
In traditional upsampling, four similar points around each
target point will usually be selected as sampling points, and
the features of target points will be acquired by linearly
combining the features of sampling points. This sampling
mode only depends on spatial relationship, and the points
at the boundary or some details are easily affected by other
unrelated pixels. Therefore, it is difficult to obtain fine fea-
tures by such upsampling mode which only relies on spatial
coordinates. In addition, deep convolutional neural network
is subject to multiple downsampling. When the features after
multiple downsampling are restored by upsampling, the fea-
tures are prone to misalignment, which will lead to differ-
ences and even ambiguities between the features restored
by upsampling and primitive features without downsampling
during the fusion. Feature pyramid network employs simple
addition and fusion. For features from different levels of
the backbone, there are differences between features at two
levels to a certain extent, and direct addition will destroy
the representation of features at two levels. Moreover, direct
fusion is not conducive to the areas of some details, or the
detection of small objects and accurate object localization.

To solve the above-mentioned problems, adaptive feature
pyramid network (referred to as AdaFPN) is proposed in this
paper. Compared with the primitive feature pyramid network,
AdaFPN puts forward adaptive feature upsampling (referred
to as AdaUp) and adaptive feature fusion (referred to as
AFF) respectively from the perspective of feature upsam-
pling and multi-scale feature fusion. AdaUp proposed in this
paper no longer depends on spatial coordinates only, but also
relies on semantic information. It makes use of low-level
high-resolution features1 as spatial reference and combines
them with high-level low-resolution features2 to predict the
coordinate offset of a series of related sampling points of each
target point. In this way, (continuous) coordinates of these
sampling points can be achieved by virtue of coordinate offset
and the coordinates of target points. Then features of all sam-
pling points are calculated by bilinear interpolation, which are
combined as the features of target points finally. Compared
with the traditional interpolation upsampling method, AdaUp
is more flexible and can dynamically adjust the sampling
point location of interpolation based on input features and
spatial location. AFF, by reference to the idea of attention
mechanism, predicts the pixel-level fusionweight by virtue of
high-level and low-level features. Each pixel can dynamically
adjust the feature fusion ratio. For pixels in the area with
more details, low-level features are more needed to retain
the detail information, while for some other areas with high
judgmental priorities, more high-level semantic information

1Shallow high-level features usually come from the backbone shallow
level, which retain rich spatial information, but lack high-level semantic
information.

2High-level low-resolution features usually come from backbone high
level, which lead to low resolution due to multiple downsampling, but have
a large receptive field and rich context semantic information.

is required. Compared with direct addition of features at two
levels, adaptive fusion can take into account the features of
each pixel for weight allocation, thus providingmore accurate
feature representation.

To validate the effectiveness of AdaFPN proposed herein,
two classical object detection algorithms, i.e., Faster R-CNN
and FCOS [8], were employed in this paper as experimental
benchmarks. Faster R-CNN, as a classical two-stage algo-
rithm, predicted the proposals containing objects at the first
stage, and extracted region features corresponding to each
proposal by RoI Pooling [1] for classification and regression
at the second stage. FCOS, a single-stage algorithm, made
use of only one stage for direct pixel-level classification and
regression prediction. In this paper, FPN in Faster R-CNNand
FCOS models was replaced by AdaFPN for training and test-
ing on open object detection dataset MS-COCO [15]. Under
this circumstance, AdaFPN achieved performance improve-
ment of 1.2 AP and 1.0 AP respectively on Faster-RCNN
and FCOS. In addition, it also achieved more remarkable
results in localization accuracy and small object detection.
What’s more, the experimental results fully validated the
effectiveness of adaptive feature pyramid network proposed
in this paper.Moreover, a wealth of confirmatory experiments
were provided in this paper to analyze and study the proposed
method, with a view to that the adaptive feature pyramid
network proposed in this paper could be widely applied in
object detection or other computer vision field.

II. RELATED WORK
A. IMAGE OBJECT DETECTION
Image object detection algorithms can be divided into two
categories, i.e., two-stage algorithms represented by Faster
R-CNN, and single-stage object detection algorithms rep-
resented by YOLO [6], [7], SSD [5] and RetinaNet [16].
Two-stage algorithms usually predict object proposals at the
first stage, and extract features in the proposals by RoI Pool-
ing [1] / RoI Align [17] for classification and fine coordinate
regression at the second stage. Faster R-CNN [2], based on
Fast R-CNN [1], introduces RPN [2] to extract object propos-
als, realizing end-to-end object detection. In addition, FPN
proposes a feature pyramid network for object scale problem
and further improves the performance of Faster R-CNN.
Mask R-CNN [17] increases segmentation branch on the
basis of Faster R-CNN, which realizes instance segmentation
and further improves the object detection performance.More-
over, Libra R-CNN [18] further optimizes the performance
of Faster R-CNN by balancing training samples, multi-scale
features and training loss functions. What’s more, Cai et al.
proposed Cascade R-CNN [19], which could continuously
improve the localization accuracy of detection frames by
multiple cascaded R-CNN networks.

Compared with two-stage algorithms, single-stage algo-
rithms directly perform pixel-level object detection and pre-
diction, and the most common methods are based on anchor
boxes, which usually define a series of anchor boxes with
different scales and shapes in each location in advance, and
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FIGURE 1. The feature pyramid network and its feature fusion block.

then directly perform classification and coordinate regression
for each anchor box. [5], [20] deal with the scale variation
in object detection by multi-scale features of the backbone,
while RetinaNet [16] puts forward focal loss [16] to alleviate
the imbalance of anchor box classification. In recent years,
a number of researches have gradually abandoned anchor
boxes in consideration of computation overhead and tedious
hyperparameter setting. In addition, CornerNet [21] and Cen-
terNet [22], [23] get rid of anchor boxes with the help of key
points and heatmap prediction, thus performing more flexible
object detection. FCOS [8] can directly predict the distance
to four sides of the object box in each pixel prediction,
and simultaneously categorize each pixel. At present, FCOS
has been widely applied to various fields to solve problems
in object detection because of its simplicity and efficiency.
In this paper, a two-stage classical algorithm, Faster R-CNN,
and a single-stage classical algorithm, FCOS, are employed
for experimental validation.

B. FEATURE PYRAMID NETWORK
The problems of object scale and occlusion are great chal-
lenges to object detection in natural scenarios, and it is
difficult for the traditional convolutional neural network
to perform multi-scale object recognition and localization.
In such case, lots of methods make use of multi-scale fea-
tures of the backbone to deal with the objects of different
scales. Feature pyramid networks [3] proposed by Lin et al.
can fuse features of different scales step by step from top
to bottom, and assign objects of different scales to fea-
ture maps of different resolutions. NAS-FPN can search
the connection mode [24] of features with different resolu-
tions in feature pyramid network by neural network search
technology. PANet [25] is added with a set of bottom-up
feature maps based on FPN, which further enhances the
multi-scale feature representation. Tan et al. proposed a
more efficient BiFPN [26] based on NAS-FPN. In addition,
AugFPN [27] proposes a feature pyramid network which
can enhance the fusion by recombining features of differ-
ent scales. Zhao et al. [28] introduced residual and Dilated
convolution to further expand the feature receptive field of

feature pyramid network. CATFPN adaptively fuses all fea-
tures from FPN by concatenation and then generates pyra-
midal features by downsampling and upsampling, which
focuses more on the connections between features. CSFF
adopts an attention-based cross-scale fusion network but only
adaptively suppresses the fusion weight of low-level features,
while the proposed AFF will adaptively weight the high-level
and low-level features for fusion. However, at present, FPN
and the improved methods thereof mainly focus on the
connection mode and structure. Under this circumstance,
fine-grained operators (upsampling and fusion) of FPN were
newly designed and studied in this paper, and the method pro-
posed herein could still be applied to NAS-FPN and BiFPN
to further enhance the feature representation ability.

III. METHOD PROPOSED IN THIS PAPER
In image object detection, scale variability of objects and
occlusion between objects are particularly prominent prob-
lems. At present, the major object detection methods will
build multi-level features with different resolutions by virtue
of feature pyramid networks (FPN), and assign objects of
different scales to the features with different resolutions. The
feature at each resolution will only deal with the objects
within a certain scale range. This method of constructing
multi-level features with different resolutions can effectively
alleviate the problems of occlusion and scale variation in
object detection.

A. FEATURE PYRAMID NETWORK
In object detection model, feature pyramid network is built on
the backbone, from which multi-level features with different
resolutions can be acquired, for example, the features with
four different resolutions from C2 to C5 in ResNet [29],
and multi-scale features of more semantic information con-
structed through upsampling and feature fusion. As shown
in Fig. 1, after features were extracted by the backbone
(blue hollow), feature pyramid network (blue solid) would
continuously improve the resolution of high-level features in
a top-down manner and fuse them with low-level features.
The primitive feature pyramid network performed feature
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FIGURE 2. The comparison between different upsampling methods: (a) traditional upsampling (b) adaptive
upsampling.

upsampling only by traditional interpolation method and
multi-level feature fusion by addition. The fused feature Fo
can be acquired according to Eq. 1.

Fo = Upsample(Fl)+ Fh (1)

where Fh denotes shallow high-resolution feature, and Fl
denotes deep low-resolution features.

However, because multi-scale features input by feature
pyramid network are derived from the features at different
levels of the backbone, and the backbone obtains image fea-
tures with different resolutions through multiple downsam-
pling, feature misalignment will be caused if these features
are fused by re-upsampling. High-level features are deep and
rich in semantic information, while low-level features are
mostly structural features. In such case, it is difficult to match
semantic information with the structure just by addition and
fusion after simple upsampling, thus destroying low-level and
high-level detail representation or context information.

In this paper, aiming at the primitive feature pyramid
network, adaptive feature upsampling and adaptive feature
fusion were proposed respectively from the perspective of
feature upsampling and feature fusion to alleviate the afore-
said problems, and a novel adaptive feature pyramid network
was constructed.

B. ADAPTIVE FEATURE UPSAMPLING
At present, some traditional methods are usually employed
for the upsampling of images and image features in computer
vision, for example, bilinear interpolation and nearest inter-
polation. As shown in Fig. 2(a), these interpolation methods
only depend on spatial constraint, and the features of each
new interpolation point rely on the corresponding features of
four nearby pixels. The locations of sampled pixels are fixed,
which only rely on the neighborhood relationship without
consideration of the input feature information.

In this paper, an adaptive upsampling method (referred
to as AdaUp) was proposed. The AdaUp no longer relied

on fixed coordinates for interpolation to acquire the features
after upsampling, but adopted shallow high-resolution fea-
tures as spatial reference to predict the offset of sampling
point coordinates used for interpolation by virtue of the
model. As shown in Fig. 2(b), AdaUp predicted a series of
sampling points (suppose the number is S) of each target
(high-resolution features) pixel by themodel and features that
need upsampling at present. Compared with the traditional
feature upsampling, AdaUp is more flexible and can alleviate
the problems of misalignment and offset between features of
different scales.

Given the deep low-resolution input feature Fl and shallow
high-resolution feature Fh for reference, AdaUp predicted the
relative coordinates Mxy of a series of sampling points based
on the reference high-resolution features and low-resolution
features, as shown in Eq. 2.F(·) refers to the offset prediction
model, which is achieved by a simple convolutional network.

Mxy= F(Fh,Fl) (2)

For each target pixel p of high-resolution features, coordi-
nate pi of each sampling point could be directly worked out
by acquiring the offset {Mi

xy}i of S sampling points, as shown
in Eq. 3. The feature F̂h(p) of target pixels was averaged
from the features of each sampling point, as shown in Eq. 4.
Considering that the coordinates of sampling points are con-
tinuous values rather than integer coordinates, corresponding
features cannot be directly obtained from the features. Bilin-
ear interpolation was employed in this paper to extract the
features of each continuous sampling point, and the output
feature F̂h(p) was the high-resolution feature acquired by
AdaUp.

pi = p+ Mi
xy (3)

F̂h(p) =
1
S

S∑
i=1

Bilinear(Fl(pi)) (4)
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FIGURE 3. The structure of the AdaUp module.

FIGURE 4. The structure of the AFF module.

The structure of AdaUp was presented in Fig. 3. The input
low-resolution feature Fl was preliminarily upsampled by
Bilinear Interpolation and concatenated with the reference
high-resolution feature Fh to directly predict the offset of spa-
tial coordinates of S sampling points by virtue of a two-layer
convolutional network, with K = 2S. Then coordinates
of the sampling points of each target pixel were calculated
according to Eq. 2 and Eq. 3, and the corresponding features
were extracted from low-resolution feature Fl . Finally, a new
high-resolution output feature was achieved through combi-
nation. The number of channels for feature input was 256,
which would remain unchanged after 1× 1 convolution, and
then the offset of sampling points was predicted by 3 × 3
convolution.

C. ADAPTIVE FEATURE FUSION
As mentioned in Section 2.1, FPN achieves feature fusion
between different levels by simple addition, but it is difficult
to balance the context information between different levels by
simple addition and fusion. High-level features often contain
more semantic information, while shallow features tend to
be rich in detail information. Therefore, an adaptive feature

fusion (referred to as AFF) module based on attention mech-
anism was put forward in this paper for pixel-level adaptive
feature fusion by context modeling of high-level features and
shallow features.

Given the input high-level feature Fh and low-level fea-
ture Fl , convolutional network was employed for the predic-
tion of pixel-level fusion weight, as shown in Eq. 5, where
w ∈ R1×H×W refers to pixel-level weight and H(·) indicates
the weight prediction network.

w = H(Fh,Fl) (5)

After the pixel-level fusion weight of high-level features
and shallow features was worked out, high-level features
and shallow features could be fused directly based on the
weight w, as shown in Eq. 6.

Fo = w · Fh + (1− w) · Fl (6)

Fig. 4 exhibited the structure of adaptive feature fusion
module, in which high-level features and low-level features
would be simply concatenated for the prediction of pixel-level
fusion weight. The prediction network adopted two convolu-
tional layers and Sigmoid activation function to predict the
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pixel-level weight. Finally, the ultimate fusion output fea-
tures were acquired by weight addition and two-level features
respectively.

D. ADAPTIVE FEATURE PYRAMID NETWORK
Combining the adaptive feature upsampling and adaptive fea-
ture fusion modules as proposed above, the adaptive feature
pyramid network was as shown in Fig. 5. The upsampling and
fusion structures of primitive feature pyramid network were
replaced by adaptive upsampling (AdaUp) and adaptive fea-
ture fusion (AFF) respectively. The pyramid network was still
constructed from top to bottom. In the adaptive upsampling
module, low-level high-resolution features served as spatial
reference features to provide spatial priors for high-level
low-resolution features. Then AFF was used to achieve
adaptive fusion between the features after upsampling and
low-level high-resolution features, and finally, multi-scale
features were output for subsequent detection tasks.

FIGURE 5. The structure of the adaptive feature pyramid network.

IV. EXPERIMENT
In this section, experimental validation will be performed on
open object detection dataset MS-COCO [15], and ablation
experiment will also be conducted to prove the effectiveness
of the method proposed in this paper.

A. MODEL IMPLEMENTATION
In this paper, two representative object detection mod-
els, a two-stage detection model and a single-stage model,
i.e., Faster R-CNN with feature pyramid networks and
FCOS, were employed as our baselines. All settings and
hyper-parameters are kept consistent to the official imple-
mentation except for the feature pyramid networks. Besides,
PyTorch framework3 and open-source object detection
framework Detectron24 were adopted to implement the
method proposed in this paper. The number of sampling
points for adaptive upsampling was 4, and the subsequent

3PyTorch: https://pytorch.org/
4https://github.com/facebookresearch/detectron2

ablation experiment would be performed to further analyze
the influence of the number of sampling points on model
performance. On the basis of Faster R-CNN and FCOS,
the original FPNwas directly replaced by the newly proposed
AdaFPN, while other model structures remained unchanged.

B. DATASET AND EVALUATION CRITERIA
In this paper, experiments were conducted on MS-COCO
dataset, which contained 118,000 training images and
object-level category annotations and object box annotations,
as well as 5,000 validation set images and 20,000 test set
images. For test set, the test results should be submitted to
the evaluation website for evaluation. All models employed
in this paper were trained on MS-COCO training set, and
evaluated on validation set and test set. For model evaluation,
standard object detection index AP was adopted, which was
the average value of AP under 10 IoU thresholds ranging from
0.5 to 0.95. APS, APM and APL respectively represented
the detection AP of small objects, medium objects and large
objects.

C. EXPERIMENT SETTING
Allmodels were trained on 4NVIDIAGPUs by synchronized
SGD, with 4 images on each GPU. Following the training
strategies [3], [8] commonly used in detection models, initial
learning rates of 0.02 and 0.01 were employed for Faster
R-CNN and FCOS respectively. The training went through
90,000 iterations, and the learning rates were reduced at the
ratio of 0.1 in the 60,000th and 80,000th iterations. The
backbone ResNet [29] adopted ImageNet [30] pre-training
model, and froze all BN layers to avoid affecting the stability
of training due to excessively small batch, while other weights
were all randomly initialized. Input images would all be
scaled to 800 pixels at the short edge and no more than
1,333 pixels at the long edge. In addition, random flip was
used as data enhancement in the training process. All models
in the experiments herein applied the same training strategy
and experiment setting.

D. COCO EXPERIMENTAL RESULTS
In this paper, the improved FPN models, i.e., Faster R-CNN
and FCOS, were compared with public methods at first.
As shown in Table 1, the improved FPN proposed in this
paper achieved significant improvement on the two major
detection models, and had performance improvement of 1 AP
on MS-COCO dataset. In addition, the localization accuracy
index AP75 and small object detection were also significantly
improved, which validated the effectiveness of the improved
FPN method proposed herein. By adaptive feature upsam-
pling, better resolution features could be achieved, while by
adaptive feature fusion, context fusion between features could
be performed better.

E. ABLATION EXPERIMENT
In order to validate the performance and function of each part
of the model, an ablation experiment was further conducted
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TABLE 1. Comparisons on MS-COCO test-dev for the recent object detection methods.

on MS-COCO dataset to validate the influence of each mod-
ule and parameter setting on model performance. Training
settings were consistent with those before, and the ablation
experiment was performed on Faster R-CNN.

1) ANALYSIS ON EACH MODULE OF AdaFPN
In order to fully understand the influence and function of
each part of AdaFPN, the performance of AdaUp and AFF
on Faster R-CNN was validated respectively through exper-
iments. Table 2 presented the results of whether there were
AdaUp and AFF in the FPN on Faster R-CNN. Adding FPN
to the primitive FPN could achieve performance improve-
ment of 0.4AP, while using AFF could achieve performance
improvement of 0.7AP. It’s worth noting that the improve-
ments of AdaUp and AFF were all embodied in localization
accuracy (AP75), which could prove that theywere conducive
to more accurate object localization. AdaUp adaptively
searched more accurate upsampling points to acquire finer
high-resolution feature representation, while AFF calculated
pixel-level weights by the relation between multi-level fea-
tures, which enhanced the representation of FPN multi-scale
features at the fusion level. As shown in Table 2, AdaUp and
AFF were employed simultaneously, that is, compared with
the primitive FPN, AdaFPN proposed in this paper achieved
performance improvement of 1.0 AP.

2) NUMBER OF SAMPLING POINTS
Nearest neighbor interpolation and bilinear interpolation
employ 1 and 4 sampling points respectively for interpolation,
and there is even bicubic interpolation which takes samples
of 16 pixels. Comparedwith thesemethods, AdaUp is ofmore
flexible choices, and can set different numbers of sampling
points through hyperparameter. In order to further analyze
the influence of different sampling points on AdaUp perfor-
mance, experimental validation was performed in this paper

TABLE 2. Experimental results of Faster R-CNN on MS-COCO for different
modules in AdaFPN.

for different numbers of sampling points, and the number
of sampling points for AdaUp was adjusted to 1, 2, 4 and
8 respectively for training and testing on MS-COCO. Table 3
indicated the influence of AdaUp on the model with different
numbers of sampling points. In case the number of sampling
points was 1, the model would drop by 0.4 AP compared
with the baseline model, and the adaptive interpolation effect
was not good at this time. Nevertheless, when the number
of sampling points was increased gradually, the performance
would be gradually improved. When 4 sampling points were
adopted, the model could achieve performance improvement
of 0.4 AP. Therefore, more sampling points were conducive
to each pixel to find relevant features as much as possible,
thus improving the interpolation accuracy, resulting in stable
performance gains and improving the localization accuracy
to a certain extent. Although adopting more sampling points
would bring about performance gains, it would also result
in too much computation overhead. In consideration of the
performance improvement and computation overhead, 4 sam-
pling points were adopted in this paper for upsampling.

3) COMPARISON OF UPSAMPLING METHODS
To further validate the comparison between AdaUp interpo-
lation method and other methods, upsampling methods in the
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FIGURE 6. The visualization results of the proposed method.

TABLE 3. Experimental results of Faster R-CNN on MS-COCO for different
numbers of sampling points.

TABLE 4. Experimental results on MS-COCO for different upsampling
methods in FPN.

primitive FPN were directly modified in this paper, namely,
Bilinear, Nearest and AdaUp proposed herein. Table 4
presented the results of FPN using different upsampling
methods. Bilinear and Nearest were traditional interpolation
methods, which completely depended on spatial coordinates
for interpolation upsampling, and their performance was
almost the same on MS-COCO. However, the adaptive inter-
polation for AdaUp achieved significant improvement, which
was embodied in localization accuracy. Compared with the
traditional interpolation methods, AdaUp can automatically
capture local context information and find a group of related
feature points for each interpolation point, thus achieving
better multi-scale feature representation.

F. EXPERIMENTAL RESULTS OF DIFFERENT BACKBONES
Table 5 exhibited the performance gains of different back-
bones. Two commonly used backbones, i.e., ResNet-50 and
ResNet-101, were employed in this paper for experimental
validation. As shown in Table 5, the adaptive feature pyra-
mid network proposed herein achieved significant and steady
performance improvement under both the two backbones,
but had better object detection performance under the larger
backbone ResNet-101.

TABLE 5. Experimental results on MS-COCO for different backbones.

G. VISUALIZATION EXPERIMENTAL RESULTS
To further validate the effect of the method proposed in
this paper, Fig. 6 presented the visualization effect of Faster
R-CNN model based on AdaFPN. The first row showed
object detection results, in which each object box could be
accurately located to each object and classified. The second
row presented pixel-level fusion weights of features at levels
P4 and P5 in AdaFPN. If the color of each pixel is darker
(blue), it means that this point needs low-level high-resolution
features (P4), that is, more detail information. However,
if the color is lighter (yellow), it means that some high-level
semantic information (P5) is more needed here. Similarly,
the third row exhibited the fusion weights of features at
levels P3 and P4. According to the two sets of feature fusion
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weights, it can be verified that for some boundaries, occlu-
sions or areas with too many small objects, there will be more
dark color and detail features will be more important, while
in some smooth areas, semantic information will be more
critical.

V. CONCLUSION
In this paper, a novel adaptive feature upsampling and adap-
tive feature fusion are proposed respectively for feature
upsampling and multi-scale feature fusion of the primitive
feature pyramid network to enhance feature representation of
the primitive FPN. In addition, the proposed adaptive feature
pyramid network is embedded into the major object detection
models Faster R-CNN and FCOS. The method proposed in
this paper goes through experimental validation on the open
dataset of object detection, and achieves significant improve-
ment compared with the original design. In the future work,
the adaptive feature upsampling and adaptive feature fusion
will be studied and improved continuously to further improve
the model performance, and an attempt will be made to apply
them to other computer vision tasks.
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