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ABSTRACT Diffusion kurtosis has become an important magnetic resonance imaging (MRI) modality for
non-invasively mapping the microstructural variations in living tissues. Theoretically, the spatial resolution
of diffusion kurtosis imaging (DKI) can be significantly improved by acquiring data at ultra-high magnetic
fields (UHF, ≤ 7 Tesla) because of the increased signal-to-noise ratios. However, issues such as increased
susceptibility artefacts and rapid signal attenuation inherent in UHF-MRI have impeded the adoption of DKI
in research and clinics. In this paper, we developed a new image reconstruction algorithm for fast DKI at UHF.
By integrating the one-dimensional and two-dimensional principal component analysis and compressed
sensing technologies, the new algorithm can reconstruct kurtosis maps from highly undersampled data. The
technique was validated using randomly undersampled brain images with a control database of fully sampled
DKI acquisitions from healthy human participants. We compared the technique with zero-filling Fourier
transform and similar compressed sensing algorithms by evaluating the peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) between images and assessing the reproducibility of results using
the Bland-Altman method. We found that our methods can achieve at least a five-fold reduction in data
acquisition time at UHF with high image quality. Moreover, the PSNR and SSIM of five diffusion metrics
generated by our methods were superior to the other algorithms when the undersampling rate is high and the
echo time is short. The proposed method can be valuable for fast functional and dynamic-contrast imaging
techniques at 7 Tesla or higher.

INDEX TERMS Magnetic resonance imaging, ultra-high field, diffusion kurtosis imaging, principal
component analysis, compressed sensing.

I. INTRODUCTION
Diffusion kurtosis metrics quantify the degree of deviation in
water diffusion away from a Gaussian distribution. They have
been shown to be more sensitive to tissue microstructure vari-
ations than the apparent diffusion coefficient (ADC) or dif-
fusion tensor [1]–[4]. Measurements of kurtosis has become
an important tool for assessing the progressive pathological
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changes between the brain in health and disease [5], [6].
It can be estimated from magnetic resonance imaging (MRI)
data [2], [3], [7], [8] by using a high-order cumulant expan-
sion mathematical model. The generation of kurtosis maps
relies on diffusion-weighted imaging (DWI) data acquired
using more than thirty diffusion directions and at least three
diffusion weightings, or b-values [9] (i.e. diffusion kurtosis
imaging, DKI). The signal-to-noise ratio (SNR) achieved by
conventional DKI reconstruction is limited by the intrinsic
magnetisation of tissue, i.e. produced by the magnetic field
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of the scanner, leading to low-resolution diffusion kurtosis
maps in most research and clinic settings.

The development of ultra-high-field (UHF, ≥ 7 Tesla)
MRI has significantly advanced diffusion-based imaging
techniques, for example, to reveal sub-cortical structures in
human brain by diffusion tensor imaging (DTI) [10]–[13].
While the high SNR achieved by UHF-MRI scanners offers
great opportunities to improve the efficiency and image qual-
ity of DKI, the implementation of DKI at UHF has posed two
key challenges. Firstly, the relatively short transverse relax-
ation time (T ∗2 ) of biological tissues at UHF causes increased
signal attenuation at comparably long echo times (TE) that
are usually required for DKI [14]. Secondly, large b-values
(i.e. diffusion gradient amplitudes) that typically used at
UHF induce significant eddy currents, which may result in
image distortions. A substantial amount of research has been
conducted to reduce the acquisition time of DKI, mostly
by undersampling q-space, that is acquiring less number
of diffusion directions [15]–[21].However, they neglect the
importance of reducing echo time, a parameter mainly deter-
mined to encode the image with spatial information. On the
other hand, undersampling in k-space could reduce the echo
time [14], [22]. Higher k-space undersampling rate leads to
smaller echo time. This approach automatically leads to a
boost in SNR since less time is allowed for signal attenu-
ation before data is collected. Moreover, less imaging time
of UHF-DKI can provide an opportunity to average multiple
datasets in one scan session, reducing accumulated image
artefacts due to eddy currents and participant motion. One
approach is to use parallel imaging [23] which has led to great
improvements in DTI andDKI image quality at 3 T [24], [25].
However, the potentially significant increase in the specific
absorption rate of radio frequency energy in tissue limits its
application for 7 T DKI [26].

A reduction in echo time can be achieved by randomly
undersampling k-space following a given trajectory [27]–[30].
Previous research has demonstrated that by exploiting a
learning or combined sparse transforms in the compressed
sensing (CS) framework [31]–[40], high resolution images
from undersampled data can be reconstructed. Among these,
one-dimensional principal component analysis (1D-PCA)
have been utilised in obtaining T1 and T2 mappings from
highly undersampled MRI data. It learns common features
in the existing image databases to recover unsampled k-space
during fast acquisition. In the meantime, the PCA reconstruc-
tion algorithms require less human interference and smaller
databases as compared to the deep learning algorithms, which
is of particular benefits for reconstructing data acquired at
UHF as these datasets are not widely accessible. It offers great
potential to apply PCA based methods in reconstructing the
diffusion metrics from UHF DKI acquisition. The feasibility
of applying the one-dimensional principal component analy-
sis compressed sensing (1D-PCA-CS or PCA-CS) method
to measure kurtosis using a 7 T MRI scanner is therefore
investigated in this paper. To increase the reconstruction
accuracy, we propose a novel hybrid-PCA reconstruction

TABLE 1. The demographic data of the recruited participants.

algorithm by incorporating two-dimensional PCA (2D-PCA)
into the PCA-CS framework. The new algorithm is veri-
fied by varying sample rates in the participant data. More-
over, the existing DKI processing pipeline is optimised to
retain the intrinsic signal-to-noise ratio (SNR) afforded by
UHF and to correct for image distortions. The performance
of the proposed algorithm is compared with the PCA-CS
reconstruction method, and the zero-filling Fourier transform
reconstruction, and evaluated by using peak SNR (PSNR) and
structure similarity index (SSIM) values.

II. MATERIALS AND METHODS
A. DATABASE CONSTRUCTION AND KURTOSIS
ESTIMATION
This study included 22 healthy participants recruited
from universities (10 male and 12 female) aged between
18-22 years. The demographic data of the healthy Uni-
versity students were listed in Table. 1. The experiment
protocol was approved by the institutional ethics review
board, and written informed consent was obtained from
all participants prior to the scans. All MRI datasets were
acquired using a 7 Tesla research scanner (Siemens Health-
care, Erlangen, Germany) equipped with a 1Tx/32Rx coil.
Fully-sampled diffusion images were acquired using a spin-
echo echo-planar imaging (SE-EPI) sequence with the
following parameters: repetition time (TR)= 7 s, echo
time (TE)= 55 ms, image matrix = 180 × 180 × 102, reso-
lution= 1.5 mm× 1.5 mm×1.5 mm, Field of View (FOV)=
27 cm × 27 cm × 15.3 cm, Number of excitation = 1,
and multi-band factor = 2. DKI images were acquired with
diffusion weighted factors of b = 1000 s/mm2 in 30 direc-
tions and b = 2500 s/mm2 in 60 directions. Two additional
b = 0 s/mm2 images were acquired with opposite phase
encoding directions for motion correction (one with phase
encoding from anterior to posterior, i.e., A-P direction, and
the other one from posterior to anterior, i.e., P-A direc-
tion). The total acquisition time was 45 minutes for each
participant.

Each dataset was checked qualitatively, and images with
major issues (such as severe motion, signal drop out) were
excluded from the analysis. The datasets were then corrected
for artefacts caused by eddy currents, head motions, and
field inhomogeneity [41]–[44]. This pre-processing yielded
to 20 fully-sampled distortion-free datasets for the kurtosis
reconstruction.

As the molecular diffusion in biological tissues is direc-
tional dependent, the kurtosis along a specific direction was
obtained by fitting the fully-sampled datasets to the following
equation using an iteratively weighted linear least square
algorithm [45]:

S(b(n))=S(0) exp
(
−b(n)D(n)+

b(n)2D(n)2K (n)
6

)
, (1)
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where b(n) represents the diffusion weighting factor when the
gradient is applied along a specific direction, n. S(b(n)) is the
measured DKI signal, and D(n) and K (n) are the diffusion
and kurtosis values corresponding with direction n. To extend
it into a three-dimensional model, K (n) can be formulated
from elements using a 4th-order tensor notation Wijkl [1].
The 4th-order tensor has m = 81 elements, 15 of which
are independent due to the symmetry of diffusion processes
probed by DKI [7]. As a result, the estimation of the kurtosis
tensor requires DWI data along at least 15 non-collinear and
non-coplanar directions at each b value.
A higher value for K (n) indicates that water molecule

diffusion is further away from the Gaussian distribution than
a low value for K (n). The physical meanings of individual
kurtosis elements are yet to be linked with specific biological
properties of tissues due to the complexity of the 4th-order
tensor. Nevertheless, the most practical kurtosis matrices that
have been used in medical sciences are mean kurtosis (MK),
axial kurtosis (AK) and radial kurtosis (RK). MK is the mean
value of the overall kurtosis, which has no directional or
dimensional information:

MK =
1
n

n∑
i=1

K (n). (2)

AK and RK are other dimensionless quantities but contain
directional information which are defined as parallel and
perpendicular to the principal diffusion tensor eigenvector
(e1) [46]:

AK = K1, (3)

RK =
K2 + K3

2
, (4)

where Ki(i = 1, 2, 3) are the kurtosis components, K (n),
projected to three eigenvectors of the diffusion tensor [47].

Besides kurtosis values, the fractional anisotropy (FA) and
kurtosis FA (KFA) are dimensionless metrics that quantify
the degree of diffusion anisotropy in tissues, which can be
obtained through the DTI and DKI process shown in Eq. 5
and Eq. 6, respectively:

FA =

√
1
2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2√

λ21 + λ
2
2 + λ

2
3

, (5)

where λi(i = 1, 2, 3) are the orthogonal diffusion compo-
nents (D(n)) projected to three eigenvectors of the diffusion
tensor.

KFA =
||W−WI||
||W||

, (6)

where W, W and I are the normalized value of the kurtosis
tensor, the mean value ofW and the 4th rank of the isotropic
tensor, respectively. As with FA, the normalization gives
that the KFA values range from 0 (isotropic) to 1 (extreme
anisotropic).

Our data analysis mainly utilises the functions provided in
Functional Magnetic Resonance Imaging of the Brain Soft-
ware Library (FSL) 5.09 (https://www.fmrib.ox.ac.uk/fsl),

Advanced Normalization Tools (ANTs) (https://www.nitrc.
org/projects/ants) and Diffusion Kurtosis Estimator (DKE)
(https://www.nitrc.org/projects/dke). The processing
pipelines and final outputs are summarised in Fig. 1.

FIGURE 1. The DKI data processing pipeline used in this work. Fully
sampled DKI datasets with the normal and reverse phase encoding
directions were obtained according to the acquisition parameters
(described in section II. A.) firstly, followed by orientation correction and
slice alignments. The datasets were then corrected for effects caused by
eddy currents, head motions, and field inhomogeneity by the topup and
eddy functions in fsl and the N4biasfield function in Ants. After using the
diffusion kurtosis estimator software, multiple parameters were extracted
to build the fully sampled diffusion matrices databases.

B. UNDERSAMPLING PATTERNS
After the full k-space data was acquired from the 7 T MRI
scanner using the aforementioned SE-EPI sequence, a ran-
dom in-plane undersampling pattern were designed for one
participant under study to obtain the incomplete k-space data
following the strategy described in Ref. [36]. Here we chose
the undersampling along the phase encoding direction, which
inherently reduces distortions related to echo planer imag-
ing (EPI) readouts. For simplicity, the same in-plane under-
sampling patterns were applied to each slice and volumetric
undersampled DKI datasets were generated. Fig. 2 (a) shows
a mask with 20% sampling along phase-encoding direc-
tion, and Fig. 2 (b) and (c) shows the zero-filling Fourier
Transformed (FT) images of two k-space datasets acquired
using the mask and two different b-values. Compared to the
fully-sampled image (Fig. 2 (d)), the undersampled images
exhibit less distortion but more aliasing artefacts. These arte-
facts can be removed using iterative thresholding algorithms
since they are incoherent with the raw signal [48]–[50].
The kurtosis maps of the undersampled datasets were gen-
erated using the same DKE pipeline as for the fully-sampled
datasets, and are referred to as undersampled kurtosis maps.
It shall be noted that the undersampled DWI images were
not processed by using either FSL or ANT’s functions which
were only operated on the fully sampled images.

C. THE PCA RECONSTRUCTION ALGORITHMS
Both 1D-PCA [51] and 2D-PCA [52] are widely used to
analyse datasets containing elements that are described by
multiple intercorrelated variables. The objective of PCA
algorithms is to extract the main features (i.e. principal
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FIGURE 2. Under-sampling results with 5-fold acceleration:
(a) undersampling pattern [36]; (b) zero-filling FT b0 image; (c) zero-filling
FT b1000 image; (d) fully sampled b0 image. In (a), The white stripes
indicate that the corresponding k-space area was retained, and the black
stripes indicate the zero-filled k-space areas.

components) from the database and express the information
using a set of new uncorrelated variables (aka over an orthog-
onal bases), so that each element in the database can be
reconstructed using a combination of the orthogonal bases
with corresponding weighting factors. Such a multi-variate
technique has previously been used in pattern recognition,
and later extended to image compression and MRI image
reconstruction [34], [51]–[56]. In these applications, 1D-PCA
is usually combined with compressed sensing to reconstruct
either temporally- or spatially-undersampled MRI data, com-
monly referred to as PCA-CS [38], [57], [58], but the recon-
structed errors are larger than a machine learning algorithm
using 2D-PCA. To increase the reconstruction accuracy based
on PCA-CS, we propose a novel hybrid-PCA reconstruction
algorithm by incorporating the 2D-PCA into the PCA-CS
algorithm. The flowchart of 1D- and 2D-PCA are given in
details before the new hybrid-PCA reconstruction algorithm.

1) THE 1D-PCA ALGORITHM
The procedure of obtaining the principal component basis
via 1D-PCA is illustrated by Fig. 3. The database can be
images or features that are generated by other algorithms
(such as 2D-PCA in our case). Each of the d images in the
database (I1, I2, . . . , Id ) is firstly re-arranged into a vector
(EI1, EI2, . . . , EId ), thus the database can be treated as a L × d
matrix (DB). Subsequently, a covariance matrix C is con-
structed from the database matrices:

C = (DB −MB)T (DB −MB). (7)

MB is a L × d matrix whose columns are identical and equal
to the vectorised mean image:

EIm =
1
d

d∑
n=1

EIn. (8)

The elements in the covariance matrix represent the cor-
relation of each pixel among the images in the database.
The eigenvectors of 1D-PCA (U1D) can be determined by
diagonalising the covariance matrix C, and they are ordered
according to their corresponding eigenvalues. Projecting the
matrix (DB − MB) on U1D yields the principal component
matrix of the database

PC1D = (DB −MB) · U1D. (9)

The size of PC is also L × d, in which the column vectors
are referred to as the principal components [53], and they are
orthonormal to each other. Individual images in the database

FIGURE 3. Flow chart of the 1D-PCA procedure. MB is a L × d matrix in
which the columns are identical, equal to the vectorised mean image; U1D
is a d × d matrix containing the eigenvectors after eigen-decomposing
the covariance matrix C. PJ are the full set of coefficients.

can be reconstructed using the principal components together
with suitable weighting factors that are used to characterise
this image (i.e., projection coefficients PJ in Fig. 3). These
weighting factors can be determined by projecting this image
to the principal component basis.

Because most elements in PJ carries negligible weighs
(approximate zero), the corresponding principal components
can therefore be used as a sparse domain. The sparsity of this
orthonormal basis is measured by the ratio of the number of
zero-elements to the number of total elements.

2) THE 2D-PCA ALGORITHM
The 2D-PCA algorithm was proposed by Yang et al. [52]
for feature extraction and data representation, and has been
applied to reconstruct highly undersampled MRI data [36].
It directly processes the 2D matrices to extract independent
features from the image. The image covariance matrix (C)
of 2D-PCA is constructed by using the original d images
which are represented byM × N matrices:

C =
1
d

d∑
i=1

(Ii − Î)T (Ii − Î), (10)

where Ii is the i-th image and Î is the mean image matrix.
The size of the covariance matrix C is N by N where N is the
size of the column of the image. Each element inC is the aver-
age of the correlation coefficients between columns in this
set of images. By diagonalising C, a matrix of eigenvectors
of 2D-PCA (U2D) along with their corresponding eigenvalues
are obtained:

UT
2D · C · U2D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 . . . λd

 , (11)
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FIGURE 4. Flow chart of the 2D-PCA procedure. Ii and Î are the i-th and
the mean image matrices, respectively. PC1

2D, . . . , PCd
2D are the principal

components of the database.

where (λ1,2,3) are the eigenvalues. These eigenvectors in
U2D have been proven to be the optimal axis for feature
extraction [52]. The feature matrix (PCi

2D) of the i
th image

can be obtained by projecting the 2D image matrix on U2D
directly:

PCi
2D = (Ii − I) · U2D, (12)

where PCi
2D is a M × N matrix, whose columns are the

principal components of the image. After projecting all the
images in the database to U2D, a 3D dataset of principal
component matrices (PC1

2D, . . . ,PC
d
2D) is built for further

analysis. The procedure of 2D-PCA is illustrated in Fig. 4.
It is worth noting that the 2D-PCA algorithm cannot be
directly integrated in to the CS scheme as the feature space
is not sparse. However, it is possible to modify the original
PCA-CS algorithm via integrating the 2D-PCA to improve
the reconstruction accuracy.

3) THE HYBRID-PCA RECONSTRUCTION ALGORITHM
The new hybrid-PCA reconstruction algorithm illustrated
in Fig. 5 approximates the undersampled image by itera-
tively improving estimations for the missing k-space data.
The database images (1, 2, . . . , d) in Fig. 5 are from the
fully sampled kurtosis datasets (d = 20). By applying the
2D-PCA toolbox on the database, an eigenvector set of U2D
and eigenvalues are generated through Eq. (11). In the next
step, through the projection of the de-centralised b0 maps
of individual participants, we build a 3D principal compo-
nents matrix with elements being 2D principal components
PCi

2D for each participant. The 3D feature matrix is further
processed by 1D-PCA forming a 2D principal components
matrix ( PC1D) which has lower rank and higher sparsity, i.e.
DB in Fig. 3 is constructed by PCi

2D (i = 1, 2, . . . , d). Mean-
while, the undersampled kurtosis maps are projected to U2D
to generate the undersampled principal component PC ′2D.
After the sparse feature domain and undersampled principal

FIGURE 5. The framework of the hybrid-PCA reconstruction algorithm.
The black boxes are the procedures of 1D-PCA and 2D-PCA algorithms.
The reconstruction procedure started with randomly undersampling
k-space (the black lines symbolise the un-sampled areas), and iterated
until Eq. (13) is satisfied. The database images were converted to a
feature base by utilising 2D-PCA, followed by a common CS MRI
procedure which sparse transformation domain is consisted of the
principal components obtained by 1D-PCA. While PJ′ were the full set of
coefficients of projecting the undersampled image to the principal
components, PJ′′ represents the truncated set due to the l1 and l2
minimisation as is given by Eq. (13).

components PC ′2D have been generated, signal recovery is
achieved through an iterative l1 norm optimisation approach:

argmin ||8x̂||1, subject to ||9 x̂ − y||2 < δ, (13)

where x̂ and y are the estimated (reconstructed) signals and
measurements, respectively. 9 is the transform from the sig-
nal to measurements, and 8 is the sparse transform of the
signal which is PC1D in our case. δ is the threshold to control
data consistency. || · ||1 and || · ||2 are the l1 norm (sum of the
absolute elements) and the l2 norm (sum of squared elements
and then square root), respectively. In specific, a subset of
PJ′ will be chosen to form a new vector PJ′′ if PJ′ > σ .
Afterwards, an image IhPCA can be reconstructed by this trun-
cated PJ′′ vector and its corresponding principal components
PC1D. The k-space data KhPCA is then obtained through the
inverse FT of IPCA and used to update the undersampled
k-space data, Ku. An updated undersampled image Iu is then
obtained by applying the FT operator of the updated k-space
and used as the input for the next iteration. The reconstruction
procedure of this undersampled image will be iterated until
the Euclidean distance of the neighbouring two output Iu is
smaller than δ.

D. PERFORMANCE EVALUATIONS
The performances of different algorithms were evaluated
quantitatively using PSNR and SSIM which were calculated
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on the whole brain regions after skull striping. PSNR mea-
sures the intensity differences between the reconstructed and
original kurtosis images, and is defined by [59]:

PSNR = 20 log10

(
MAX
√
MSE

)
, (14)

where MSE is the mean squared error of the image and
MAX is the maximum pixel imaging intensity of the image.
Served as a performance criterion, all levels of PSNR will be
acceptable in this work. SSIM [60] estimates the differences
of two images in terms of luminance, contrast, as well as
structural changes in a user-defined window, defined as:

SSIM(a,b)=
2µaµb + c1
µ2
a + µ

2
b + c1

·
2σaσb + c2
σ 2
a + σ

2
b + c2

·
σab + c3

σa + σb + c3
,

(15)

where µa and µb represent the mean value of the original
and reconstructed images a and b, respectively. σa and σb
are the standard deviations, and σab is the covariance of the
two images. Constants c1, c2 and c3 are introduced to avoid
numerical error as denominators approach zero. By defini-
tion, SSIM is in the range−1 to 1, and equals to 1 only when
a = b. SSIM is calculated for a set of 11 × 11 windows,
which are displaced voxel-by-voxel until the entire image
is visited. The mean SSIM is used as a similarity measure
between the original and reconstructed images.

III. RESULTS AND DISCUSSION
A. DISTORTION CORRECTION
The b0 images before and after the distortion correction
are provided in Fig. 6. The artefacts in EPI images cause
by imaging field inhomogeneity is significantly higher at
UHF [60]. As shown in Fig. 6(b), the frontal lobe is stretched
in the image, the phase encoding direction of which is the
inverse of Fig. 6(a). By maximising the similarity of paired
b0 images acquired with opposite phase-encoding directions,
we estimated the phase difference between them, which can
be used to correct for these distortions [61]. As shown in
Fig. 6, the image intensity is much higher in the occipital lobe
than in the frontal lobe. This are likely caused by the bias field
effects that are introduced by the dielectric resonance artefact
and electromagnetic field non- uniformity, the severity of
which amplifies at UHF. These effects are apparent in both
Fig. 6(a) and (b), suggesting they are independent of the phase
encoding direction. The least squares B-Spline algorithm
proposed by Tustison et. al [62] were used to correct for these
distortions.

As depicted in Fig. 6(c), the post-processing procedures
removed most of the artefacts caused by eddy currents and
bias fields, enabling one to generate distortion-free diffusion
images from which kurtosis maps are derived. Fig. 7 eluci-
dates an example of theMK images at 7 T before and after the
corrections. For comparison, the same participant underwent
an additional DKI scan at 3 T (Siemens Healthcare, Erlangen,
Germany) with the same protocol/acquisition parameters as
7 T (introduced before) except that the in-plan resolution was

FIGURE 6. The b0 images of different slices from a healthy volunteer
before and after distortions. (a) acquired at 7 Tesla scanner with A-P
phase encoding direction; (b) acquired at 7 Tesla scanner with P-A phase
encoding direction and (c) after distortion correction.

FIGURE 7. The mean kurtosis (MK) images (a) without distortion
correction at 7 T; (b) with distortion correction at 7 T; (c) with distortion
correction at 3 T.

set to 2mm. The result are shown in Fig. 7(c). It is evident that
the 7 T kurtosis map contained a higher level of detail about
the brain structure than the 3 T reconstruction, an observation
consistent with previous findings [63]. In particular, the grey-
white matter boundaries inside the highlighted region were
more conspicuous at 7 T than at 3 T, refer to Fig. 7.
The corrected MK map at 7 T suppresses the distortions

in the highlighted region in Fig. 7 and revealed finer struc-
tures than observable at 3 T. These results suggest that DKI
performs better at UHF provided appropriate post-processing
is applied to the data. Furthermore, the kurtosis maps of the
same brain produced at 3 T and 7 T were visually different
after skull stripping, which indicates that a standardisation
procedure needs to be established for the DKI acquisition
and processing across different field strengths. A resolution
of 1.5 mm isotropic fully-sampled DKI maps were obtained
in this study. It is mainly because that the magnetic field
of 7 T brings high signal to noise ratio along with the
45-minute scanning. Such long acquisition time may not be
feasible for clinic use. Our fast acquisition technique and
image reconstruction algorithms enabled one to retain the
1.5 mm isotropic resolution for DKI with significant reduced
acquisition time.
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TABLE 2. Comparison of the PSNR and mean SSIM of MK maps with
different reconstruction methods in one subject (undersampling
rate = 80%).

FIGURE 8. The reconstructed maps of different diffusion metrics ((a) MK,
(b) AK, (c) RK, (d) FA, (e) KFA) from the corresponding under-sampling
cases in Fig.2. The images from left to right are the results from the
zero-filling, PCA-CS reconstruction, hybrid-PCA reconstructions and fully
sampled diffusion matrices’ maps, respectively.

B. HYBRID-PCA RECONSTRUCTION AND
REPRODUCIBILITY
To evaluate the performance of the proposed method, one
subject was randomly selected of which the fully-sampled
k-space were undersampled according to the description in
section II. B. The hybrid-PCA reconstruction algorithm was
then used to recover the upsampled k-space, and compared
with the zero-filling Fourier Transform (FT) and PCA-CS
algorithms. Table. 2 summaries the PSNR and mean SSIM
values of the MK maps reconstructed using three algo-
rithms across 30 different slices away from the isocenter.
The hybrid-PCA algorithm performed the best among the
three algorithms with the PSNR being about 31% higher than
that of the PCA-CS, which itself is about 20% higher than
that of the zero-filling FT. The mean SSIM of hybrid-PCA
was 0.88, thereby outperforming PCA-CS and zero-filling FT
by 15% and 20%, respectively. These quantitative measures
demonstrate the achievable performance of the hybrid-PCA
algorithm in the reconstruction of UHF kurtosis maps.

The new hybrid-PCA algorithm was also used to recon-
struct other diffusion metrics besides MK. In the same vein,
maps for AK, RK, FA and KFA were generated from the
same datasets (see Fig. 8 for results and Fig. 9 for reconstruc-
tion errors). The hybrid-PCA reconstruction algorithm pro-
duced visually clearer grey-white matter boundaries across

FIGURE 9. The reconstructed error images of different algorithms with
four diffusion metrics ((a) MK, (b) AK, (c) RK, (d) FA, (e) KFA) from the
corresponding slices in Fig. 8. The images from left to right are the results
from the zero-filling, PCA-CS, hybrid-PCA reconstruction and fully
sampled maps, respectively.

all diffusion metrics reported. The best grey-white matter
contrast was observed in the FA images, followed by the RK,
KFA, MK and AK images. Whereas, the best sub-cortical
grey-white matter and cerebrospinal fluid contrasts appear to
present in the KFA maps, followed by the AK, MK, RK and
FA results. This suggests that KFA and AK may be more
sensitive to tissue differences in comparison with FA, and
could potentially be used as a biomarker for diseases and
disorders affecting the cerebral cortex. This is in line with
previous finding that KFA has been demonstrated to provide
supplementary contrast to FA [64].

It is worth mentioning that one crucial element to recon-
struct the undersampled kurtosis maps is the undistorted
database as the input of the hybrid-PCA algorithms in our
study. As a result, the proposed hybrid-PCA algorithm may
have no advantages in reconstructing the kurtosis maps if
the database is of low quality (for instance acquired from
different scanners or from different age groups). Moreover,
this database excludes participants with mental diseases, and
therefore, is not suitable to be used for reconstructing dis-
eased brains. However, its performance may be improved if
the database is expanding, thus increasing the probability of
having more similar features in the database. If the database
is constructed of distorted images, one may be able to per-
formmore advanced distortion correction algorithms after the
hybrid-PCA reconstruction which is beyond the scope of the
current study.

To investigate the reproducibility of the hybrid-PCA
results, we randomly selected additional 10 datasets to per-
form image reconstruction at the undersampling rate of 80%.
The variations of PSNR and mean SSIM differences between

VOLUME 9, 2021 107971



F. Zong et al.: Fast Diffusion Kurtosis Mapping of Human Brain at 7 Tesla

FIGURE 10. The bland-altman plots of PSNR (left) and mean SSIM (right)
of four diffusion metrics ((a) MK, (b) AK, (c) RK, (d) FA, (e) KFA) maps
reconstructed from the PCA-CS and hybrid-PCA algorithms at the
sampling rate of 0.2.

PCA-CS and hybrid-PCA reconstruction algorithms across
participants are shown in Fig. 10. The horizontal (i.e. x-)
axes are the PSNR (left) and mean SSIM (right) values of
the PCA-CS method, and the vertical axes are the difference
between twomethods. The blue solid line represents themean
differences between PCA-CS and hybrid-PCA reconstruction
algorithms. The red dash line and green dotted line indicate
upper and lower limits of agreement at 95% confidence
interval between PCA-CS and hybrid-PCA reconstruction
algorithms. It can be found from Fig. 10 that 95% of the
data points lie within the limits of agreements for all four
diffusionmetrics, demonstrating that the hybrid-PCAmethod
performs better than PCA-CS in all participants studied.
For example, at the 80% undersampling rate, the PSNR of
hybrid-PCA in reconstructing the MK map is consistently
50% higher than the PSNR of PCA-CS across all participants.
The largest differences between two methods were observed
in reconstructing AK maps whereas the smallest differences
were shown in the reconstruction of RK maps.

C. HYBRID-PCA PERFORMANCE WITH DIFFERENT
SAMPLING RATES
We further tested the hybrid-PCA reconstruction algorithms
at various sampling rates. The mean PSNR and SSIM values
of MK maps at 10 different sampling rates (0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95) are reported in Fig. 11.

FIGURE 11. The mean PSNR and SSIM values of four diffusion metrics
((a) MK, (b) AK, (c) RK, (d) FA, (e) KFA) maps reconstructed from the
zero-filling FT, PCA-CS and hybrid-PCA algorithms at sampling rates of 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95, respectively.

As expected, the PSNR of the hybrid-PCA increased with
a decrease in undersampling. At all tested sampling rates,
the hybrid-PCA algorithm produced a consistently higher
PSNR than the PCA-CS or zero-filling FT algorithms. At the
90% undersampling rate, the PSNR of the hybrid-PCA was
about 32% and 51% higher than PCA-CS and zero-filling
FT, respectively. With an decrease in the undersampling rate,
the PSNR of the hybrid-PCA improved much faster than the
other two methods, and it also saturated at a much lower
sampling rate (around 60% undersampling). The PSNR of
PCA-CS saturated at the 70% undersampling rate, and the
zero-filling FT was not saturated. The PSNR differences
were much smaller at the 10% undersampling rate with the
hybrid-PCA outperforming the PCA-CS and zero-filling FT
by only 4% and 12%. At all sampling rates, the mean SSIM
of hybrid-PCA remained above 0.85, which was consistently
higher than the mean SSIM of PCA-CS or zero-filling FT.
The difference was more pronounced at high undersampling
rates (≤ 50%). At the undersampling rates of 90%, 50% and
10%, the mean SSIM value of hybrid-PCA was about 14%,
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5% and 3% higher than PCA-CS, which was about 28%,
9% and 5% higher than zero-filling FT, respectively. At zero
undersampling (i.e. fully sampling), the PSNR and SSIM
values of the hybrid-PCA algorithm are expected to be the
same as the zero-filling FT. This is because that the sampled
k-space is retained in the hybrid-PCA algorithm whilst only
the unsampled k-space is filled iteratively.

We observed similar trends in the other reconstructed dif-
fusion metrics, refer to Fig. 11 (c). For the FA and KFA maps
(Fig. 11 (d) and (e)), the PSNR decreased almost linearly with
undersampling rates, which was ascribed to the high tissue
contrast-to-noise ratio achieved in the FA map construction.
However, the contrast-to-noise ratio was found to be much
lower in the AK maps, leading to substantial fluctuations in
the PSNR (Fig. 11 (b)).

IV. CONCLUSION
This work firstly investigated the feasibility of obtaining
high-quality diffusion kurtosis maps from highly undersam-
pled k-space data with the PCA-CS techniques. The kurtosis
data were measured at an UHF MRI system with the static
field strength of 7 T. As large-scale kurtosis databases are not
widely available at 7 T, reconstruction of these maps by using
existing deep learning methods are limited. We therefore
proposed a hybrid-PCA reconstruction algorithm to recover
the mean, axial and radial kurtosis parameters, in addition to
producing diffusion fractional anisotropy and kurtosis frac-
tional anisotropy maps with higher accuracy than conven-
tional PCA-CS algorithms. It relates to a 5-fold improvement
in data acquisition times for UHF DKI. Essentially, the pro-
posed hybrid-PCA technique for kurtosis mapping integrates
1D-PCA and 2D-PCA into a CS framework, resulting in
improved PSNR and mean SSIM values than those for the
PCA-CS algorithm based on a group of randomly selected
participants.

The hybrid-PCA reconstruction algorithmwas additionally
evaluated in terms of k-space undersampling rates. We found
that the hybrid-PCA reconstruction provided superior mean
kurtosis and fractional anisotropies maps with as much as
90% undersampled k-space data. Among the five represen-
tative diffusion metrics considered, our results suggest that
kurtosis fractional anisotropy, radial kurtosis and fractional
anisotropy provided higher tissue contrast than axial kurtosis
evaluated by PSNR and SSIM values. Other diffusion metrics
obtainable by the DKI processing framework requires further
exploration and evaluation.

Several limitations must be considered in the present study.
First, the databases were acquired on a singleMR scanner and
from healthy participants with a narrow range of age, restrict-
ing the undersampled images with similar/same conditions.
Second, while the resolution of 1.5 mm isotropic for kurtosis
maps were achieved in this study, it is mainly due to high
magnetic field scanner used in the study. The hybrid-PCA
algorithm allows for less imaging time and less distortions
as induced by the high field. Third, we performed the arti-
fact corrections on the fully sampled datasets instead of the

undersampled images. Future studies may need to address
the feasibility of applying eddy and motion corrections on
undersampling k-space datasets. Fourth, only PSNR, SSIM
and error images were used for evaluating the performance
of the hybrid-PCA algorithms, other measures such as line
profiles can be applied to investigate local variations and
performance of the algorithm. Nevertheless, the protocol is
reasonable for demonstrating the feasibility of the proposed
hybrid-PCA algorithm on UHF DKI data.

In conclusion, our hybrid-PCA reconstruction algorithm is
a reliable approach for reconstructing distortion-free, multi-
parametric diffusion kurtosis and fractional anisotropy maps
from UHF DKI data. The method is able to recover more
diffusion information from undersampled data than existing
principal component analysis compressed sensing methods,
especially when reduced scan times are to be achieved via
high k-space undersampling rates. The proposed approach
can potentially be extended to reconstructing parametric
maps for other MRI modalities that share similarities with the
diffusion kurtosis imaging data collection process.
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