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ABSTRACT Efficient, robust and precise algorithms for linear quadratic regulator (LQR) and matrix
differential Riccati equation (MDRE) are essential in optimal control. However, there are lack of good
algorithms for time-varying LQR problem because of the difficulty of solving the nonlinear time-varying
MDRE. In this paper, we proved that the n-th order LQR problem is equivalent to n parallel 1-dim
Hamiltonian systems and proposed the explicit symplectic-precise iteration method (SPIM) for solving LQR
and MDRE. The explicit symplectic-precise iteration algorithms (ESPIA) designed with SPIM have three
typical merits: firstly, there are no accumulative errors in the sense of long-term time which inherits from
symplectic difference scheme; secondly the stiffness problem due to the inverse of matrix is avoided by the
precise iteration method; and finally the algorithmic structure of ESPIA is simple and no extra assumptions
are required. Systematic analysis shows that the time complexity of the symplectic algorithms for the n-
th order LQR and MDRE is O(kmaxn3) where kmax is the iteration times specified by the time duration.
Numerical examples and simulations are provided to validate the performance of the ESPIA.

INDEX TERMS Algorithm design and analysis, optimal control, Riccati equations, computational com-
plexity.

I. INTRODUCTION
Linear Quadratic Regulator (LQR) problem has been exten-
sively studied since 1960 when Kalman formed the basis of
the linear quadratic optimal control theory [1]. The purpose
of LQR problem is to find a state-feedback control law for
the linear system that minimizes the integral quadratic cost
functional [2]. In general the solution to LQR is expressed in
terms of the optimal feedback gain matrix, which is defined
by the solution to the matrix differential Riccati equation
(MDRE) [3], [4]. Thus the LQR problem is reduced to solve
the MDRE, which plays an important role in many appli-
cations, such as optimal control, estimation, communication
and many others [1], [3], [5], [6]. Although the existence of
DRME is discussed in [7] and [8] in details; however, deriving
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the closed-form or analytical solution (AS) to MDRE in an
explicit form is unlikely inmost situations, especially in terms
of time-varying systems.

Up to now, many numerical algorithms have been pro-
posed to solve the time-invariant and time-varying MDREs.
The direct integration methods, such as classic Runge-Kutta
method, linear multi-step method, etc [9], [10], treat the
MDRE as the ordinary differential equation. These algo-
rithms do not always obtain accurate results due to the stiff-
ness problem and the errors accumulated for a long time
duration. Lainiotis [11] derived a doubling partitioned numer-
ical algorithm to solve the MDRE. Kenney et al. [10], [12]
conducted an extensive study of algorithms for solving the
MDRE in 1985, including the Chandrasekhar decomposi-
tion algorithm, Leipnikmethod, Davison-Maki algorithm and
other modified approaches. Benner and Mena [13] proposed
an efficient matrix-valued implementation of the backward
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differentiation formulas for large-scale MDRE. It should be
noted that most of these approaches have at least one of the
following drawbacks:
• Being restricted to the linear time-invariant (LTI) sys-
tem [10];

• Performing very well for time-invariant systems but
badly for time-varying problems [12], [14];

• Only special cases are discussed and cannot be general-
ized [13], [15], [16].

In addition, there exists another kind of method, like
the Anderson-Moore method and the Lyapunov equation
approach [17], [18], which derives the solution to MDRE
from the corresponding algebraic Riccati equation (ARE).
This kind of methods works well in the reduction of compu-
tation, nevertheless, it focuses on certain conditions and lost
generality.

Since the majority of real systems are time dependent, it is
essential to develop an applicable method for solving the
time-varying MDRE. Hu [19] proposed a method to convert
the MDRE to a linear differential Hamiltonian system with
two diffferent terminal conditions. However, there are some
perspectives which could be pushed forward:
• The Hamiltonian equation proved is based on the termi-
nal condition, which lacks of generality.

• The description of the Hamiltonian equation can be
simplified much more and the parallel features for high
performance computation are not explored.

• Only the Runge-Kutta (RK) method is discussed and its
computational complexity is missing.

• The time-varying system for the general LQR problem is
not discussed and there is a lack of numerical examples
for the time-varying cases.

• There is a large gap between the numerical method
proposed and the engineering applications since clear
algorithmic description is missing.

Mceneaney [6] derived a unifying representation of the
solution to the time-varying MDRE by utilizing the max-
plus fundamental solution. This approach works well for
stiff time-varying MDRE, yet it encounters numerical insta-
bility due to the intolerance of small errors. Zhong and
Williams [20] proposed the precise integration method (PIM)
for the stiffness problem of ordinary differential equation.
Ton and Zhong [21], [22] proposed an improved precise
integration method (IPIM) to calculate the MDRE efficiently
with variable coefficients for time-varying systems, which
results in stable and accurate solutions by using incremental
technique. However, the algorithmic structure of IPIM is
rather complicated and lacks beauty.

To overcome the disadvantages of the previous methods,
we present the symplectic-precise iteration method (SPIM)
for the MDRE and LQR with time-varying coefficients with
a two-step strategy:
• Transforming the n-th order nonlinear MDRE into
its equivalent form, i.e., n parallel 1-dim Hamilto-
nian canonical differential equation of n separate linear

non-autonomous Hamiltonian systems, via the Heisen-
berg picture in quantum mechanics.

• Constructing symplectic integrator [23] by the second
order time-centered Euler implicit scheme (T-CEIS)
[24] and precise integration method for the equivalent
Hamiltonian equations.

It should be noted that T-CEIS is a symplectic difference
scheme for non-autonomous system,which has a simple algo-
rithmic structure and preserves the symmetry and positivity
of the solution to MDRE. In order to keep the round-off error
small and avoid the stiffness problem, the PIM is introduced
to calculate the symplectic transition operator accurately. The
general advantage of symplectic method and its application in
optimal control lies in the fact that it can keep the symplectic
structure and avoid cumulative computational errors in the
sense of long-term time [24]–[27].

The main purpose of this paper is to present explicit
symplectic-precise iteration algorithms (ESPIA) for the LQR
and MDRE. The rest of this paper is organized as follows:
Section II deals with the parallel Hamiltonian equations for
the LQR problem; Section III presents the SPIM and ESPIA
for LQR and MDRE; Section IV discusses the time com-
plexity of the ESPIA; Section V concerns verification and
evaluation by simulation results and Section VI gives the
conclusions.

II. PARALLEL TIME-VARYING HAMILTONIAN
EQUATIONS FOR LQR
A. FINITE-HORIZON AND CONTINUOUS-TIME LQR
The finite-horizon and continuous-time LQR defined on the
time interval [t0, tf ] is [1]

ẋ = Ax+ Bu (1)

with a cost functional

C =
1
2
xT(tf )Sx(tf )

+
1
2

∫ tf

t0

[
xT(t)Q(t)x(t)+ uT(t)R(t)u(t)

]
d t (2)

where x = x(t) ∈ Rn×1 is an n-dim state vector, A = A(t) ∈
Rn×n is the system matrix, u = u(t) ∈ Rp×1 is a p-dim input
vector, B = B(t) ∈ Rn×p is the coefficient matrix, S ∈ Rn×n

and Q = Q(t) ∈ Rn×n are symmetric and non-negative
matrices, and R = R(t) ∈ Rp×p is positive. With the help
of Lagrange multiplier λ we can construct the Hamiltonian
H as

H(x,u,λ, t) = λTẋ+
1
2
xTQx+

1
2
uTRu (3)

and find the following optimal input

u∗ = −R−1BTλ (4)

for the LQR problem [28]. According to the optimal control
law, we can obtain the following linear system [29]

d
d t

[
λ

x

]
=

[
−AT

−Q
−BR−1BT A

] [
λ

x

]
, (5)
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with initial and terminal conditions

x(t0) = x0, λ(tf ) = Sxf . (6)

Suppose that the action of P : R → Rn×n on x(t) is λ(t),
viz.,

λ(t) = P(t)x(t), (7)

then we have the famous continuous-time matrix differential
Riccati equation (MDRE) and the terminal condition [2], [4]

Ṗ(t) = −PA− ATP − Q+ PBR−1BTP, (8)

P(tf ) = S. (9)

Although the effect of t is considered in the mathematical
notion, it should be remarked that it’s rarely the case to
deal directly with the time-varying system in engineering
applications. A common practice is to regard the time-varying
system as constant. Therefore, the parameter t is dropped in
(8) and in the subsequent notions. There are three steps for
solving the continuous time LQR problem:
a) find P(t) by solving the MDRE with terminal time con-

dition;
b) compute x and λ;
c) compute the optimal control input u∗.

Generally, it is difficult to find the AS to MDRE due to the
non-linearity and time-dependence.

B. HEISENBERG MOTION EQUATION OF LQR
We now suppose that the final state vector is xf and take an
invertible operator from the general linear transform group,
i.e., X(t) ∈ GL(n,R) ⊂ Rn×n, and let it act on xf , then we
can get the state vector

x(t) = X(t)xf (10)

by assuming that both x(t) and xf are not zero vectors. Thus
we can obtain the co-state

λ(t) = P(t)x(t) = P(t)X(t)xf = Y (t)xf (11)

such that

P(t) = Y (t)X−1(t). (12)

We remark that when x(t) becomes zero vector at some
time points (or x(t) is zero everywhere), we cannot find
an invertible matrix such that (10) and (12) hold. However,
fortunately, we can still use the expression Y (t)X−1(t) thanks
to the continuity of X(t), Y (t) and P(t).
Note that (12) is different from (7) since we can obtain

P(t) directly once X(t) and Y (t) are known. Simple algebraic
manipulations show that the corresponding terminal time
condition for X(t) and Y (t) can be expressed by

Y (tf ) = S, X(tf ) = In, (13)

where In is the n-by-n identity matrix.
By analogy with the theory of quantum mechanics

[30]–[32], the way that we describe the interested system

with the operators X(t) and Y (t) can be called Heisenberg
picture and its counterpart with the state x(t) and co-state
λ(t) can be called Schrödinger picture. Quantum mechan-
ics says that these two pictures are equivalent although the
Schrödinger equation of quantum state (function) is different
from the Heisenberg motion equation of observable (operator
or matrix).

Naturally, an interesting problem rises: are there some
motion equations for the operators X(t) and Y (t)? Fortu-
nately, the answer is YES! Substitute (10) and (11) into
(5), we immediately have the following linear time-varying
ordinary differential equation for the operators X(t) and Y (t)

d
d t

[
Y
X

]
=

[
−AT

−Q
−BR−1BT A

] [
Y
X

]
= 8

[
Y
X

]
(14)

where

8 =

[
−AT

−Q
−BR−1BT A

]
= 8(t) (15)

is a time-varying matrix since A,Q,B and R depend on time
t in general. We remark that:
• (14) implies a time-varying Hamiltonian system, which
could be named with Heisenberg motion equation of
LQR since the way to obtain it is in the paradigm of
methodology of quantum (matrix) mechanics by Werner
Heisenberg in 1925 [31].

• (14) is the same with that in [19] and [28] essentially but
our method is more straightforward, more enlightening
and more intuitive;

• the final state xf has been removed from the two sides of
the (14) since it can be an arbitrary vector in state space
for a controllable system.

C. PARALLEL HAMILTONIAN SYSTEMS FOR LQR
Equation (14) can be regarded as an equivalent description of
the LQR problem in Heisenberg’s picture, which leads to the
following theorem.
Theorem 1 (Parallel Time-varying Hamiltonian Systems):

The Heisenberg motion equation of n-th order LQR is equiv-
alent to n parallel 1-dim linear and non-autonomous Hamil-
tonian systems.
Proof: Let In be the n-th order identity matrix, On be the

n-th zero matrix,

J =
[
On In
−In On

]
(16)

be the 2n-th order standard symplectic matrix and

K =
[
−B(t)R−1(t)BT(t) A(t)

AT(t) Q(t)

]
= K(t), (17)

then we can deduce that

K = KT
= J8 (18)

since Q = QT and R = RT. Let Z be the column stacking of
Y and X , i.e.,

Z =
[
Y
X

]
= [z1, . . . , zj, . . . , zn] ∈ R2n×n, (19)
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where the j-th column of Z is zj. Consequently, (14) is equiv-
alent to

d zj
d t
= 8zj = J−1Kzj, j ∈ {1, . . . , n} . (20)

Now we let the Hamiltonian of zj for (20) be

H (zj) =
1
2
zTj Kzj, j ∈ {1, . . . , n} . (21)

Then we immediately have

J−1∇H (zj) = J−1Kzj = 8zj. (22)

Consequently, (20) shows that

d zj
d t
= J−1∇H (zj) = 8zj, j ∈ {1, . . . , n} (23)

or equivalently

dZ
d t
= 8Z = J−1KZ. (24)

Obviously, (23) is the canonical Hamiltonian system spec-
ified by the Hamiltonian H (zj) and state vector zj in the j-th
phase space according to the definition given in Appendix .
Since each H (zj) = 1

2 zj
TKzj = 1

2 zj
TK(t)zj depends on time t

for column index j, (14) can be split into n parallel linear non-
autonomous Hamiltonian canonical equations with identical
form and well-defined terminal time condition (13), i.e.,

zj(tf ) =
[
S(:, j)
In(:, j)

]
, 1 ≤ j ≤ n⇐⇒ Z(tf ) =

[
S
In

]
(25)

whereM(:, j) is the j-th column of the matrixM . �
Although (14) can be found in various textbooks, there is

no literature in which its equivalence (20) or (23) is used to
design explicit symplectic algorithms for LQR and MDRE.
Theorem 1 is of significance because it shows that we can
explore and construct symplectic geometric algorithm to
solve the LQR problem as well as the nonlinear MDRE and
preserve high precision as well as numerical stability in the
sense of long-term time.This new ideamay refresh the current
situation when solving the numerical solution (NS) to the
LQR problem.

We remark that (5) is also related with the Hamiltonian
canonical equation since it have the same coefficient matrix
8(t) as (14) does. However, there is no proper condition
for determining the solution to x(t) and λ(t) because we
just have the mixed conditions specified by (6) instead of
the initial condition [x(t0),λ(t0)]T or terminal time condition
[x(tf ),λ(tf )]T. Fortunately, we have the well-defined terminal
time condition (13) for (14).

We also remark that this theorem is equivalent to the
counterpart in [19] (See Theorem 2.2 of [19]) essentially.
By comparison, there are three advantages for our proof:
• it is more simple and physics oriented;
• the symplectic method can be adopted without any extra
assumption;

• the parallel feature characterized by (20) and (23) can be
used for parallel computations with CUDA or GPU.

III. SYMPLECTIC-PRECISE ITERATION METHOD AND
ALGORITHMS FOR LQR AND MDRE
A. SYMPLECTIC DIFFERENCE SCHEME FOR LQR
PROBLEM
Since the matrices A,B,Q,R vary with time t in gen-
eral, the matrix K depends on time essentially. Thus the
Hamiltonian systems described by (23) or (24) must be
non-autonomous systems [24], [25], [33], [34]. Therefore,
the time-centered Euler implicit scheme (T-CEIS), which is a
symplectic difference scheme [24], can be utilized to find the
NS to (24).

Let τ be the time step, for integer k = 0, 1, . . . we denote

kmax = (tf − t0)/τ ∈ N,
tk = t0 + kτ, t̄k = (tk + tk+1)/2 = tk + τ/2,

zj[k] = zj(tk ), z̄j[k] = (zj[k + 1]+ zj[k])/2,

Z[k] =
[
z1[k], . . . , zn[k]

]
=

[
Y [k]
X[k]

]
,

A[k] = A(t̄k ), B[k] = B(t̄k ),

Q[k] = Q(t̄k ), R[k] = R(t̄k ),

8[k] =
[

−A[k]T −Q[k]
−B[k]R[k]−1B[k]T A[k]

]
= J−1K[k]

(26)

for the discrete counterparts of the continuous time versions.
Then the T-CEIS will be

zj[k + 1]− zj[k]
τ

= J−1∇H (z̄j[k], t̄k ) (27)

or equivalently

Z[k + 1]− Z[k]
τ

= 8[k]
Z[k + 1]+ Z[k]

2
. (28)

This difference scheme will lead to the following theorem
for the single step transition map.
Theorem 2: Let I2n be the 2n-by-2n identity matrix. For

positive time step τ , the single step transition mapping which
relates Z[k] and Z[k + 1] in the difference scheme (28) must
be

G(τ ) =
[
I2n −

τ

2
8[k]

]−1 [
I2n +

τ

2
8[k]

]
= [G(−τ )]−1 (29)

such that G(τ ) is a symplectic matrix, i.e.,

G(τ )T · J · G(τ ) = J . (30)

Proof: The (28) can be reformulated by

Z[k + 1] = G(τ )Z[k]

=

[
I2n −

τ

2
8[k]

]−1 [
I2n +

τ

2
8[k]

]
Z[k].

Let x = τ
2 ,C = K[k],F(x) = I2n − xJ−1C = I2n −

τ
28[k],V = G(τ ) = [F(x)]−1[F(−x)]. We immediately find
thatG(τ ) is symplectic by Lemma 4 in Appendix . Moreover,
it is trivial that G(τ ) = [G(−τ )]−1. �
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Theorem 2 shows that the symplectic difference scheme
for (14) will be

Z[k + 1] = G(τ )Z[k], k = 0, . . . , kmax − 1 (31)

when updating Z[k] in increasing time order or

Z[k] = G(−τ )Z[k + 1], k = kmax − 1, . . . , 0 (32)

when updating Z[k] in decreasing time order. Moreover,
the 2n-by-2nmatrix G(±τ ) can be split into four blocks with
the same size (n-by-n), viz.,

G(±τ ) =

[
G±11 G±12
G±21 G±22

]
(33)

Substitute (33) into (31) and (32), we can obtain the
iterative formulas for X[k] and Y [k] since Z[k] =

[Y [k]T,X[k]T]
T
.

It should be noted that the T-CEIS method with second
order precision is adopted here. For the T-CEIS method,
its form is simple, its precision is high, it leads to explicit
symplectic algorithms and it satisfies the requirements of
control engineering well. Although higher order symplec-
tic method can be used theoretically and there are lots of
candidate high order symplectic methods in [24]. However,
the computational complexity will be higher simultaneously
since there are lots of matrix operations involved. It is a trade
off among various performances and algorithmic structure
that we choose Euler’s method in the sense of balancing
control theory and control engineering.

B. ITERATIVE FORMULA FOR LQR PROBLEM
The (9) for the MDRE is a terminal condition at tf where we
have to choose decreasing order for time t and take G(−τ ) to
compute the state at t < tf . Since X(tf ) = X(t0 + kmaxτ ) =
X[kmax] and Y (tf ) = Y (t0+kmaxτ ) = Y [kmax], we can obtain

X[kmax] = In, Y [kmax] = S. (34)

By (12), (32) and (33), the NS to the time-varying matrices
X(t),Y (t) and P(t) can be expressed as follows

Y [k] = G−11Y [k + 1]+ G−12X[k + 1],
X[k] = G−21Y [k + 1]+ G−22X[k + 1],
P[k] = Y [k]X[k]−1,

(35)

for k = kmax − 1, . . . , 1, 0 in time decreasing order.
On the other hand, x(t) = X(t)xf implies that

x[0] = x(t0) = x0 = X(t0)x(tf ) = X[0]xf ,

viz.,

xf = X[0]−1x0. (36)

Hence the NS to x(t) must be

x[k] = X[k]X[0]−1x0, k ∈ {0, 1, . . . , kmax} (37)

by (10) and (36). Furthermore, since the optimal control input
is

u∗(t) = −R−1BTλ(t) = −R−1BTY (t)xf ,

we can deduce that its NS must be

u∗[k] = −R[k]−1B[k]TY [k]xf (38)

for k ∈ {0, 1, . . . , kmax}. Equations (37) and (38) show that
it is not necessary to calculate the matrix P(t) if we only
concern about the state vector x(t) and the optimal input
u∗(t).

C. ITERATIVE FORMULA FOR MDRE WITH INITIAL
CONDITION
If we only concern about the MDRE and show no interest in
the LQR problem, (9) can be replaced by the initial condition.
Thus we have the following Cauchy problem{

Ṗ(t) = −PA− ATP − Q+ PBR−1BTP,
P(t0) = P0.

(39)

In this case, we compute X[k],Y [k] and P[k] in time
increasing order. Thus the solution to (39) will be

Y [k + 1] = G+11Y [k]+ G
+

12X[k],
X[k + 1] = G+21Y [k]+ G

+

22X[k],
P[k + 1] = Y [k + 1]X[k + 1]−1,

(40)

for k = 0, 1, . . . , kmax − 1 in time increasing order with the
initial setting

X[0] = In, Y [0] = P0, P[0] = P0. (41)

D. COMPUTATION OF SYMPLECTIC TRANSITION
MAPPING
The key step for solving LQR problem and MDRE is to
calculate the symplectic transition matrix

G(τ ) =
[
I2n −

τ

2
8[k]

]−1 [
I2n +

τ

2
8[k]

]
(42)

reliably with high precision. Generally, the computation of
the inverse of a matrix may not be stable or robust, and we
need a good algorithm for such a task. Fortunately, we can
adopt the idea of the PIM [20], which is an accurate and stable
method for computing the exponent of amatrix, and can avoid
round-off errors.

Actually, for the small time step τ , (42) can be approxi-
mated by the following Taylor series

G(τ ) = I2n + Ta(τ )

Ta(τ ) = τ8[k]+
τ 2

2
8[k]2 +

τ 3

4
8[k]3 + O(τ 4)

= a+
1
2
a2 +

1
4
a3 + O(τ 4)

= a
[
I2n +

1
2
a
(
I2n +

1
2
a
)]
+ O(τ 4) (43)

where

a = τ8[k]. (44)

If we divide the subinterval τ into 2N extremely small
intervals of equal length η = τ

2N where N is a positive
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integer suggested, then the precise computation of G(τ ) can
be implemented by

G(τ ) = G(η) ◦ · · · ◦ G(η)︸ ︷︷ ︸
composition of 2N terms

= [G(η)]2
N

(45)

We can split the symplectic transition matrixG (η) into the
identity matrix I2n and the incremental part Ta(η) = η8[k],
i.e.,

G(η) = I2n + Ta(η) = I2n + η8[k]. (46)

Then we use an idea of storing and computing the incre-
mental part via the following iteration (updating formula)

Ta← 2Ta + Ta · Ta. (47)

Repeating (47) N times and then adding the final matrix
Ta and I2n by (45), we can obtain G (τ ).
It is necessary to point out that for small order n of the LQR

systemwe can compute the symplectic transition matrixG(τ )
by (42) directly with inversion operation. For n = 1, we have
a = A[k], q = Q[k], b = B[k], r = R[k]. Thus

8
n=1
==

 −a −q

−
b2

r
a

 , (48)

I2 +
τ

2
8 =


1−

τ

2
a −

τ

2
q

−
τ

2
b2

r
1+

τ

2
a

 , (49)

I2 −
τ

2
8 =


1+

τ

2
a

τ

2
q

τ

2
b2

r
1−

τ

2
a

 . (50)

In this case, G(τ ) is a 2-by-2 matrix, i.e.,

G(τ ) n=1==
(
I2 −

τ

2
8
)−1 (

I2 +
τ

2
8
)

=


(
1−

τa
2

)2
+
τ 2qb2

4r
−τq

−
τb2

r
τ 2 b2 q
4r

+

(
1+

τa
2

)2


1−
τ 2

4

(
a2 +

b2q
r

) .

(51)

E. EXPLICIT SYMPLECTIC-PRECISE ITERATION
ALGORITHMS FOR TIME-VARYING LQR AND MDRE
1) ALGORITHM OF SpTranMat
Algorithm 1 presents the implementation of calculating the
symplectic transition matrixG(τ ) for the corresponding LQR
and MDRE problems. We find that computation of Algo-
rithm 1 needs N times of matrix multiplications and N times
of scalar product in the loop. This complexity is acceptable
and it avoids the matrix inverse operation in (42) for G(τ ) as
well as the round-off errors. When integrating theMDRE and

Algorithm 1 Compute the Symplectic Transition Matrix
With the Precise Iteration Method (SpTranMat)

Input: Time-varying matrix 8[k] ∈ R2n×2n and the time
step τ .

Output: Symplectic transition matrix G(τ ) at discrete
time tk = t0 + kτ .
Usage: G(τ ) = SpTranMat(8[k], τ,N )

1: Set η = τ/2N .
2: Compute a = η8[k].
3: Ta = a [I2n + 0.5a (I2n + 0.5a)].
4: for (j = 0; j < N ; j++) do
5: Ta = 2Ta + Ta · Ta
6: end for
7: G(τ ) = I2n + Ta;
8: return < G(τ ) >

LQR problem, we embed Algorithm 1 into the corresponding
algorithms to get robust and precise NS. The user-defined
time step τ in Algorithm 1 should be set to guarantee the
number of nodes kmax ∈ N and we set parameter N = 10
as default value.

Particularly, it is necessary to point out that we can directly
compute G(τ ) with (51) for n = 1 instead of with PIM.

Algorithm 2 Compute the Solution to MDRE With Ter-
minal Condition in LQR (SpMdreFc)
Input: Time span [t0, tf ], positive time step τ , integer N

for SpTranMat, and coefficient matrices A(t), B(t), S,
Q(t), R(t) of the LQR problem.

Output: Discrete gain matrices of MDRE: {P[k]}kmax−1k=0 .
Usage: < {P[k]} >=
SpMdreFc(A(t),B(t),S,Q(t),R(t), τ,N , t0, tf )

1: Set kmax =
tf−t0
τ
∈ N.

2: Set the terminal condition:
P[kmax] = S,
Yold = S,Xold = In,Ynew = O,Xnew = O

3: for (k = kmax − 1; k ≥ 0; k −−) do
4: Compute 8[k] = 8(t0 + kτ ) via (26).
5: G(−τ ) = SpTranMat(8[k],−τ,N ).
6: Set G−11, . . . ,G

−

22 with G(−τ ) via (33).
7: Compute P[k] according to (35)

Ynew = G−11Yold + G
−

12Xold ;

Xnew = G−21Yold + G
−

22Xold ;
P[k] = YnewX−1new.

8: Update: Yold = Ynew,Xold = Xnew.
9: end for
10: return Sequence of gain matrices < {P[k]} >.

2) ALGORITHM OF SpMdreFc
Algorithm 2 demonstrates the way to determine the solution
P(t) to the MDRE in LQR problem. We have to take the
inverse time order because we encounter the terminal time
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Algorithm 3 Symplectic Solver for LQR: Compute the
Solution to MDRE, State Vector and Optimal Control
Input (SpLQR)
Input: System matrices of LQR problem: time-varying

matrices A(t), B(t), S, Q(t) and R(t), integer N for
SpTranMat, time span [t0, tf ], positive time step τ and
initial state x0 = x(t0).

Output: Discrete optimal control input {u[k]} and state
vectors {x[k]}.
Usage: [{x[k]} , {u∗[k]}] =
SpLQR(A(t),B(t),S,Q(t),R(t), τ,N , t0, tf , x0)

1: Set kmax =
tf−t0
τ
∈ N.

2: Set the terminal time condition:
Y [kmax] = S,X[kmax] = In.

3: for (k = kmax − 1; k ≥ 0; k −−) do
4: Compute 8[k] = 8(t0 + kτ ) by (26).
5: G(−τ ) = SpTranMat(8[k],−τ,N ).
6: Set G−11, . . . ,G

−

22 with G(−τ ) via (33).
7: Compute Y [k] and X[k] by (35):

Y [k] = G−11Y [k + 1]+ G−12X[k + 1];

X[k] = G−21Y [k + 1]+ G−22X[k + 1].

8: end for
9: x[kmax] = X[0]−1x0.
10: u∗[kmax] = −R[kmax]−1B[kmax]TY [kmax]x[kmax].
11: for (k = 0; k ≤ kmax − 1; k = ++) do
12: x[k] = X[k]x[kmax].
13: u∗[k] = −R[k]−1B[k]TY [k]x[kmax].
14: end for
15: return < {x[k]} , {u∗[k]} >.

condition for the MDRE. The matrices X[k] and Y [k] are not
necessary to be determined completely and what we need is
just the current version of X[k] and Y [k] if we only concern
about the discrete version of P(t). This means that the space
complexity can be reduced by tracking the current state of
X[k] and Y [k]. Note that each X[k]−1 has to be computed
in Rn×n. On the other hand, the structure of the algorithm
is very simple when it is compared with those mentioned in
Section I.

3) ALGORITHM OF SpLQR
Algorithm 3 describes the procedure for computing the opti-
mal control vector u∗(t) and state vector x(t). We imme-
diately find that it is not necessary to calculate the matrix
P(t) if we just need x(t) and u∗(t). This is a signif-
icant advantage over the existing algorithms which are
based on solving P(t) and encounter higher computational
complexity.

If we want to output x(t),u∗(t) and P(t) at the same
time, we can combine Algorithm 1 and Algorithm 3 into
an extended algorithm, which is trivial and we omit it
here.

4) ALGORITHM OF SpMdreIc
As a by-product, Algorithm 4 solves the time-varyingMDRE
with initial condition. The advantages of Algorithm 4 lie in
the following facts:

• it doesn’t rely on extra assumptions;
• its algorithmic structure is simple;
• accumulative computation errors can be avoided in the
sense of long-term time;

• stiffness problem due to the inverse of matrix can be
avoided in the sense of precise integration method [20];

• it is a second-order precision symplectic method inher-
ited from T-CEIS [24].

Algorithm 4 Solver for MDRE With Initial Condition
(SpMdreIc)
Input: Matrices A(t), B(t), P0, Q(t), R(t) in MDRE, time

span [t0, tf ], positive time step τ , integer N for
SpTranMat.

Output: Sequence of matrices {P[k]}.
Usage: < {P[k]} >=
SpMdreIc(A(t),B(t),S,Q(t),R(t),N , t0, tf )

1: Set the terminal time condition:
P[0] = P0,Xold = In,Yold = P0,Ynew = O,Xnew =

O.
2: Set the integer kmax =

tf−t0
τ

.
3: for (k = 0; k ≤ kmax − 1; k ++) do
4: Compute 8[k] = 8(t0 + kτ ) by (26).
5: G(τ ) = SpTranMat(8[k], τ,N ).
6: Set G+11, . . . ,G

+

22 with G(τ ) via (33).
7: Compute P[k + 1] by (40):

Ynew = G+11Yold + G
+

12Xold ;

Xnew = G+21Yold + G
+

22Xold ;

P[k + 1] = YnewX−1new.
8: Update Yold and Xold : Yold = Ynew,Xold = Xnew.
9: end for
10: return < {P[k]} >.

IV. TIME COMPLEXITY ANALYSIS OF EXPLICIT
SYMPLECTIC-PRECISE ITERATION ALGORITHMS
A. TIME COMPLEXITY VECTOR OF COMPUTATION FOR
BASIC OPERATIONS
Let T∗ (expr) and T+ (expr) be the times of multiplica-
tion and addition in some operation expression expr. The
time complexity vector of computation (TCVC) for expr is
defined by

T(expr) = [T∗ (expr),T+ (expr)]. (52)

Note that we just list two components of T(expr) here
since for the problems and algorithms which contain mas-
sive matrix-vector operations, the multiplication and addition
operations for real numbers are more fundamental and essen-
tial if they are compared each other. The flops, introduced by
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Golub and Loan in [35], for computing expr will be

flop(expr) = ‖T (expr)‖1
= T∗ (expr)+ T+ (expr). (53)

Similarly, we use T (expr) to denote the computation
time for expr. We also use T ∗(expr) and T+(expr) to
represent the computation time for the multiplications and
additions involved in expr. Suppose that the time units for
multiplication and addition are δ1 and δ2 respectively. Let

δ = [δ1, δ2] (54)

be the vector of time units. Then the time for computingexpr
will be

T (expr) = 〈T(expr)|δ〉

= T∗ (expr)δ1 + T+ (expr)δ2 (55)

if only multiplication and addition are essential for the total
time consumed.

For the matrix operations frequently encountered in this
paper, we list the corresponding TCVC in Appendix .

B. TIME COMPLEXITY VECTOR OF COMPUTATION FOR
ALGORITHM
For an algorithm named with Alg, its TCVC is defined by

T (Alg) =
∑

expr∈Alg

T (expr)

= [T∗ (Alg),T+ (Alg)]. (56)

If there are some parameters n, α1, α2, . . . , αr for Alg, then
we will take the notation

TAlg (n, α1, . . . , αr )

for its TCVC. The time needed for algorithm Alg can be
measured by

T (Alg) = 〈T (Alg)|δ〉 = T∗ (Alg)δ1 + T+ (Alg)δ2 (57)

theoretically with acceptable accuracy.

1) TCVC OF SpTranMat
With the help of Table 5 inAppendix , for 2n-by-2n real matri-
ces a,M2n and32n = diag(λ1, . . . , λ2n), we can deduce that

T

(
a+

1
2
a2 +

1
4
a3
)

= T

(
a
[
I +

1
2
a
(
I +

1
2
a
)])

= 2T (0.5a)+ 2T (32n +M2n)+ 2T (M2nM2n)

= 2[4n2, 0]+ 2[0, 2n]+ 2[8n3, (2n− 1)4n2]

= [16n3 + 8n2, 16n3 − 8n2 + 4n] (58)

Similarly, for Ta ∈ R2n×2n we have

T (2Ta + Ta · Ta)

= T (2M2n)+ T (M2nM2n)+ T (M2n +M2n)

TABLE 1. Time complexity analysis of algorithm SpTranMat.

= [4n2, 0]+ [8n3, (2n− 1)4n2]+ [0, 4n2]

= [8n3 + 4n2, 8n3]

Table 1 demonstrates the TCVC for each step of Algo-
rithm 1(i.e., Algorithm SpTranMat). By summarizing the
TCVC for all of the steps, we find that the TCVC of Algo-
rithm 1 is

TSpTranMat(n,N )

=

∑
expr∈SpTranMat

T (expr)

= [(16+ 8N )n3 + (12+ 4N )n2, (16+ 8N )n3 − 8n2 + 6n]

= (16+ 8N )n3[1, 1]+ n2[12+ 4N ,−8]+ n[0, 6] (59)

The time consumed will be

TSpTranMat(n,N )

= 〈TSpTranMat(n,N )|δ〉

= (16+ 8N )(δ1 + δ2)n3

+ ((12+ 4N )δ1 − 8δ2)n2 + 6δ2n

= O(Nn3). (60)

We remark that the assignment operation η = τ/2N can
be implemented with the shift operation in the C/C++ pro-
gramming language. If we take the default parameterN = 10,
then

TSpTranMat(n, 10) = 96n3[1, 1]+ n2[52,−8]+ n[0, 6]

and

TSpTranMat(n, 10)

= 〈TSpTranMat(n, 10)|δ〉

= 96(δ1 + δ2)n3 + (52δ1 − 8δ2)n2 + 6δ2n

= O(n3). (61)

On the other hand, if we take other algorithms for comput-
ing the matrix G(τ ) defined in (29), the time computational
complexity will still be O((2n)3) = O(n3). Although the
Algorithm SpTranMat based on PIM have the same time
computational complexity, it is stable and can avoid round-
off errors.

For n = 1, we can find that

T (SpTranMat) n=1
== [30, 6],

TSpTranMat
n=1
== 30δ1 + 6δ2 (62)

with the help of (51).
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2) TCVC OF SpMdreFc
Table 2 gives the TCVC for each step of Algorithm 2(i.e.,
Algorithm SpMdreFc). Thus the TCVC of Algorithm 2 is

TSpMdreFc(n,N , kmax)

=

∑
expr∈SpMdreFc

T (expr)

= kmax ·
{
TSpTranMat (n,N )

+ [8n3 + 3n2, 8n3 − 5n2]+ 2T (M−1n )
}

= 2kmax · T (M−1n )

+kmax[(24+ 8N )n3 + (15+ 4N )n2,

× (24+ 8N )n3 − 13n2 + 6n]. (63)

Therefore,

TSpMdreFc(n,N , kmax) = 〈TSpMdreFc(n,N )|δ〉

= O(kmaxNn3) (64)

since 〈T (M−1n )|δ〉 = O(n3). If we take the default parameter
N = 10, then

TSpMdreFc(n, 10, kmax)

= 2kmax · T (M−1n )

+ kmax[104n3 + 55n2, 104n3 − 13n2 + 6n]

= O(kmaxn3).

3) TCVC OF SpLQR
Table 3 gives the TCVC for each step of Algorithm 3(i.e.,
Algorithm SpMdreFc). Therefore, the time complexity vector
of Algorithm 3 is

TSpLQR(n,N , kmax)

=

∑
expr∈SpimLQR

T (expr)

= kmax ·
{
T (M−1n )+ TSpTranMat (n,N )

+ [6n3 + 3n2, 6n3 − 4n2]
}

+ 2T (M−1n )+ [5n2, 5n2 − 4n]

+ kmax
{
T (M−1n )+ [5n2, 5n2 − 4n]

}
= (2kmax + 2)T (M−1n )+ n3(8N + 22)kmax[1, 1]

+ n2[4kmaxN + 20kmax + 5, kmax − 3]

+ n[0, 2− 4kmax]

= O(Nkmaxn3). (65)

If we take the default parameter N = 10, then

TSpLQR(n, 10, kmax)

= (2kmax + 2)T (M−1n )+ 102kmaxn3[1, 1]

+ n2[60kmax + 5, kmax − 3]+ n[0, 2− 4kmax]

= O(kmaxn3).

4) TCVC OF SpMdreIc
The TCVC of SpMdreIc is almost the same with that of
SpMdreFc. It is easy to show that

TSpMdreIc(n,N , kmax) = 〈TSpMdreIc(n,N , kmax)|δ〉

= O(Nkmaxn3). (66)

Similarly, for N = 10 we have

TSpMdreIc(n, 10, kmax) = O(kmaxn3).

V. VERIFICATION AND EVALUATION
In order to evaluate the performance of our ESPIA for LQR
and MDRE, we constructed typical examples with AS and
compared the NS obtained by our algorithms and other popu-
lar methods. Theoretically, the proposed ESPIA are applica-
ble to not only time-invariant but also time-varying systems.
We put more attention on the time-invariant case because
it’s possible to obtain AS and analyze both the accuracy and
stability. For the time-varying case, we use the asymptotic
solution and MATLAB Simulink to verify our algorithms.
For the purpose of analyzing the performance of our

numerical algorithms, it is necessary to compare the NS and
the corresponding AS. For each fixed time step τ and time
interval [t0, tf ], the absolute error between the NS pNSi (t|τ )
and the AS pASi (t) is∣∣∣E i(t|τ )∣∣∣ = ∣∣∣pASi (t)− pNSi (t|τ )

∣∣∣ , i ∈ {1, 2, 3} . (67)

Furthermore, the maximum error for the i-th entry is
defined by

E imax(τ ) = max
t∈[t0,tf ]

∣∣∣pASi (t)− pNSi (t|τ )
∣∣∣ (68)

and the maximum error for all of the entries is defined by

Emax(τ ) = max
1≤i≤3

E imax(τ ). (69)

When t0, tf and τ are specified, sufficiently small maxi-
mum error means acceptable precision.

A. EXPERIMENTS ON TIME-INVARIANT SYSTEM
Consider the LQR problem on time interval [0, tf ] with the
following configuration of parameters

A =
[
0 1
−1 1

]
, B =

[
0
1

]
,

S =
[
2 0
0 1

]
, Q =

[
3 0
0 1

]
, R =

[
1
]
. (70)

Then the Riccati equation comes out from (8). Note that
P(t) is a symmetric matrix with three unknowns p1(t), p2(t)
and p3(t):

P(t) =
[
p1(t) p2(t)
p2(t) p3(t)

]
. (71)

Substitute A,B,Q and R into (8), then the MDRE can be
reduced to ṗ1ṗ2

ṗ3

 =
 p22 + 2p2 − 3
p3 − p2 − p1 + p2p3
p23 − 2p3 − 2p2 − 1

 . (72)
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TABLE 2. Time analysis of algorithm SpMdreFc.

TABLE 3. Time analysis of algorithm SpLQR.

The AS to (72) is

PAS (t̂) = [pAS1 (t̂), pAS2 (t̂), pAS3 (t̂)]
T
=
C1ψ(t̂)

C2ψ(t̂)
(73)

where t̂ = tf − t and

C1 =

−15 20 45 14 − 12
5 − 20 9 6 12
−5 20 27 − 10 0

 ,
C2 =

[
5 20 9 − 2 −4

]
,

ψ(t̂) =
[
1 e2t̂ e4t̂ e2t̂ cos(2t̂) e2t̂ sin(2t̂)

]T
.

On the other hand, we can solve this problem with the
numerical method under different configurations. By chang-
ing the terminal time tf , computation step τ , and the parame-
ter N in ESPIA respectively, our algorithms can be evaluated
in different perspectives.

1) IMPACT OF TIME STEP SIZE τ
The LQR problem constructed above is solved with the time
interval [t0, tf ] = [0, 5] and τ = 5.0× 10−3. Figure 1 shows
that the absolute error E i(t|τ ) < 10−11 for i ∈ {1, 2, 3}.
Moreover, E3

max(τ ) < E2
max(τ ) < E1

max(τ ) < 10−11 and thus
Emax(τ ) < 10−11 for the time step τ = 5.0× 10−3.

FIGURE 1. Absolute error
∣∣∣E i (t |τ )

∣∣∣ with t ∈ [0,5], τ = 5.0× 10−3 and
N = 10.

The difference scheme specified by (28) or (29) has the sec-
ond order accuracy [24]. We verified this fact with different
values of τ ranging from 5.0× 10−5 to 1.0× 10−1. Figure 2
shows the experimental result, where the maximum error
Emax(τ ) is presented by the solid blue line.We can see that the
error varies linearly with the decreasing of τ and the error line
is parallel to the reference curve in the logarithm coordinate
system. The parallelism verifies the second-order accuracy
very well. Meanwhile, the layout of the lines also implies the
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FIGURE 2. ESPIA is second order accuracy, i.e., Emax (τ ) = O(τ3) = o(τ2):
[t0, tf ] = [0,5], N = 5.

FIGURE 3. Impact of N (precise iteration parameter) on E i
max :

[t0, tf ] = [0,5], τ = 0.05.

accuracy level of the presented algorithm. At the right end of
the curve, we remark that under this configuration for ESPIA,
the maximum error Emax(τ ) reduces to a magnitude of 10−6

even for a large step of τ = 0.1. There is a platform at the
left end of error curve, this means that the precision cannot
be improved infinitely if we just reduce the computation step
since τ is not the unique factor that impacts the accuracy.

2) IMPACT OF PIM PARAMETER N
Further experiments were carried out to estimate the impact
of PIM. We take τ = 0.05 and [t0, tf ] = [0, 5] in this
group of experiments. Possible integer N is picked out in the
set {0, 1, . . . , 25} to configure the PIM and the computation
errors are recorded. The experimental results blue plotted
in Figure 3. Similar to the E imax-τ curve, the E imax-N curve
is composed of a slope and a platform. In the first phase,
the log(E imax) decreases linearly when N increases. While the
error keeps stable when N is greater than a certain value. The
mean error during the platform has reached the maximum
precision of double type, i.e. 15 ∼ 16 digits if we consider
the representation of data in a practical modern computer
system. Usually, the typical value for N is 5 ∼ 10. Therefore,
the time complexity of algorithms SpLQR, SpMdreFc and

TABLE 4. Maximum error E i
max (τ ): ode45 v.s. ESPIA for t ∈ [0,5] and

N = 5.

SpMdreIc will be O(kmaxn3). Moreover, the time complexity
of algorithm SpTranMat will be O(n3).

B. ESPIA VS. CLASSIC RUNGE-KUTTA METHOD
The ode45, the classic Runge-Kutta method, is a widely
used numerical tool which is provided by MathWorks’ MAT-
LAB. We have compared the ESPIA with ode45 to demon-
strate the high accuracy of the current algorithms. As shown
in Table 4, the MDRE is solved by ode45 and ESPIA with
different step configurations respectively. We counted the
error by computing the error between the AS and the NS.
Clearly, the accuracy of ode45 is improved a little when we
decrease the step. In spite of the smaller step, the accuracy
error is limited by 4 digits. On the other hand, we can get
a precision, as we discussed in Figure 2, of 12 digits when
the ESPIA is adopted. Furthermore, when τSPIM/τode45 = 10,
ESPIA still performs much better than ode45 in the sense of
precision.

C. EXPERIMENTS ON TIME-VARYING SYSTEM
Due to the difficulty in solving nonlinear time-varying
differential equations, it’s extremely difficult to find an
instance which can be figured out by analytical method.
Hence, we take asymptotical analysis and system simulation
approach with MATLAB Simulink to compare the time-
varying and time-invariant cases.

1) ASYMPTOTICAL TIME-INVARIANT CASE
The idea is to disturb the time-invariant system by adding
some terms that converge to 0. In this condition, when the
time keeps running, the perturbation vanishes rapidly and
the solution to the time-varying should converge to the time-
invariant counterpart. Consider the following time-invariant
system on time interval [0, tf ] which is the disturbed version
of (70) by adding some vanishing terms,

A =

 1
5
e−t 1−

e−
t2
2

√
2π

−1+ e−3t sin(t) 1+ e−t
2

 , B =
[
0
1

]
,

S =
[
2 0
0 1

]
, Q =

[
3 0
0 1

]
, R =

[
1
]

(74)
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FIGURE 4. Asymptotic behavior of a time-varying LQR system with n = 2,
[t0, tf ] = [0,50], τ = 0.02 and N = 10.

FIGURE 5. MATLAB simulink block diagram.

Through the previous analysis, the solution to this time-
varying system should converge to the corresponding time-
invariant solution (73). Motivated by this feature, we set the
terminal time tf = 50 and we compared the NS and AS
given by (73). The experimental result is shown in Figure 4,
where the convergency relation is well explained. Moreover,
the convergency indicates that the NS by the ESPIA is stable
in the sense of long term time since the symplectic geometric
method avoids the accumulative errors in the iterations auto-
matically.

2) SIMULATION OF TIME-VARYING SYSTEM VIA MATLAB
SIMULINK
For the assessment on the time-varying case, the NS is com-
pared with the result given by MATLAB Simulink, which
is a generally acknowledged toolbox for modeling and sim-
ulation. In this case, we still considered the asymptotically
convergent system specified by (74) except [t0, tf ] = [0, 5].
Considering the symmetry, the MDRE for this problem can

FIGURE 6. Comparison of pAS
i (t) by simulink and pNS

i (t) by ESPIA:
[t0, tf ] = [0,5], τ = 0.02 and N = 10.

FIGURE 7. |E i (t |τ )| between the AS by simulink and the NS by ESPIA:
[t0, tf ] = [0,5], τ = 0.02 and N = 10.

be transformed into a third-order system, which is similar
with (72). The block-diagram implemented with MATLAB
Simulink is shown in Figure 5. We remark that the solution
obtained by the Simulink is treated as the AS. The AS by
Simulink and the NS by ESPIA are displayed in Figure 6.
The differences between the two solutions are plotted in Fig-
ure 7, where the maximum absolute error Emax(t|τ = 0.02)
between the NS and output of the MATLAB Simulink is less
than 2.0× 10−4. This is reasonable and it is compatible with
the test shown in Table 4.

VI. CONCLUSION
In this paper, we have applied the symplectic method and
precise integration method to the time-varying LQR problem
and have obtained some interesting and important results. Our
main results are as follows:
• The n-dimensional LQR problem can be described
equivalently by n non-autonomous linear Hamiltonian
systems with the same Hamiltonian function via Heisen-
berg picture. This equivalence shows that we can not
only deal with time-varying LQR problem automatically
and no additional condition or assumption is needed,
but also take the symplectic method to find the numeric
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solutions. This equivalent description may refresh the
understanding of LQR and MDRE and the correspond-
ing methodology for seeking their numeric solutions.

• The SPIM, a combination of symplectic method and
precise integration method, is presented to compute the
symplectic transition matrices for the difference scheme
of LQR andMDRE. Particularly, SPIM can avoid invert-
ing matrices as well as keep high precision in the sense
of long-term time at the same time.

• The ESPIA has been designed according to the
T-CEIS, a symplectic difference scheme with second-
order precision, and the precise iterative process. There
are two essential merits for ESPIA: it is symplecitic
which means there is no accumulative computational
errors, and it is immune to the stiffness problem due to
the inverse of matrix in the difference scheme.

• Theoretical analysis shows that it is not necessary to
solve the MDRE if we only concerns about the optimal
input and state vectors, which simplifies the implemen-
tation of practical LQR in engineering problems.

• The time-varying MDRE with initial conditions can be
solved with ESPIA, which works well with no additional
conditions.

• The time complexity of the symplectic algorithms for
the n-th order LQR and MDRE are O(Nkmaxn3) where
N and kmax are the iteration numbers for the precise
iteration process and time duration. The typical value for
N could be 5 ∼ 10, which results the time complexity
O(kmaxn3) for the proposed algorithms for LQR and
MDRE.

• A series of illustrative examples, which covering the
time-invariant system, asymptotically time-invariant
system and the time-varying system, verified the high
accuracy and the long-term stability of ESPIA, which
gains much more precision than the classic Runge-Kutta
method.

It should be remarked that there are still some open prob-
lems to be considered in the future such as how to extend
the developed algorithm to more complicated problems,
i.e., those with non-quadratic cost functional and non-linear
system equations and how to deal with possible state and
control constraints.

APPENDIX A
HAMILTONIAN SYSTEM
W. R. Hamiltonian introduced the canonical differential
equation

d pi
d t
= −

∂H
∂qi

,
d qi
d t
= +

∂H
∂pi

, i ∈ {1, . . . , n} (75)

for problems of geometrical optics, where pi are the gen-
eralized momentums, qi are the generalized displacements
and H = H (p1, . . . , pn, q1, . . . , qn) is the Hamiltonian. Let
p = [p1, . . . , pn]T, q = [q1, . . . , qn]T, z = [pT, qT]

T
, and In

be n-th order identity matrix, then the canonical equation is

equivalent to

d z
d t
= J−1∇H (z), J =

[
On In
−In On

]
, (76)

where ∇H (z) is the gradient of H (z) and J is the 2n-th order
standard symplectic matrix.

If the Hamiltonian H (z) does not depend on t explicitly,
the system is called an autonomous Hamiltonian system, oth-
erwise it is called a non-autonomous system. If the Hessian
matrix K =

(
∂2H (z)
∂zi∂zj

)
2n×2n

is symmetric, the system will be

called a linear Hamiltonian system.

APPENDIX B
SYMPLECTIC MATRIX
A linear transform S : R2n

→ R2n is symplectic if and only
if

STJS = J . (77)

The matrix S is referred to as a symplectic matrix or
symplectic transition mapping.
Lemma 3: Let M,N ∈ R2n×2n and M is invertible, S =

M−1N , if MJMT
= NJNT, then S ∈ Sp(2n,R) ={

G ∈ R2n×2n
: GTJG = J

}
.

The proof is given in [24] and it is omitted here.
Lemma 4: Let C ∈ R2n×2n be symmetric, F(x) = I2n −

xJ−1C, the matrix V = [F(x)]−1 · [F(−x)] must be a
symplectic matrix for any x ∈ R.
Proof:With the help of J−1 = −J = JT, J2 = −I2n and

C = CT, we have

F(x) = I2n − xJ−1C = I2n + xJC

Therefore,

[F(x)]J[F(x)]T = (I2n + xJC)J(I2n + xJC)T

= (J + xJCJ)(I2n − xCJ)

= J + x2JC2
= J(I2n + x2C2)

= [F(−x)]J[F(−x)]T

LetM = F(x),N = F(−x), then

MJMT
= NJNT.

Hence V = M−1N is symplectic by Lemma 3. �

APPENDIX C
TCVC OF MATRIX OPERATIONS
With the notations of TCVC, we can summarize the time cost
of computation for some matrix operations in Table 5.
It is necessary to emphasize that the TCVC for the matrix

inversion depends on the algorithm adopted, see Table 6.
Petković [36] proved that generalized matrix inversion is not
harder than matrix multiplication. In the introduction part of
reference [35], the authors gave a complete review of the
matrix multiplication algorithm development.
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TABLE 5. Time cost of matrix operations.

TABLE 6. Time complexity for inverting real matrix A ∈ GL(p,R).

For low dimension matrix, we can find its inverse by com-
puting the determinant and adjoint matrix. For illustration,
we give the following two fundamental cases:
• For A ∈ GL(2,R), we have

A−1 =
[
a b
c d

]−1
=

1
ad − bc

[
d −b
−c a

]
.

• For A ∈ GL(3,R), we have

A−1 =

a b c
d e f
g h i

−1 = 1
det(A)

A D G
B E H
C F I


where A = ei− fh,B = −(di− fg),C = dh− eg,D =
−(bi − ch),E = ai − cg,F = −(ah − bg),G = bf −
ce,H = −(af − cd) and I = ae− bd .
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