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ABSTRACT This paper considers the resilient H∞ dynamic control of nonlinear uncertain systems over
a network assuming random communication packet dropouts, a subject which is seldom considered in the
current literature for such uncertain systems. The uncertainties in the system and the controller are real,
time-varying and norm bounded. Bernoulli distribution with white sequence is used to model the random
packet losses with assumed conditions on the probability distribution. The resilient controller designed is an
observer-based dynamic. The resulted closed-loop system is exponentially mean square stable and the H∞
performance is less than a prescribed level γ for all admissible uncertainties. New sufficient conditions for
the existence of such a controller are presented and proved based on the linear matrix inequalities (LMIs)
approach. A numerical example is presented to demonstrate and show the effectiveness of the developed
theory.

INDEX TERMS Resilient control, uncertain systems, robust stabilization, nonlinear systems, networked
control system.

I. INTRODUCTION
Physical systems control is the subject of applying devel-
oped control theory these days. Control of such systems are
based on obtaining suitable mathematical model using sim-
plification or linearization which create uncertainty in their
models. In addition, noisy input or output data are another
source of uncertainty. For other sources of uncertainty, see
for example [1]. It is clear that external disturbances affect the
control performances in networked control systems (NCSs).
Presence of unknown parameters in the mathematical model
is one way to characterize physical systems. The analy-
sis and synthesis of these systems are to determine possi-
ble behaviors of the system and to design robust control
strategies for a family of admissible values of the uncer-
tainty. In June 2009, a technical committee that pay attention
and encourage research on uncertain systems was initiated.
It aims to provide researchers working in this area with a
network of resources, events, contacts, and others, [2]. The
controller is also exposed to some of the uncertainty for many
reasons, such as that of trying to reduce its order, imprecise
implementation, actuator degradation, or due to the require-
ment of re-adjustment of its gains during the implementation
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stage. One way to model such uncertainties/perturbations in
both the system or the controller is by additive uncertainty.

In the area of Networked Control System (NCS),
researchers concentrate on two main problems, control of the
network and control over the network. The first concerned
with network problems such as networking protocol, con-
gestion, routing, efficient communication, etc, while the later
concentrates on the problems that are faced in real time while
controlling industrial systems over the network. They study
the effects of the network time delay, packet dropout or disor-
der of packet arrival on the controlled systems. The effect of
these problems are required to be minimized by the designed
controller. It is the goal of researchers to attain a high Quality
of the Services (QoS) and a high Quality of Control (QoC).
Our work in this research is devoted to the second type,
QoC, i.e control of industrial systems over the network. These
days, NCSs applications cover a wide range of industrial
areas such as environmental monitoring, autonomous robots,
industrial automation, smart grids, mobile communications,
just to mention a few. These wide areas make control over a
network successful due to its many advantages such as low
cost, simple installation, reduced wiring and high reliability,
see for example [3] and the references therein.

Researchers focus their work on studying the stability of
Linear Networked Control Systems (LNCS), see for exam-
ple [4]–[6] and the references therein. Nonlinear Networked
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Control Systems (NNCS) methods that study nonlinear sys-
tems are extensions of some techniques that were proposed
to control LNCS under suitable conditions and assumptions.

The authors in [7], presented a certain observer-based H∞
control for a special class of certainNNCSwith packet losses.
The packet losses are modeled as either occurred or not
occurred using Bernoulli distribution. They presented their
results in the form of Linear Matrix Inequality (LMI).

In [8], a decentralized resilient H∞ observer based con-
troller for a class of uncertain interconnected symmetric
composite continuous-time systems with nonlinearities was
presented. The uncertainty assumed in this was only in the
system state matrix A.
Non-fragile robust control of a class of nonlinear net-

worked control systems (NNCSs) with long time-varying
delay was investigated with certain state feedback controller
in [9]. The uncertainty was only considered in the nonlinear-
ity term.

In [10], the authors discussed the same problem they pro-
posed in [9], but with a short time delay and a static output
feedback controller.

In [11], the authors discussed the non-fragile robust
H∞ control NNCSs with unknown actuator failures and
time-varying delay whose upper and lower bounds are
known. The uncertainties in the system are assumed in the
A and B matrices, plus the controller type is certain state
feedback.

In [12], resilient observer-based control for networked
nonlinear T-S fuzzy certain systems with hybrid-triggered
scheme was discussed where the nonlinear system is repre-
sented by a set of T-S fuzzy linear systems. The uncertainties
are considered in the controller gains only.

In [13], only the uncertainty in the state and output param-
eters A and C of the system are considered. The authors
designed an observer–based controller that control the error
states, and they assumed the observer parameters are certain
except the observer gain.

The paper in [14] presents new results to control uncertain
nonlinear networked control systems with random packet
loss. The controller designed is an observer-based H∞ with
certain parameters.

This paper discusses the resilient H∞ control and stability
of uncertain NNCS which suffer from packet losses in both
directions. The resilient H∞ controller is an observer-based.
Thework in [14] will be extended here such that the controller
is resilient. The mathematical formulation of the problem
resulted into solving Bilinear Matrix Inequality (BMI). Two
procedures for converting Bilinear Matrix Inequality (BMI)
to Linear Matrix Inequality ( LMI) will be presented. To the
knowledge of the author, the problem of designing a resilient
H∞ observer based dynamic controller for NNCSwith uncer-
tainties in all its parameters has not been discussed yet.

Finally, the effectiveness of the theory presented in this
paper will be demonstrated by a numerical example.

The paper is organized as follows. Section 2, presents
the formulation of the problem. Section 3, presents the

main results. Subsection 3.1 covers the stability anal-
ysis, Subsection 3.2 studies the H∞ performance and
Subsection 3.3 presents new techniques to obtain the gains
of the controller and the observer. To demonstrate the effec-
tiveness of the proposed work, a numerical example is given
in Section 4, while Section 5 concludes the work. The proofs
of the two main theorems are listed in Appendices A and B.

Standard notations will be used in this paper. Let Pr{·}
denotes the occurrence of the probability of the event ‘‘·′′.
The expectation of the stochastic variable x will be denoted by
E{x}, while the sets of positive integers, the set of real num-
bers, the n-dimensional of Euclidean space and all n×m real
matrices are denoted by I+, R, Rn and Rn×m. The maximum
and the minimum eigenvalues of matrix A are denoted by
λmax(A) and λmin(A) respectively. ‖·‖ denotes the Euclidean
vector norm or the induced matrix 2− norm. I is the identity
matrix with appropriate dimension. Block-diagonal matrix is
denoted by diag(a1, a2, . . . ..an) and ‘‘∗′′ is used in symmetric
block matrices.

II. PROBLEM FORMULATION
The proposed layout of the nonlinear networked control sys-
tem (NNCS) with packet dropout in the network is shown
in Figure 1. The controlled plant is nonlinear and the uncer-
tainty is assumed in all its parameters. The random packet
losses, from the sensor to the controller or from the controller
to the actuator, occur simultaneously over the communica-
tion network. The data is assumed to be transmitted in a
single-packet manner with the same transmission length with
a point-to-point network allowable data dropout rate.

FIGURE 1. The layout of the system.

The considered uncertain nonlinear networked control sys-
tems is given as follows:

xk+1 = (A+1A)xk + (B+1B) uk + f (k, xk )+ Dwk
zk = (C1 +1C1)xk + D1wk (1)
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where xk ∈ Rn is the state vector, uk ∈ Rm is the control input
vector, zk ∈ Rr is the controlled output vector, wk ∈ Rq is
the disturbance input belong to l2[0,∞), and A, 1A ∈ Rn×n,
B, 1B ∈ Rn×m, D ∈ Rn×q, C1, 1C1 ∈ Rr×n, D1 ∈ Rr×q

where the system matrices (A, B, C1, D, D1) are known real
constant, (1A,1B,1C1) are the uncertainties in the matrices
A, B, and C1. f (k, xk ) is a nonlinear function of the state
variable that satisfies the global Lipschitz condition for a
known real constant matrix G:

‖f (k, x)‖ ≤ ‖Gx‖ (2)

‖f (k, x)− f (k, y)‖ ≤ ‖G(x − y)‖ (3)

The following equation describes the measurement with
random communication packet loss

ŷk = αk (C2xk )+ D2wk (4)

where ŷk ∈ Rp is the measured output vector, C2 ∈ Rp×n,
D2 ∈ Rp×q are real constant matrices. The linear stochastic
variable αk ∈ R is a Bernoulli distribution white sequence
which simulates the packet dropout from the sensor to the
controller with the following probability and variance

Pr{αk = 1} = E{αk} = ᾱ (5a)

Pr{αk = 0} = 1− E{αk} = 1− ᾱ (5b)

var{αk} = E{(αk − ᾱ)2} = (1− ᾱ)ᾱ = α21 (5c)

The stability analysis and controller synthesis for the
NNCS system given in (1-5c) with random packet losses is
very important in both theory and applications, and it is also
a very challenging problem.

The proposed resilient dynamic controller is observer-
based and is described by the following equations, [15].

x̂k+1 = (A+1A)x̂k + (B+1B)ūk + f (k, x̂k )

+ (L +1L) (ŷk − ᾱ(C2x̂k ))

ūk = β̄ûk (6)

and

ûk = − (K +1K ) x̂k
uk = βk ûk (7)

where x̂k ∈ Rn is the observer state, ūk ∈ Rm is the
control input to the observer, ûk ∈ Rm is the output of the
resilient state feedback controller, uk ∈ Rm is the control
input of the controlled system, L ∈ Rn×p is the observer
gain and K ∈ Rm×n is the state feedback controller gain. The
stochastic variable βk ∈ R is a linear Bernoulli distribution
white sequence which simulates the packet dropout from the
controller to the actuator with the following properties.

Pr{βk = 1} = E{βk} = β̄ (8a)

Pr{βk = 0} = 1− E{βk} = 1− β̄ (8b)

var{βk} = E{(βk − β̄)2} = (1− β̄)β̄

= β21 (8c)

The linear stochastic variables αk and βk are assumed to
be different.

The uncertainty matrices are defined as follows:[
1A 1B
0 (1K )T

]
=

[
Mc 0
0 Mk

] [
1k 0
0 1k

]
∗

[
N1 N2
0 N2

]
, (9)

1L = ML1kNL , 1C1 = M31kN3

Mc ∈ Rn×l,Mk ∈ Rn×l, ML ∈ Rn×l

1k ∈ Rl×υ ,N1 ∈ Rυ×n,
N2 ∈ Rυ×m,NL ∈ Rυ×n,

M3 ∈ Rr×l,N3 ∈ Rυ×n (10)

whereMc,M3,Mk ,ML , N1, N2, N3 and NL are known real
matrices with appropriate dimensions. 1k is an unknown
time-varying matrix with the following constraint.

1k1
T
k < Il×l or 1T

k1k < Ik×k
N2NT

2 < Iv×v (11)

Now, the state estimation error is defined as follows:

ek = xk − x̂k (12)

From (1), (6), (7) and (12), the closed-loop equations
for the nonlinear network system are obtained with simple
manipulations as

xk+1 = ((A+1A)− β̄ (B+1B) (K +1K ))xk
+(βk − β̄) (B+1B) (K +1K ) ek
−(βk − β̄) (B+1B) (K +1K ) xk
+β̄ (B+1B) (K +1K ) ek + f (k, xk )+ Dwk

ek+1 = −(βk − β̄) (B+1B) (K +1K ) xk
−(αk − ᾱ) (L +1L)C2xk
+((A+1A)− ᾱ (L +1L)C2)ek
+(βk − β̄) (B+1B) (K +1K ) ek
+Fk + (D− (L +1L)D2)wk (13)

Define ηk and Fk as

ηk =

[
xk
ek

]
, Fk = f (k, xk )− f (k, x̂k ) (14)

The closed-loop uncertain and resilient nonlinear network
control system is written in the following compact form

ηk+1 = Āηk + (βk − β̄)Â1ηk + (αk − ᾱ)Â2ηk + F̄k + B̄wk
(15)

where

Ā =
[
A1 β̄ (B+1B) (K +1K )
0 (A+1A)− ᾱ (L +1L)C2

]
A1 = (A+1A)+ β̄ (B+1B) (K +1K )

Â1 =
[
− (B+1B) (K +1K ) (B+1B) (K +1K )
− (B+1B) (K +1K ) (B+1B) (K +1K )

]
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Â2 =
[

0 0
− (L +1L)C2 0

]
B̄ =

[
D

D− (L +1L)D2

]
F̄k =

[
f (k, xk )
Fk

]
This compact system contains the stochastic parameters

αk , βk .

III. THE MAIN RESULTS
The objectives of this paper are to design a resilient observer-
based controller (6-7) for the uncertain nonlinear networked
control system (1), such that, in the presence of disturbance
and random packet losses, the closed-loop nonlinear net-
worked system (15) is exponentially mean square stable and
the H∞ performance constraint

∞∑
k=0

E ‖zk‖2 < γ 2
∞∑
k=0

E ‖wk‖2 (16)

is satisfied for a minimum prescribed scalar γ > 0.
The following useful definition and lemmas are required in

this paper.
Definition 1: [16] The closed-loop uncertain nonlinear

networked control system ( 15) is said to be exponentially
mean-square stable, when wk = 0 if there exist constant
φ > 0 and τ ∈ (0, 1)such that

E{‖ηk‖2} ≤ φτ kE{‖η0‖2}, ∀η0 ∈ Rn, k ∈ I+ (17)

Lemma 1 ([17] (S-Procedure)): Let Ti ∈ Rn×n(i = 0,
1, 2, . . . .., p) be symmetric matrices. The conditions on
Ti (i = 0, 1, 2, . . . .., p), ςTToς > 0, ∀ς 6= 0 s.t. ςTTiς ≥
0 (i = 0, 1, 2, . . . .., p) hold if there exist τi ≥ 0 (i = 0,

1, 2, . . . .., p) such that To −
p∑
i=1
τiTi > 0.

Lemma 2 [18]: For real matricesM = MT ,H and E with
F(t) satisfying F(t)FT (t) < I , thenM+HFE+ETFTHT <

0, if and only if there exist a positive scalar ε > 0 such that

M + εHHT
+

1
ε
ETE < 0 (18)

or equivalently M εH ET

εHT
−εI 0

E 0 −εI

 < 0 (19)

A. STABILITY ANALYSIS
In this subsection, a stability theorem will be stated which
gives a sufficient condition for the exponential mean square
stability of the closed-loop uncertain NNCS (15) with a
resilient observer based dynamic controller.
Theorem 1: The closed loop uncertain nonlinear

networked control system (15), with wk = 0 is exponen-
tially mean-square stable under the given resilient controller
in (6-7) if for the given communication channel parameters

0 ≤ ᾱ ≤ 1, 0 ≤ β̄ ≤ 1 there exist P > 0, Q > 0 and
τ1 > 0, τ2 > 0, ε1 > 0, ε2 > 0, ε3 > 0 satisfying the
following matrix inequality

40 ϒ1 ε1χ
T
1 ε2ϒ2 χT2 ϒ3 ε3χ

T
3

ϒT
1 − ε1I 0 0 0 0 0

ε1χ1 0 − ε1I 0 0 0 0
ε2ϒ

T
2 0 0 − ε2I 0 0 0

χ2 0 0 0 − ε2I 0 0
ϒT
3 0 0 0 0 − ε3I 0

ε3χ3 0 0 0 0 0 − ε3I


<0

(20)

where

40 =

[
401 ∗

402 403

]

401 =


−P+ τ1GTG ∗ ∗ ∗

0 −Q+ τ2GTG ∗ ∗

0 0 −τ1I ∗

0 0 0 −τ2I



402 =


PA− β̄PBK

−

βPBK P 0
β1PBK −β1PBK 0 0
β1QBK −β1QBK 0 0
α1QLC2 0 0 0

0 Q(A−
−
αLC2) 0 Q



403 =


−P 0 0 0 0
0 −P 0 0 0
0 0 −Q 0 0
0 0 0 −Q 0
0 0 0 0 −Q


ϒ1 =

[
04×5
21(5×5)

]

=



04×5

PMc −
−

βPBMk 0 0 0
0 β1PBMk 0 0 0
0 β1QBMk 0 0 0
0 0 0 0 α1QML

0 0 QMc −
−
αQML 0


χ1 =

[
81(5×4) 05×5

]

=


N1 0 0 0
Nk −Nk 0 0
0 0 0 N1
0 0 0 NLC2

NLC2 0 0 0

05×5


ϒ2 =

[
04×1
22(5×1)

]

=


04×1[8pt]
−β̄PMc
β1PMc
β1QMc

0
0
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χ2 =
[
82(1×4) 01×5

]
=
[
N2K −N2K 0 0 01×5

]

ϒ3 =

[
04×1
23(5×1)

]
=


04×1
−β̄PMc
β1PMc
β1QMc

0
0


χ3 =

[
83(1×4) 01×5

]
=
[
N2K −N2K 0 0 01×5

]
α1 =

√
(1− ᾱ)ᾱ and β1 =

√
(1− β̄)β̄.

The proof is given in Appendix A.

B. H∞− PERFORMANCE
Next, the sufficient condition proved in Theorem 1 will be
extended to show that the closed-loop uncertain nonlinear
networked control system (15) is exponentially mean square
stable and satisfies the H∞-performance constraint stated
in (16) under nonzero disturbance wk .
Theorem 2: Given the communication channel parameters

0 ≤ ᾱ ≤ 1, 0 ≤ β̄ ≤ 1. The closed loop uncertain nonlinear
networked control system (15) with wk 6= 0 is exponen-
tially mean-square stable under the resilient observer-based
dynamic controller stated in (6-7) and the H∞ performance
constraint (16) is ensured if there exist τ1 > 0, τ2 > 0, ε1 >
0, ε2 > 0, ε3 > 0 and matrices P > 0 and Q > 0 satisfying
the following matrix inequality



4̃0 ϒ̃1 ε1χ̃
T
1 ε2ϒ̃2 χ̃T2 ϒ̃3 ε3χ̃

T
3

ϒ̃T
1 − ε1I 0 0 0 0 0

ε1χ̃1 0 − ε1I 0 0 0 0
ε2ϒ̃

T
2 0 0 − ε2I 0 0 0

χ̃2 0 0 0 − ε2I 0 0
ϒT
3 0 0 0 0 − ε3I 0

ε3χ̃3 0 0 0 0 0 − ε3I


<0

(21)

where

4̃0 =

[
4̃011 ∗

4̃012 4̃022

]

4̃011 =


−P+ τ1GTGT ∗

0 −Q+ τ2GTGT

0 0
0 0
0 0

∗ ∗ 0
∗ ∗ 0
−γ 2I ∗ 0
0 −τ1I 0
0 0 −τ2I



4̃012 =



PA− β̄PBK β̄PBK
β1PBK −β1PBK
β1QBK −β1QBK
α1QLC2 0

0 QA−
−
αQLC2

C1 0

PD P 0
0 0 0
0 0 0
0 0 0

Q(D− LD2) 0 Q
D1 0 0



4̃022 =



−P 0 0 0 0 0
0 −P 0 0 0 0
0 0 −Q 0 0 0
0 0 0 −Q 0 0
0 0 0 0 −Q 0
0 0 0 0 0 −I


ϒ̃1 =

[
05×6
2̃1(6×6)

]
, χ̃T1 =

[
8̃T

1(6×5)

06×6

]

2̃1(6×6) =



PMc −
−

βPBNT
2 0

0 β1PBNT
2 0

0 β1QBNT
2 0

0 0 0
0 0 0
0 0 M3

0 0 0
0 0 0
0 0 0
0 0 α1QML

QMc xQML 0
0 0 0



8̃T
1(6×5)

=



N1 0 0 0 0
MT
k −MT

k 0 0 0
N3 0 0 0 0
0 N1 0 0 0
0 NLC2 −

1
xNLD2 0 0

NLC2 0 0 0 0



T

ϒ̃2 =

[
05×1
2̃2(6×1)

]
, χ̃T2 =

[
8̃T

2(6×1)
05×1

]

2̃2(6×1) =


−β̄PMc
β1PMc
β1QMc

0
0
0


8̃T

2(6×1) =
[
N2K −N2K 0 0 0 0

]T
(6×1)

ϒ̃3 =

[
04×1
2̃3(5×1)

]
, χ̃T3 =

[
8̃T

3(6×1)
01×5

]
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2̃3(6×1) =


−β̄PMc
β1PMc
β1QMc

0
0
0


8̃T

3(6×1) =
[
N2K −N2K 0 0 0 0

]T
Proof: The proof is given in Appendix B.

C. CONTROLLER DESIGN
The matrix inequality (21) in Theorem 2 is bilinear inK ,L,P
and Q. In the following subsection we propose two methods
to convert the MI in (21) into LMI such that we can solve for
controller gain matrices K and L. In this Subsection, we will
refer to some equations which are derived in the proof of
Theorem 2, (Appendix B).
4̃0 in (21) is given as

4̃0 =

[
4̃011 4̃T

012
4̃012 4̃022

]
Then from (68-70), Appendix B, (21) is expanded as

4̃011 4̃T
012 [0]5×6 ε18̃

T
1

4̃012 4̃022 2̃1(6×6) [0]6×6
[0]T6×5 2̃T

1(6×6) −ε1 [I ]6×6 0
ε18̃1(6×5) [0]6×6 0 −ε1 [I ]5×5

0T5×1 ε22̃
T
2(6×1)

0 0
8̃2(1×5) 01×6 0 0
[0]1×5 2̃T

3(1×6)
0 0

ε38̃3(1×5) [0]1×6 0

[0]5×1 8̃T
2 [0]5×1 ε38̃

T
3(5×1)

ε22̃2(6×1) [0]6×1 2̃3(6×1) [0]6×1
0 0 0 0
0 0 0 0

−ε2 [I ]1×1 0 0 0
0 −ε2 [I ]1×1 0 0
0 0 −ε3 [I ]1×1 0
0 0 0 −ε3 [I ]1×1


< 0 (22)

Let

T = diag{I , T , I , I , I , I } (23)

where

T =


P−1 0 0 0 0 0
0 P−1 0 0 0 0
0 0 Q−1 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 (24)

Multiply (22) from left and right by T, we get

4̃011 4̃T
012T 05×6 ε18̃

T
1

T 4̃012 T 4̃022T T 2̃6×6 06×6
0T6×5 2̃T

6×6T −ε1I5×5 0
ε18̃1(6×5) 06×6 0 −ε1I5×5

0T5×1 ε22̃
T
2(6×1)

T 0 0
8̃2(1×5) 01×6 0 0
[0]1×5 2̃T

3(1×6)
0 0

ε38̃3(1×5) [0]1×6 0 0

05×1 8̃T
2 05×1 ε38̃

T
3(5×1)

ε2T 2̃2(6×1) 06×1 2̃3(6×1) [0]6×1
0 0 0 0
0 0 0 0

−ε2I1×1 0 0 0
0 −ε2I1×1 0 0
0 −ε3 [I ]1×1 0
0 0 0 −ε3 [I ]1×1


< 0 (25)

where

T 4̃012 =



A− β̄BK β̄BK D
β1BK −β1BK 0
β1BK −β1BK 0
α1HC2 0 0

0 QA−
−
αHC2 QD− HD2

C1 0 D1

I 0
0 0
0 0
0 0
0 Q
0 0

 , H = QL

T 4̃022T = diag{−P−1,−P−1,−Q−1,−Q,−Q,−I }
and

T 2̃1(6×6) =


Mc −

−

βBNT
2 0 0

0 β1BNT
2 0 0

0 β1BNT
2 0 0

0 0 0 0
0 0 0 QMc
0 0 M3 0

0 0
0 0
0 0
0 α1QML

−xQML 0
0 0



ε18̃
T
1(6×5) = ε1



N1 0 0 0 0
MT
k −MT

k 0 0 0
N3 0 0 0 0
0 N1 0 0 0
0 NLC2 −

1
xNLD2 0 0

NLC2 0 0 0 0



T
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x =
−
α

ε2T 2̃2(6×1) = ε2


−β̄Mc
β1Mc
β1Mc
0
0
0


8̃T

2(1×6) =
[
N2K −N2K 0 0 0 0

]T
(6×1)

The MI in (25) still contains P,P−1,Q and Q−1 in the
term T 4̃022T . To convert ( 25) to LMI, two approaches are
proposed in this paper which are summarized in the following
two cases. A comparison between their efficiency is given
in Table 1, next section.

Case A : The following fact

(I − Z−1)(I − Z−1) > 0 ⇐⇒ −Z−1 < −2I + Z (26)

will be used in next lemma.
Lemma 3: The MI given in (25) will be an LMI in P and

Q if the fact given in (26) is used to replace P−1 and Q−1

in (24). The observer gain is given by L = Q−1H .
Case B : In the second method, the S-procedure [17] is

used as follows. If�0 < 0, ∃�1 ≤ 0 such that�0−�1 < 0.
For simplicity in explaining the concept, let the term T 4̃022T
in (25) be denoted by �0 and �1 be defined as

�1 =


N11 0 0 0 0 0
0 N22 0 0 0 0
0 0 N33 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Then

�0 −�1 =


−
(
P−1 + N11

)
0

0 −
(
P−1 + N22

)
0 0
0 0
0 0
0 0

0 0 0 0
0 0 0 0

−
(
Q−1 + N33

)
0 0 0

0 −Q 0 0
0 0 −Q 0
0 0 0 −I


= diag

[
−Ñ11−Ñ22−Ñ33−Q−Q−I

]
(27)

where Ñ11 = P−1+N11, Ñ22 = P−1+N22 and Ñ33 = Q−1+
N33. So we replace T 4̃022T in (25) by�0−�1 given in (27).

The following lemma summarize the results of this
approach.
Lemma 4: The MI given in (25) will be an LMI in P and

Q if the term T 4̃022T in (25) is replaced by �0 − �1 given
in (27). The observer gain is given by L = Q−1H .

The gains of the observer-based resilient controller in (6)
and ( 7) for the uncertain NNCS (1) with minimum H∞ per-
formance constraint γ are obtained by solving the following
optimization problems.

min γ
P>0,Q>0,τ1>0,K ,H ,τ2>0,ε1>0,ε2>0

(28)

subject to inequality given in (25) for case (A) and the approx-
imation used in (26), and

min γ
P>0,Q>0,K ,H ,Ñ11>0,Ñ22>0,Ñ33>0,τ1>0,τ2>0,ε1>0,ε2>0

(29)

subject to inequality given in (25) for case (B) and the approx-
imation used in (27).

IV. SIMULATION
In this section, a matlab code has been developed to solve
LMI in (25). For the system described by (1) and (4), the
following parameters are used in this simulation.

A =

 0.8226 −0.633 0
0.5 0 0
0 1 0

 , B =

 1
0
0


D =

 0.5
0
0.2

 ,C1 =
[
0.1 0 0

]
C2 =

[
23.738 20.287 0

]
, D1 = 0.1 D2 = 0.2

f (k, xk ) =

 0.01 sin x1k
0.01 sin x2k
0.01 sin x3k

 , xk =
 x1kx2k
x3k


G =

 0.01 0 0
0 0.01 0
0 0 0.01


N1 =

[
0.1 0 0

]
, N2 =

[
0.2

]
N3 =

[
0.3 0 0

]
MT
k = ML = Mc =

 0.1
0
0.1


with the following initial conditions

x0 =

 0.2
0.3
0.1

 x̂0 =

 0
0
0


and ωk = 1/k2 is taken as the input disturbance.

The objective of this example is to design the proposed
resilient controller in (7) for the system described in (1),
such that the H∞ performance index γ is minimized. The
simulation was performed for the two different approaches
proposed in Subsection 3.4; i.e. Case A and Case B. The
results have been summarized in Table 1.

Looking for the values of theH∞ performance γ in Table 1,
we can see that the linearization approach described in Case B
gives better results than the one described in Case A. The
performance factor γ remained balanced in both cases for
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TABLE 1. Summary for Case A and B LMI approaches.

FIGURE 2. State trajectories using approach B with ᾱ = 0.98 and β̄ = 0.9.

FIGURE 3. State trajectories using approach B with ᾱ = 0.5 and β̄ = 0.4.

different values of the packet losses probabilities α and β. The
table shows that our proposed linearization given in Case B
gives better results than case A. Figures 2 to 7 show that the
state trajectories of the uncertain NNCS of the system by
the resilient H∞ observer-based controllers are satisfactory.
There are only slight difference in the magnitude (overshot)
and settling time (in seconds), but there is a big difference
in the magnitude of the performance index γ . Comparing the

FIGURE 4. State trajectories using approach B with ᾱ = 0.02 and β̄ = 0.1.

FIGURE 5. State trajectories using approach A with ᾱ = 0.98 and β̄ = 0.9.

results in Table 1 with those in [14] when certain controller
was used to solve the same problem, we can see a very small
increase in the value of the performance index &γ&.
Remark 1: : The formulation of this problem in its present

form is not formulated nor solved in the literature. At this
stage it is not feasible to compare our results. In a future work,
we are workingwith different types of controllers to solve this
problem. Then comparison will be reported.
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FIGURE 6. State trajectories using approach A with ᾱ = 0.5 and β̄ = 0.4.

FIGURE 7. State trajectories using approach A with ᾱ = 0.02 and β̄ = 0.1.

V. CONCLUSION
This paper describes a new approach to solve the resilient
observer-based H∞ control problem of a class of uncer-
tain nonlinear network control systems (NNCS) with packet
dropouts. The packet dropouts over the network in two direc-
tions were modeled as two different Bernoulli distributions.
New LMI’s were derived to insure that the system is expo-
nentially mean square stable and the H∞ performance is
minimized. A numerical example is presented to show the
effectiveness of the derived LMIs. For the future work, two
directions, theoretical and practical, are suggested. First, dif-
ferent types of control techniques such as Sliding mode con-
trol, Model Predictive Control, Backstopping control, etc.,
can be studied to solve the UNNCS problem. In the other
direction, real time implementations of the results can be
tested on small scale laboratory system. We are looking for
a master student to help in implementing this task.

APPENDIX
A. APPENDIX:PROOF OF THEOREM 1

Proof: Assume the following Lyapunov function,

Vk = xTk Pxk + e
T
k Qek (30)

where P > 0 and Q > 0. Then1Vk = Vk+1−Vk is given by

1Vk
= E{Vk+1|xk , xk−1, xk−2, . . . , x0, ek , ek−1, . . . , e0} − Vk
= E{xTk+1Pxk+1 + e

T
k+1Qek+1} − x

T
k Pxk − e

T
k Qek

= E
{[
Ṽ1
]T P [Ṽ1]+ [Ṽ2]T Q [Ṽ2]}

−xTk Pxk − e
T
k Qe

T
k (31)

where

Ṽ1 = ((A+1A)− β̄(B+1B) (K +1K ))xk

+(βk − β̄)(B+1B) (K +1K ) ek

−(βk − β̄)(B+1B) (K +1K ) xk

+β̄(B+1B) (K +1K ) ek + f (k, xk )

Ṽ2 = −(βk − β̄)(B+1B) (K +1K ) xk (32)

−(αk − ᾱ) (L +1L)C2xk

+((A+1A)− ᾱ (L +1L)C2)ek

+(βk − β̄)(B+1B) (K +1K ) ek + Fk (33)

For simplicity in the derivations, introduce the following
intermediate variables from (32-33)

T1 = ((A+1A)− β̄(B+1B) (K +1K ))xk
+β̄(B+1B) (K +1K ) ek + f (k, xk )

T2 = (B+1B) (K +1K ) ek − (B+1B) (K +1K ) xk
T3 = ((A+1A)− ᾱ (L +1L)C2)ek + Fk
T4 = (L +1L)C2xk (34)

Then 1Vk can be rewritten as follows

1Vk = E{
[
T1 + (βk − β̄)T2

]T
×
[
PT1 + (βk − β̄)PT2

]
}

+E{
[
T3 − (αk − ᾱ)T4 + (βk − β̄)T2

]T
×
[
QT3 − (αk − ᾱ)QT4 + (βk − β̄)QT2

]
}

−xTk Pxk − e
T
k Qe

T
k (35)

By expanding (35) with simplifications, we get

1Vk

= E
{
T T1 PT1 + (βk − β̄)T T2 PT1

}
+E

{
(βk − β̄)T T1 PT2 + (βk − β̄)2T T2 PT2

}
+E

{
T T3 QT3 − (αk − ᾱ)T T4 QT3 + (βk − β̄)T T2 QT3

}
−E

{
(αk − ᾱ)T T3 QT4 − (αk − ᾱ)2T T4 QT4

+(αk − ᾱ)(βk − β̄)T T2 QT4
}

+E
{
(βk − β̄)T T3 QT2 − (βk − β̄)(αk − ᾱ)T T4 QT2

+(βk − β̄)2T T2 QT2
}

−xTk Pxk − e
T
k Qe

T
k (36)
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Using the properties of the two independent stochastic
Bernoulli distributions αk and βk , we get

E{(βk − β̄)} = E(βk )− β̄ = β̄ − β̄ = 0,

and E{(αk − ᾱ)} = 0

Then using (5c) and (8c), (36) is reduced to

1Vk =
[
T T1 PT1

]
+

[
β21T

T
2 PT2

]
+

[
T T3 QT3

]
+α21T

T
4 QT4 +

[
β21T

T
2 QT2

]
− xTk Pxk − e

T
k Qe

T
k (37)

Let ξTk =
[
xTk eTk f T (k, xk ) FTk

]T . Then by substitut-
ing (34) in (37), and grouping similar terms, (37) can be
written as

1Vk =


xk
ek

f (k, xk )
Fk


T

3


xk
ek

f (k, xk )
Fk

 1
= ξTk 3ξk (38)

where

3 =


811 ∗ ∗ ∗

821 822 ∗ ∗

831
−

βP(B+1B) (K +1K )) P ∗

0 Q((A+1A)−
−
α (L +1L)C2) 0 Q


(39)

and

811 = ((A+1A)− β̄(B+1B) (K +1K ))TP((A+1A)

−β̄(B+1B) (K +1K ))

+β21 (K +1K )
T (B+1B)TP(B+1B) (K +1K )

+β21 (K +1K )
T (B+1B)TQ(B+1B) (K +1K )

+α21C
T
2 (L +1L)

T Q (L +1L)C2 − P

822 =
−

β

2

(K +1K )T (B+1B)TP(B+1B) (K +1K )

+β21 (K +1K )
T (B+1B)TP(B+1B) (K +1K )

+β21 (K +1K )
T (B+1B)TQ(B+1B) (K +1K )

+((A+1A)−
−
α (L +1L)C2)TQ((A+1A)

−
−
α (L +1L)C2)− Q

821 =
−

β (K +1K )T (B+1B)TP((A+1A)

−
−

β(B+1B) (K +1K ))

−β21 (K +1K )
T (B+1B)TP(B+1B) (K +1K )

−β21 (K +1K )
T (B+1B)TQ(B+1B) (K +1K )

831 = P((A+1A)−
−

β(B+1B) (K +1K ))

The constraints (2) and (3) could be rewritten as

ξTk


−GTG 0 0 0

0 0 0 0
0 0 I 0
0 0 0 0

 ξk 1
= ξTk 31ξk (40)

ξTk


0 0 0 0
0 −GTG 0 0
0 0 0 0
0 0 0 I

 ξk 1
= ξTk 32ξk (41)

By Lemma (1) and using the constraints (40) and (41),
1Vk = ξTk 3ξk < 0 holds if there exist matrices P > 0,
Q > 0 and scalars τ1 > 0, τ2 > 0 such that the following
Matrix Inequality (MI) is satisfied

3− τ131 − τ232 < 0 (42)

which can be rewritten as 4 = 3− τ131− τ232 < 0 where

4 =


−P+ τ1GTG ∗ ∗ ∗

0 −Q+ τ2GTG ∗ ∗

0 0 −τ1I ∗

0 0 0 −τ2I



+


8̆11 ∗ ∗ 0
8̆21 8̆22 ∗ ∗

PX1
−

βPX2 P 0
0 QX4 0 Q

 < 0 (43)

and

8̆11 = XT1 PX1 + β
2
1X

T
2 PX2 + β

2
1X

T
2 QX2 + α

2
1X

T
3 QX3

8̆21 =
−

βXT2 PX1 − β
2
1X

T
2 PX2 − β

2
1X

T
2 QX2

8̆22 =
−

β

2

XT2 PX2 + β
2
1X

T
2 PX2 + β

2
1X

T
2 QX2 + X

T
4 QX4

X1 = (A+1A)− β̄(B+1B)(K +1K ))

X2 = (B+1B) (K +1K )

X3 = (L +1L)C2

X4 = (A+1A)−
−
α (L +1L)C2)

Then, the second term in (43) is
XT1 PX1 + β

2
1X

T
2 PX2 + β

2
1X

T
2 QX2 + α

2
1X

T
3 QX3

−

βXT2 PX1 − β
2
1X

T
2 PX2 − β

2
1X

T
2 QX2

PX1
0

−

βXT1 PX2 − β
2
1X2PX

T
2 − β

2
1X2QX

T
2 ∗ 0

−

β

2

XT2 PX2 + β
2
1X

T
2 PX2 + β

2
1X

T
2 QX2 + X

T
4 QX4 ∗ ∗

−

βPX2 P 0
QX4 0 Q


which can be written as

XT1 P β1XT2 P β1XT2 Q α1XT3 Q 0
−

βXT2 P −β1XT2 P −β1XT2 Q 0 XT4 Q
P 0 0 0 0
0 0 0 0 Q



∗


P−1 0 0 0 0
0 P−1 0 0 0
0 0 Q−1 0 0
0 0 0 Q−1 0
0 0 0 0 Q−1
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∗


PX1

−

βPX2 P 0
β1PX2 −β1PX2 0 0
β1QX2 −β1QX2 0 0
α1QX3 0 0 0

0 QX4 0 Q


By introducing 401 and using Schur Complement 4

in (43) can be written as

401 =

[
401 4T

021
4021 403

]
(44)

where 401 and 403 are as defined in (20) and

4021 =


PX1

−

βPX2 P 0
β1PX2 −β1PX2 0 0
β1QX2 −β1QX2 0 0
α1QX3 0 0 0

0 QX4 0 Q


Now we may start separating uncertainties from 4021 as

follows.

4021 = 4020 +40211 +40212 +40213

4020 =


(PA− β̄PBK )

−

βPBK P 0
β1PBK −β1PBK 0 0
β1QBK −β1QBK 0 0
α1QLC2 0 0 0

0 Q(A−
−
αLC2) 0 Q



40211 =


(P1A− β̄PB1K )

−

βPB1K
β1PB1K −β1PB1K
β1QB1K −β1QB1K
α1Q1LC2 0

0 Q1A−
−
αQ1LC2

0 0
0 0
0 0
0 0
0 0



40212 =


−β̄P1BK

−

βP1BK 0 0
β1P1BK −β1P1BK 0 0
β1Q1BK −β1Q1BK 0 0

0 0 0 0
0 0 0 0



40213 =


−β̄P1B1K

−

βP1B1K 0 0
β1P1B1K −β1P1B1K 0 0
β1Q1B1K −β1Q1B1K 0 0

0 0 0 0
0 0 0 0


Using the definition of the uncertainties 1A,1B,1C1,

1K and1L defined in (9-11) and using simplemanipulations

we may write 40211, 40212 and 40213 as follows

40211

=


PMc −βPBNT

2 0 0 0
0 β1PBNT

2 0 0 0
0 β1QBNT

2 0 0 0
0 0 0 0 α1QML

0 0 QMc −
−
αQML 0



∗


1k 0 0 0 0
0 1T

k 0 0 0
0 0 1k 0 0
0 0 0 1k 0
0 0 0 0 1k



∗


N1 0 0 0
MT
k −MT

k 0 0
0 N1 0 0
0 NLC2 0 0

NLC2 0 0 0


= 211̂181, 21 ∈ R5×5, 1̂1 ∈ R5×5, 81 ∈ R5×4

Similarly

40212 =


−β̄PMc
β1PMc
β1QMc

0
0

1k
[
N2K −N2K 0 0

]

= 221̂282

and

40213 =


−β̄PMc
β1PMc
β1QMc

0
0

1kN2NT
2 1

T
k
[
MT
k −MT

k 0
]

= 231̂383

Note that since by assumption N2NT
2 < I and 1k1

T
k < I ,

then 1kN2NT
2 1

T
k < I . For simplifications in completing the

proof, let 401 in (44) be split as

401 =

[
401 0
0 403

]
+

[
0 4T

021
4021 0

]
(45)

We may split he second term in (45) as[
0 4T

021
4021 0

]
=

[
0 4T

020
4020 0

]
+

[
0 4T

0211
40211 0

]
+

[
0 4T

0212
40212 0

]
+

[
0 4T

0213
40213 0

]
where [

0 4T
0211

40211 0

]
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=

[
04×4 8T

1 1̂
T
12

T
1

211̂181 05×5

]
=

[
04×5
21(5×5)

]
1̂1(5×5)

[
81(5×4) 05×5

]
+

[
8T

1
0

]
1̂T [ 0 2T

1

]
(46)

= ϒ11̂1χ1 + χ
T
1 1̂

T
1ϒ

T
1

≤ ε−11 ϒ1ϒ
T
1 + ε1χ

T
1 χ1, for any ε1 > 0

Similarly[
0 4T

0212
40212 0

]
=

[
04×4 8T

2 1̂
T
22

T
2

221̂282 05×5

]
=

[
04×1
22(5×1)

]
1̂1×1

[
82(1×4) 01×5

]
+

[
8T

2(4×1)
0

]
1̂T

1×1

[
0 2T

2(1×5)

]
= ϒ21̂2χ2 + χ

T
2 1̂

T
2ϒ

T
2

≤ ε2ϒ2ϒ
T
2 + ε

−1
2 χT2 χ2, for any ε2 > 0 (47)

and [
0 4T

0213
402123 0

]
=

[
04×4 8T

3 1̂
T
32

T
3

231̂383 05×5

]
=

[
04×1
23(5×1)

]
1̂1×1

[
83(1×4) 01×5

]
+

[
8T

3(4×1)
0

]
1̂T

1×1

[
0 2T

3(1×5)

]
= ϒ31̂2χ3 + χ

T
3 1̂

T
3ϒ

T
3

≤ ε−13 ϒ3ϒ
T
3 + ε3χ

T
3 χ3, for any ε3 > 0 (48)

Finally, grouping the terms of 401 in (45), we get

401 =

[
401 4T

020
4020 403

]
+

[
0 4T

0211
40211 0

]
+

[
0 4T

0212
40212 0

]
+

[
0 +4T

0213
40213 0

]
≤

[
401 4T

020
4020 403

]
+ ε−11 ϒ1ϒ

T
1 + ε1χ

T
1 χ1

+ε2ϒ2ϒ
T
2 + ε

−1
2 χT2 χ2 + ε

−1
3 ϒ3ϒ

T
3 + ε3χ

T
3 χ3 < 0

= 4̃0 + ε
−1
1 ϒ1ϒ

T
1 + ε1χ

T
1 χ1 + ε2ϒ2ϒ

T
2 + ε

−1
2 χT2 χ2

+ ε−13 ϒ3ϒ
T
3 + ε3χ

T
3 χ3 < 0 (49)

Using Lemma (2) to combine all terms in (49), we get

4̃0 ϒ1 ε1χ
T
1 ε2ϒ2 χT2 ϒ3 ε3χ

T
3

ϒT
1 − ε1I 0 0 0 0 0

ε1χ1 0 − ε1I 0 0 0 0
ε2ϒ

T
2 0 0 − ε2I 0 0 0

χ2 0 0 0 − ε2I 0 0
ϒT
3 0 0 0 0 − ε3I 0

ε3χ3 0 0 0 0 0 − ε3I


<0

(50)

which is similar to (20) with 4̃0 = 40. Thus, it has been
proved that

1Vk = ξTk 3ξk < 0 if 3 < 0

i.e.

1Vk = ξTk 3ξk ≤ −λmin(−3)ξTk ξk
1Vk ≤ −λmin(−3)(ηTk ηk + f (k, xk )

T f (k, xk )+ FTk Fk )

1Vk ≤ −λmin(−3)(ηTk ηk+‖f (k, xk )‖
2
+‖Fk‖2) <−αηTk ηk

where

0 < α < min{λmin(−3), σ }

0 < σ < min{λmin(−3),max{λmax(P), λmax(Q)}}

This proves that

1Vk < −αηTk ηk < −
α

σ
Vk := −ψVk (51)

Therefore by Definition (1), the closed-loop uncertain non-
linear networked system (13) is exponentially mean square
stable under the resilient observer based controller.

B. APPENDIX: PROOF OF THEOREM 2
Proof: Assume the following Lyapunov function,

Vk = xTk Pxk + e
T
k Qek (52)

where P > 0 and Q > 0. Then1Vk = Vk+1−Vk is given by

1Vk
= E{Vk+1|xk , xk−1, xk−2, . . . , x0, ek , ek−1, . . . , e0} − Vk
= E{xTk+1Pxk+1 + e

T
k+1Qek+1} − x

T
k Pxk − e

T
k Qek

= E
{[
Ṽ1
]T P [Ṽ1]+ [Ṽ2]T Q [Ṽ2]}

−xTk Pxk − e
T
k Qe

T
k (53)

where

Ṽ1 = ((A+1A)− β̄(B+1B) (K +1K ))xk
+(βk − β̄)(B+1B) (K +1K ) ek
−(βk − β̄)(B+1B) (K +1K ) xk
+β̄(B+1B) (K +1K ) ek + f (k, xk ) (54)

Ṽ2 = −(βk − β̄)(B+1B) (K +1K ) xk
−(αk − ᾱ) (L +1L)C2xk
+((A+1A)− ᾱ (L +1L)C2)ek
+(βk − β̄)(B+1B) (K +1K ) ek + Fk (55)
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For simplicity in the derivations, introduce the following
intermediate variables from (54-55)

T1 = ((A+1A)− β̄(B+1B) (K +1K ))xk
+β̄(B+1B) (K +1K ) ek + f (k, xk )

T2 = (B+1B) (K +1K ) ek − (B+1B) (K +1K ) xk
T3 = ((A+1A)− ᾱ (L +1L)C2)ek + Fk
T4 = (L +1L)C2xk (56)

Consider also the following performance measure

J = E{zTk zk − γ
2wTk wk} (57)

For any nonzero wk , and from (54-55) and (57) we have

E{Vk+1} − E{Vk} + E{zTk zk} − γ
2E{wTk wk} < 0

E
{
[U1]T P [U1]+ [U2]T Q [U2]

}
− xTk Pxk − e

T
k Qe

T
k

+[U3]T [U3]− γ 2wTk w
T
k < 0 (58)

where

U1 = Ṽ1 + Dwk
U2 = Ṽ2 + (D− (L +1L)D2)wk
U3 = (C1 +1C1)xk + D1wk

For simplifying the derivation, introduce the following
intermediate variables

T1w = T1 + Dwk
T2w = T2
T3w = T3 + (D− (L +1L)D2)wk
T4w = T4

Then

E{Vk+1} − E{Vk} + E{zTk zk} − γ
2E{wTk wk}

= E
{
T T1wPT1w + (βk − β̄)T T2wPT1w

}
+E

{
(βk − β̄)T T1wPT2w + (βk − β̄)2T T2wPT2w

}
+E

{
T T3wQT3w−(αk−ᾱ)T

T
4wQT3w+(βk − β̄)T

T
2wQT3w

}
−E

{
(αk − ᾱ)T T3wQT4w − (αk − ᾱ)2T T4wQT4w

}
−E

{
(αk − ᾱ)(βk − β̄)T T2wQT4w

}
+E

{
(βk − β̄)T T3wQT2w − (βk − β̄)(αk − ᾱ)T T4wQT2w

}
+E

{
(βk − β̄)2T T2wQT2w

}
− xTk Pxk − e

T
k Qe

T
k

+[(C1 +1C1)xk + D1wk ]T [(C1 +1C1)xk + D1wk ]

−γ 2wTk w
T
k < 0

Using the properties of the two independent stochas-
tic Bernoulli distributions αk and βk stated in (5a-5c) and
(8a-8c) and due to the fact that

E{(βk − β̄)} = E(βk )− β̄ = β̄ − β̄ = 0,

and E{(αk − ᾱ)} = 0

one gets

E{Vk+1} − E{Vk} + E{zTk zk} − γ
2E{wTk wk}

=

[
T T1wPT1w

]
+

[
β21T

T
2wPT2w

]
+

[
T T3wQT3w

]
+ α21T

T
4wQT4w +

[
β21T

T
2wQT2w

]
− xTk Pxk − e

T
k Qe

T
k

+ [(C1 +1C1)xk + D1wk ]T [(C1 +1C1)xk + D1wk ]

− γ 2wTk w
T
k < 0

Substitutions of Tiw, i = 1, 2, 3, 4, with simplifications
and grouping similar terms, we have

E{Vk+1} − E{Vk} + E{zTk zk} − γ
2E{wTk wk}

1
= ζ Tk �ζk (59)

where

� =



�11 ∗ ∗

�21 �22 ∗

�31 �32 �33

�41
−

βP(B+1B)(K +1K ) PD
0 �52 Q(D−(L+1L)D2)

∗ ∗

∗ ∗

∗ ∗

PD P ∗

0 Q

< 0

ζ Tk =
[
xTk eTk wTk f T (k, xk ) FTk

]T
�11 = ((A+1A)− β̄((B+1B)(K +1K ))TP((A+1A)

−β̄(B+1B)(K +1K ))

+β21 ((B+1B)(K +1K ))TP(B+1B)(K +1K )

+β21 ((B+1B)(K +1K ))TQ(B+1B)(K +1K )

+α21C
T
2 (L +1L)

T Q (L +1L)C2

+(C1 +1C1)T (C1 +1C1)− P

�22 =
−

β

2

((B+1B)(K +1K ))TP(B+1B)(K +1K )

+β21 ((B+1B)(K +1K ))TP(B+1B)(K +1K )

+β21 ((B+1B)(K +1K ))TQ(B+1B)(K +1K )

+((A+1A)−
−
α (L +1L)C2)TQ((A+1A)

−
−
α (L +1L)C2)− Q

�21 = β̄((B+1B)(K +1K ))TP((A+1A)

−β̄(B+1B)(K +1K ))

−β21 ((B+1B)(K +1K ))TP(B+1B)(K +1K )

−β21 ((B+1B)(K +1K ))TQ(B+1B)(K +1K )

�31 = DTP((A+1A)− β̄(B+1B)(K +1K ))

+DT1 (C1 +1C1)

�32 =
−

βDTP(B+1B)(K +1K )
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+(D− (L+1L)D2)TQ((A+1A)− ᾱ (L +1L)C2)

�33 = DTPD+ (D− (L +1L)D2)TQ(D− (L +1L)D2)

+DT1D1 − γ
2I

�41 = P(A+1A)−
−

βP(B+1B)(K +1K )

�52 = Q((A+1A)− ᾱ (L +1L)C2)

In the same manner as in (40) and (41), the constraints (2)
are reshaped as

ζ Tk


−GTG 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 0

 ζk 1
= ζ Tk �1ζk ≤ 0 (60)

and

ζ Tk


0 0 0 0 0
0 −GTG 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 I

 ζk 1
= ζ Tk �2ζk ≤ 0 (61)

Assume there exist real scalars τ1 > 0, τ2 > 0 andmatrices
P > 0 and Q > 0, then by the S-procedure, we have

�− τ1�1 − τ2�2 < 0 (62)

That is

�− τ1�1 − τ2�2

=


−P+ τ1GTG ∗ ∗ ∗ 0

0 − Q+ τ2GTG ∗ ∗ 0
0 0 − γ 2I ∗ 0
0 0 0 − τ1I 0
0 0 0 0 − τ2I



+


�̃11 ∗ ∗

�21 �̃22 ∗

�31 �32 �̃33

�41
−

βP(B+1B)(K +1K ) PD
0 �52 Q(D− (L +1L)D2)

∗ ∗

∗ ∗

∗ ∗

P ∗

0 Q


< 0

where

�̃11 = �11 + P, �̃22 = �22 + Q, �̃33 = �33 + γ
2I

which can be rewritten in the following form.

5 = �− τ1�1 − τ2�2 = 011 +
[
81 82

]
0−122

[
8T

1
8T

2

]
<0

(63)

where

011

=


−P+ τ1GTG ∗ ∗ ∗ 0

0 − Q+ τ2GTG ∗ ∗ 0
0 0 − γ 2I ∗ 0
0 0 0 − τ1I 0
0 0 0 0 − τ2I


0−122

=



P−1 0 0 0 0 0
0 P−1 0 0 0 0
0 0 Q−1 0 0 0
0 0 0 Q−1 0 0
0 0 0 0 Q−1 0
0 0 0 0 0 I


81

=


((A+1A)− β̄((B+1B)(K +1K ))TP

β̄((B+1B)(K +1K ))TP
DTP
P
0

β1((B+1B)(K +1K ))TP
−β1(B+1B)(K +1K ))TP

0
0
0


82

=


β1((B+1B)(K +1K ))TQ α1CT

2 (L +1L)
T Q

−β1((B+1B)(K +1K ))TQ 0
0 0
0 0
0 0

0 CT
1

((A+1A)−
−
α (L +1L)C2)TQ 0

(D− (L +1L)D2)TQ DT1
0 0
Q 0


Using the Schur Complement and separating the uncer-

tainty terms with simplifications, 5 can be rewritten as

5 =

[
011 0T12
012 −022

]
+

[
05×5 0T121
0121 06×6

]
< 0

where

012 =



PA− β̄PBK
−

βPBK
β1PBK −β1PBK
β1QBK −β1QBK
α1QLC2 0

0 QA−
−
αQLC2

C1 0
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PD P 0
0 0 0
0 0 0
0 0 0

Q(D− LD2) 0 Q
D1 0 0


0121 = 01211 + 01212 + 01213 ∈ R

6×5

01211 =



P1A− β̄P(B)1K β̄P(B)1K
β1P(B)1K −β1P(B)1K
β1Q(B)1K −β1Q(B)1K
α1Q1LC2 0

0 Q1A−
−
αQ1LC2

1C1 0

0 0 0
0 0 0
0 0 0
0 0 0

−Q1LD2 0 0
0 0 0



01212 =


−β̄P1BK β̄P(1B)K 0 0 0
β1P1BK −β1P(1B)K 0 0 0
β1Q1BK −β1Q(1B)K 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



01213 =


−β̄P(1B)1K β̄P(1B)1K 0 0 0
β1P(1B)1K − β1P(1B)1K 0 0 0
β1Q(1B)1K − β1Q(1B)1K 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Now by substituting the uncertainties from (9) in 01211,

01212, 01213, each term can be written as

01211 =


PMc −β̄PBNT

2 0 0
0 β1PBNT

2 0 0
0 β1QBNT

2 0 0
0 0 0 0
0 0 0
0 0 M3 0

0 0
0 0
0 0
0 α1QML

−xQML 0
0 0

 (64)

∗


1k 0 0 0 0 0
0 1T

k 0 0 0 0
0 0 1k 0 0 0
0 0 0 1k 0 0
0 0 0 0 1k 0
0 0 0 0 0 1k



∗



N1 0 0 0 0
MT
k −MT

k 0 0 0
N3 0 0 0 0
0 N1 0 0 0
0 NLC2 −

1
xNLD2 0 0

NLC2 0 0 0 0

 ,

x =
−
α

=2̃11̃k18̃1, 2̃1 ∈ R6×6, 1̃k1 ∈ R6×6, 8̃1 ∈ R6×5

(65)

Similarly

01212 =


−β̄PMc
β1PMc
β1QMc

0
0
0

1k
[
N2K −N2K 0 0 0

]

= 2̃21̃k28̃2, 2̃2∈ R6×1, 1̃k2∈ R1×1, 8̃2 ∈ R1×5

(66)

and

01213

=


−β̄PMc
β1PMc
β1QMc

0
0
0

1kN2NT
2 1

T
k
[
MT
k −MT

k 0 0 0
]

= 2̃31̃k38̃3, 2̃3 ∈ R6×1, 1̃k3 ∈ R1×1, 8̃3 ∈ R1×5

(67)

Then[
0 0T121

0121 0

]
=

[
0 0T1211

01211 0

]
+

[
0 0T1212

01212 0

]
+

[
0 0T1213

01213 0

]
where[

0 0T1211
01211 0

]
=

[
05×5 8̃T

1 1̃
T
k12̃

T
1

2̃11̃k18̃1 06×6

]
=

[
05×6
2̃16×6

]
1̃k1(6×6)

[
8̃1(6×5) 06×6

]
+

[
8̃T

1
06×6

]
1̃T
k1
[
06×5 2̃T

1

]
= ϒ̃11̃k1χ̃1 + χ̃

T
1 1̃

T
k1ϒ̃

T
1

≤ ε−11 ϒ̃1ϒ̃
T
1 + ε1χ̃

T
1 χ̃1, for any ε1>0

(68)

similarly[
0 0T1212

01212 0

]
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=

[
04×4 8̃T

2 1̃
T
k22̃

T
2

2̃21̃k28̃2 05×5

]
=

[
05×1
2̃2(6×1)

]
1̃k2(1×1)

[
8̃2(1×6) 01×5

]
+

[
8̃T

2(6×1)
05×1

]
1̃T
k2

[
01×5 2̃T

2(1×6)

]
= ϒ̃21̃k2χ̃2 + χ̃

T
2 1̃

T
k2ϒ̃

T
2 (69)

≤ ε2ϒ̃2ϒ̃
T
2 + ε

−1
2 χ̃T2 χ̃2, for any ε2 > 0

and [
0 0T1213

01213 0

]
=

[
04×4 8̃T

3 1̃
T
k32̃

T
3

2̃31̃k38̃3 05×5

]
=

[
05×1
2̃3(6×1)

]
1̃k3(1×1)

[
8̃3(1×5) 01×6

]
+

[
8̃T

3(5×1)
06×1

]
1̃T
k3(1×1)

[
01×5 2̃T

3(1×6)

]
= ϒ̃31̃k3χ̃3 + χ̃

T
3 1̃

T
k3ϒ̃

T
3

≤ ε3ϒ̃3ϒ̃
T
3 + ε

−1
3 χ̃T3 χ̃3, for any ε2 > 0 (70)

Then combining all terms of 5

5 =

[
011 0T12
012 022

]
+

[
0 0T1211

01211 0

]
+

[
0 0T1212

01212 0

] [
0 0T1213

01213 0

]
≤

[
011 0T12
012 022

]
+ ε1ϒ̃1ϒ̃

T
1 + ε

−1
1 χ̃T1 χ̃1

+ε2ϒ̃2ϒ̃
T
2 + ε

−1
2 χ̃T2 χ̃2 + ε3ϒ̃3ϒ̃

T
3 + ε

−1
3 χ̃T3 χ̃3 < 0

(71)

where

ϒ̃1 =

[
05×6
2̃1(6×6)

]

=



05×4

PMc −
−

βPBNT
2 0 0

0 β1PBNT
2 0 0

0 β1QBNT
2 0 0

0 0 0 0
0 0 0 QMc
0 0 M3 0

05×2
0 0
0 0
0 0
0 α1QML

−xQML 0
0 0


χ̃T1 =

[
8̃T

1
06×6

]

=



N1 0 0 0 0
MT
k −MT

k 0 0 0
N3 0 0 0 0
0 N1 0 0 0

0 NLC2 −
1
x
NLD2 0 0

NLC2 0 0 0 0
06×6



T

and

ϒ̃2 =

[
05×1
2̃2(6×1)

]
=



05×1
−β̄PMc
β1PMc
β1QMc

0
0
0


χ̃T2 =

[
8̃T

2(6×1)
05×1

]

=

[ [
N2K −N2K 0 0 0 0

]T
05×1

]
and

ϒ̃3 =

[
05×1
2̃3(6×1)

]
=



05×1
−β̄PMc
β1PMc
β1QMc

0
0
0


,

χ̃T3 =

[
8̃T

3(5×1)
06×1

]
=

[ [
MT
k −MT

k 0 0 0
]T

06×1

]
Finally and according to Lemma (2), we have

4̃0 ϒ̃1 ε1χ̃
T
1 ε2ϒ̃2 χ̃T2 ϒ̃3 ε3χ̃

T
3

ϒT
1 − ε1I 0 0 0 0 0

ε1χ̃1 0 − ε1I 0 0 0 0
ε2ϒ̃

T
2 0 0 − ε2I 0 0 0

χ̃2 0 0 0 − ε2I 0 0
ϒT
3 0 0 0 0 − ε3I 0

ε3χ̃3 0 0 0 0 0 − ε3I


<0

(72)

where

4̃0 =

[
011 0T12
012 022

]
(73)

Then (72) is similar to (21). At the end, it can be concluded
from (59) that

E{Vk+1} − E{Vk} + E{zTk zk} − γ
2E{wTk wk} < 0 (74)

Taking the summation of (74) from 0 to∞, yields
∞∑
k=0

E{zTk zk} < γ 2
∞∑
k=0

E{wTk wk} + E{V0} − E{V∞} (75)
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where the CLNNC (closed-loop nonlinear networked control)
system in (15) is exponentially mean square stable and for
η0 = 0, it can be concluded that

∞∑
k=0

E{zTk zk} < γ 2
∞∑
k=0

E{wTk wk} (76)

Hence, the H∞ performance constraints (16) are
achieved.
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