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ABSTRACT Multimodal biometric schemes arise as an interesting solution to the multidimensional
reinforcement problem for biometric security systems. Along with the performance dimension, these
systems should also comply with required levels for other conditions such as permanence, collectability,
and circumvention, among others. In response to the demand for a multimodal and synchronous dataset,
we introduce in this paper an open-access database of synchronously recorded electroencephalogram signals
(EEG), voice signals, and video feed from 51 volunteers, 25 female, 26 male, captured for, but not limited
to, biometric purposes. A total of 140 samples were collected from each user when pronouncing single digits
in Spanish, giving a total of 7140 instances. EEG signals were captured using a 14-channel Emotiv Epoc
headset. The resulting set becomes a valuable resource when working on unimodal biometric systems, but
significantly more for the evaluation of multimodal variants. Furthermore, the usefulness of the collected
signals extends to being exploited by projects in brain-computer interfaces and face recognition to name
just a few. As an initial report on data separability of the related samples, five user recognition experiments
are presented: a face recognition identifier with an accuracy of 99%, a speaker identification system with
accuracy of 94.2%, a bimodal face-speech verification case with Equal Error Rate around 2.64, an EEG
identification example, and a bimodal user identification exercise based on EEG and voice modalities with
a registered accuracy of 97.6%.

INDEX TERMS Biometrics, face recognition, speaker recognition, electroencephalography, brain—computer
interfaces, image classification, multiple signal classification, classification algorithms.

I. INTRODUCTION

Biometrics, as “the measuring and statistical analysis of peo-
ple’s physical and behavioral attributes” [1] for individual
recognition, has become the reference solution in terms of
security [2], especially when compared to other validation
methods such as token presentation or password verification.
However, several articles, such as [3]-[5] and [6] among
others, have manifested the limitations and weaknesses of
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biometric systems based on a single physical trait or biosignal
to perform recognition. This trait or biosignal is known as the
system’s modality, with each modality producing different
behavior and performance. For example, iris-based systems
are considered to provide some of the best performance lev-
els, even though they may be affected by pupil dilation and
gaze angle [7]. Furthermore, iris biometrics may be vulnera-
ble to spoofing such as the use of textured contact lenses [8].

The most desirable performance of a biometric system
is described in terms of its capacity to 1) always accept
a legitimate user while rejecting all impostors (verification
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systems) or 2) correctly identify the presenting users with the
registered identities in the database (identification systems).
Many metrics have been defined to evaluate how adequate a
system is. Among the most widely used metrics are Accu-
racy, False Acceptance Rate (FAR), False Rejection Rate
(FRR), Receiver Operating Characteristic (ROC), and Equal
Error Rate (EER). All these metrics describe the system’s
performance according to efficiency [9]. However, efficiency
is not the only characteristic defining a biometric system.
Many authors, such as Meng et al. [10], agree in defining a
wider classification, including the following seven desirable
characteristics: Universality, Uniqueness, Permanence, Col-
lectability, Performance, Acceptability, and Circumvention.
Hence, even though efficiency as a metric for performance
may be considered the most important characteristic in most
cases, a high-performance system will have reduced utility in
a security application if the modality can be easily forged or if
it lacks universality. Unfortunately, sources such as [10], [11],
and [12] fail to provide a quantitative method for attributes’
evaluation other than performance. To overcome the limi-
tations inherent to single modality systems and in order to
take advantage of different modalities’ strengths, the use of
multimodal biometric systems has been proposed and tested
as a reliable alternative [13].

When approaching the design of a multimodal biomet-
ric system, a critical decision is the selection of the most
suitable modalities. There is not a universal solution for all
recognition systems. Since each modality presents different
attribute-compliance levels, the adequate combination should
be selected considering, among other factors, the reinforce-
ment of one modality’s weakness by another modality’s
strength and always focusing on the specific application for
which the system is being designed.

This paper presents a multimodal dataset, intended to
be used for multimodal biometric system evaluation. Three
modalities were considered due to their particular character-
istics: voice, video feed, and electroencephalography (EEG)
signals. Similarly as discussed in [14] for audio-visual
biometric systems, the selection of the aforementioned
modalities aims to take advantage *“...of complimentary bio-
metric information present between voice and face cues”,
and goes a step beyond by cross-relating to EEG bio-
metric information present in the process of generating
visually-evoked potentials, imagining speech and uttering-
articulation. A total of 51 users volunteered, all Spanish-
speaking Latinos, 26 males and 25 females, with ages
between 16 and 61 (x = 29.75, 0 = 10.97); 43 claimed to
be right-handed, 5 left-handed and 3 declared being ambidex-
trous. 45 volunteers are Mexican, 2 Ecuadorians, and 1 each
from Colombia, Costa Rica, Venezuela, and Cuba.

In terms of utility, our dataset can be used for evalu-
ation of unimodal biometric systems (Text-dependent and
Text-independent for voice, Visually-evoked potentials and
uttered speech for EEG, static and dynamic face recogni-
tion, to cite some examples), for bimodal systems (static
and dynamic Audio-Visual biometric systems, EEG-Voice
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password-based systems, etc.) as well as for the proposed
three-modal experiment. But the technical contribution of this
work extends beyond the borders of biometrics to touch fields
such as brain-computer interfaces (BCI) and automated-lip
reading and, in a more general sense, applications where
voice, video, and EEG samples are required and digit-limited
vocabulary is not a restriction. The dataset can be openly
accessed at http://dx.doi.org/10.17632/s7chktmb6x.1 [15].

Il. LITERATURE REVIEW AND RELATED DATASETS

As the EEG modality becomes more important in the field
of biometrics, the number of relevant studies increases. This
section presents some of the works that in our opinion reflect
outstanding and useful aspects in the development of our
research.

Many multimodal datasets that include EEG signals
were originally conceived to perform emotion recognition
functions. DEAP, a database for emotion analysis using phys-
iological signals [16], presents EEG and peripheral phys-
iological signals for 32 users (ages between 19 and 37,
50% female) and video recordings for 22 of the involved
subjects. The reported peripheral signals are galvanic skin
response (GSR), respiration amplitude, skin temperature,
electrocardiogram, blood volume by plethysmograph, elec-
tromyograms (EMG) of Zygomaticus and Trapezius muscles,
and electrooculogram (EOG). The participants were asked to
watch 40 one-minute music video segments. Each segment
was rated by the participant’s self-assessment of the levels
of arousal, valence, liking, and dominance induced by the
exposition to each music video segment. Hence, given the
40 samples for the 22 video-included users, a total of 880 one-
minute instances of the mentioned signals are available. This
data set, as well as MAHNOB-HCI [17], are widely used and
are considered as references in the area.

Similarly, Rayatdoost et al. [18] reported an approach for
emotion recognition and the collection of the required data,
namely EEG signals from 64 channels, GSR, respiratory
effort, EOG, and EMG signals, as well as video records
of eye gaze and facial expressions for 60 subjects (ages
between 17 and 67, 31 male). As for the previously mentioned
datasets, volunteers were exposed to 1-2 minutes-long video
excerpts (in this case, from commercial movies and user-
generated material) and were asked to report their emotions
for each clip. 40 clips were used for each user, giving a total
of 240 instances. However, a high level of noise was reported
for 13 users, reducing the used set to 47 out of the 60 available
volunteers’ data. Besides, no public access to the data is
explicitly found in the reported paper.

VoxCeleb, as reported in [19], represents an impressive
effort to curate datasets involving voice and video. So far, this
project has made public two datasets: VoxCelebl [20] and
VoxCeleb2 [21], both originally meant to perform speaker
recognition experiments. These sets use a fully automated
pipeline to extract utterances from YouTube videos. Vox-
Celebl selected 1,251 celebrities (690 male) from which
over 100,000 utterances are collected (with an average
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of 18 videos and 116 utterances per person of interest). Vox-
Celeb?2 increases the volume of the first version by a factor
greater than 5, gathering a total of 1,128,246 utterances from
6,112 persons of interest extracted from 150,480 YouTube
videos.

On the other hand, intended for BCI purposes, Ref. [22]
introduced an open-access database of EEG signals recorded
for imagined and pronounced speech of two sets of phonetic
emissions: the first one containing the Spanish vowels /a/, /e/,
/i/, o/ and /u/; the second for the Spanish commands “arriba”
(up), “abajo” (down), “derecha” (right), “izquierda” (left),
“adelante” (forward) and “atras” (backward). Their col-
lected data gather audio and EEG registers for each word
on the vocabulary repeated 50 times for 15 subjects; a
six-channel acquisition system was used for the EEG signals.
This database has already been tested by the authors of this
paper for biometric purposes [23].

The novelty in the database that we present in this article
resides in the selection of the three involved modalities and
the possibility of combining them in synchronous or asyn-
chronous biometric schemes. In addition, it opens the door
to linking cognitive studies for biometric and non-biometric
applications. To the best of our knowledge, this is the first
multimodal dataset based on EEG, voice, and video mainly
intended for biometric purposes.

IlIl. ACQUISITION PROTOCOL

The experiment protocol consisted of the capture of video,
voice, and EEG signals while uttering a sequence of digits.
Prior to the recording session, a 14-channel Emotiv' Epoc
wireless EEG headset was carefully set on each user. Before
the start of the recording session, the user was instructed on
the procedure and then taken to the recording room. An ane-
choic chamber was conditioned to minimize the possible
presence of acoustic noise in the voice registers. The volun-
teers sat in front of a screen at a distance of approximately
one meter.

Three computers were used for data acquisition,
one for each modality. Markers were emitted by the
number-presenting computer (Cl) and communicated to
the EEG (C2) and video (C3) recording computers using
Arduinos connected to them. The proposed array is shown
in Fig. 1.

Two different sessions were recorded for each user. For
both of them the sequence of events was established as fol-
lows: 1) The volunteer is asked to wait for an acoustic signal
indicating the start of the recording session. 2) After the
signal is emitted, the user must stay as still as possible, while
relaxing with eyes closed for a period of 10 seconds, until
the next acoustic signal. 3) Now, with eyes opened, the user
must stay relaxed for a second period of 10 seconds. 4) After
this, another signal is emitted and a series of non-sequential
whole numbers between 0 and 9 is presented on the screen
and the user has to pronounce the displayed number. The
difference between sessions lies in the length of the numbers’
series: for the first session, ten digits are presented, whilst
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FIGURE 1. Hardware disposition for signal acquisition.

for the second, four digits per chain are presented. 5) After
a series is completed, the user is granted a relaxation period
of 5 seconds to breathe and swallow. 6) The next series is
presented. 7) steps 4 to 6 are repeated until 10 sequences are
completed. This procedure is depicted in Fig. 2.

IV. MODALITIES AND PHYSICAL RESOURCES

This section describes the functions performed at each
recording station (C1l, C2, and C3 in Fig. 1) and pro-
vides some relevant information on the physical resources
employed for the task.

A. VOICE SIGNAL

Uttered digits were recorded at an anechoic room using a
Sennheiser = MD 421-1I Cardioid Dynamic Microphone and
aYamaha' = MGO06X Audio Mixing Console connected to the
audio input of computer C1. As shown in Fig. 1, C1 controls
the audio signals, visual instructions, and digits’ display at
the anechoic room; it also generates event-synchronization
markers to be read by computers C2 and C3.

These tasks are coded using a Matlab script. At the
beginning of the REC stage, a marker with code 99 is emitted
via USB port to this computer’s Arduino, which is defined
as the master in the I2C bus configuration. The marker code
will be read from the bus by the other stations’ Arduinos to be
incorporated into their respective signals, as will be explained
in further sections. The start-beep signal is also emitted and
the instruction to “remain relaxed with eyes closed until next
beep’’ is shown in the monitor. After ten seconds, a second
marker, with code 89, is generated at the beginning of the
relaxed with eyes opened (REO) stage, a beep commands the
volunteer to open his/her eyes while the screen message is
changed to show the present stage. Ten seconds later, a beep
sound is emitted to announce the beginning of the uttering
stage, and digits are presented on screen, changing after
two-second intervals; for each digit, a marker is generated,
coded 1-9 according to the digit presented and coded 10 when
zero is presented.

As a result, 20 monoaural audio files are created per user,
one for each series of digits, with a sampling frequency
of 16 kHz. If digit separation is performed later, a total
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FIGURE 2. Protocol timing diagram. The number of digits n of the sequence is 4 or 10.

of 140 number samples can be obtained per user; 40 from
the 4-digit sequences and 100 from the 10-digit sequences.
Considering all 51 users, a total of 7140 audio files were
generated. Table 1 shows the sequences presented for 4-digit
sessions and 10-digit sessions.

TABLE 1. Digit sequences for (a) 10-digit series (b) 4-digit series.

Series dl  d2 d3 d4 d5 d6 d7 d8 d9 di10
1 7 9 0 2 1 5 8 6 4 3
2 1 7 0 3 8 4 6 5 2 9
3 6 8 2 5 3 0 9 1 4 7
4 9 4 2 1 0 3 8 7 5 6
5 2 0 9 1 3 7 5 4 6 8
6 8 6 1 5 7 0 3 9 2 4
7 3 5 6 8 1 2 4 7 9 0
8 4 3 5 6 9 7 0 8 2 1
9 0 8 2 1 3 9 7 4 6 5
10 5 3 1 6 7 0 4 9 8 2
@)

Series dlI d2 d3 d4

1 1 2 3 4

2 5 3 2 9

3 1 0 7 3

4 9 6 4 7

5 5 4 2 1

6 8 3 9 6

7 7 0 6 8

8 9 5 2 3

9 0 6 4 7

10 8 1 5 0

®)

Fig. 3 shows an example of a graphic representation for one
audio file (e.g., F002_01G04_1.wav). As previously estab-
lished, 20 audio files were generated by each user giving a
total of 1020 files for the 51 users. The nomenclature for these
files is conformed as shown in Fig. 4.

B. EEG SIGNAL

EEG signals were transmitted from the headset to terminal
C2 via Bluetooth. Markers emitted by terminal C1 were read
from the Arduino via the USB port. Both markers and signals
are incorporated into the output files. European Data For-
mat (EDF) files were created by Emotiv’s Headset TestBench
software. Two files per user are generated, one for the 10-digit
series and another for the 4-digit sequences. These files were
also converted to comma-separated values (CSV)-format files
using the same TestBench software and they are available
as well, along with the EDF files, for reference and use.
Signal segmentation can be easily achieved to obtain REO,
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Wavetorm: FOD2_01G04_1.wav, Label: FI02_01G04_1.lab, Num samples 128001, HTK sampling rate: 1

.

funo| suence  [aos] SILENCE [tres] SILENCE [euatro]

FIGURE 3. A voice sample showing a four-digit Spanish-pronounced
sequence uttered by user F002.

Gender Id.
F: Female
M: male Session Series Index

F002 01G04._1.wav

Subject Index
1..50 for F
1..51 for M

Series Id.
G04: 4-digit series
G10: 10-digit series

FIGURE 4. Nomenclature configuration for the generated audio files.

REC, and single-digit elements using the markers as segment
boundaries.

As mentioned before, Emotiv’s Epoc is a 14-channel, wet
electrode wireless headset. Under the 10-20 electrode place-
ment system, the following channels are available: AF3, F3,
F7, FC5, T7, P7, O1, 02, P8, T8, FC6, F8, F4, and AF4.
Signals are generated with a sampling rate of 128 samples
per second. The information contained in the EDF and CSV
files can be consulted on the manufacturer’s website [24].
Fig. 5 shows the structure for the files nomenclature.

Gender Id.
F: Female
M: male  Session Date stamp
021\iGO4\ dd.mm.y yyhh.mm.ssledf

Tlme stamp

Subject Index Senes Id.

1..50 for F G04: 4-digit series
1..51 for M G10: 10-digit series

FIGURE 5. Nomenclature configuration for the generated EDF files.
G04 files contain the 10 four-digit series, whilst G10 contain the
10 ten-digit ones.

Fig. 6 shows a time frame for one particular signal cap-
ture, as presented by Emotiv’s TestBench software. On the
upper-left, a representation of the position of the electrodes is

VOLUME 9, 2021



J. C. Moreno-Rodriguez et al.: BIOMEX-DB: Cognitive Audiovisual Dataset for Unimodal and Multimodal Biometric Systems I E E EACCGSS

B Emotiv TestBench v1.5.03 @)=
Application  Tools  Marker  Help
Contact Quaity EEG |FFT | Gye | DmaPacksts
Channel Soscna -
20 Huv
Max Ampitude u | = I | I | 1
0 = luv A 1 = | i | L |
P Bl e T W e el

= MN«WMWW
Auto Scale | et 1 1 1
| ] | | ] ) | |

3
F

S
1

[ Al Channels ___,_,wﬁ.,__‘,_,_v}f_.»«-\_- BT i T P e e |
= 1 . I ! 1 1 - I |
Samping Raste /A 2 A it IV o A s AR AS N VR AR A A A AN AN e ta
£l 1 1
i @r 7 |
T —t {
Evert Log ¥ FCS e 4 ! : {r
I | A I | k| |
27 e NP oV I P SeSE  fpve Sor
o et o
[ o2 | |
:7‘ - = ' = 4 1} ¥l " = ‘v' | I ] i .‘\
L~ uﬁ_MWMA It i g N M\”A e R Bt
1 1 ™ 1

[«

Load Deta Sample

FIGURE 6. EEG signal representation for a given sample from user F021. Second four-digit sequence shown.

shown. Green-colored circles stand for electrodes with good are unavailable for 12 users. Table 2 summarizes the dataset
contact. On the right side, a representation of the channels’ information and content.

signals along time is presented; the red pulses at the bottom

of the graphic represent the markers for the digit presentation TABLE 2. Dataset content summary.

on screen.

Files
C. VIDEO SIGNAL Modality in[cllslféz d per File description
Computer C3 receives the video stream from the webcam = . —
located at the anechoic room and the markers generated by Serrlfeglz Eggdszsqf;igﬁgn
computer C1. Markers are embedded into the video file and EEG 51 »  aREC sequence. The other
appear in the bottom left corner. As for EEG signals, two file includes ten 4-digit series,
.avi-formatted files per user are created, with a frame size a REO and a REC sequence.
of 1280 x 720, and at a frame rate of 8fps, one for the 10 files include 10-digit
10-digit sequence and one for the 4-digit series. Fig. 7 shows Voice 51 20  scries audios and 10 files

. . include 4-digit series audios.
a sample of one frame from a captured video. Along with
One file includes the video

the .avi files, Matlab’s .mat files with time-stamped markers di f th 10-digi
Video 39 5 recordings of the ten 10-digit

are included. Due to users’ privacy restrictions, video signals series and the other the video
feed of the ten 4-digit series.

For wvalidation purposes and initial study on data
separability, the following sections present three uni-
modal identification experiments (one for face recognition,
a speaker identification example, and an EEG identifier)
and two bimodal biometric identification exercises, based on
face-voice and EEG-voice.

V. EXPERIMENTAL EVALUATION, CASE I: FACE-VOICE
RECOGNITION

A. INTRODUCTION

An initial set of experiments using BIOMEX-DB aiming
to explore data characteristics is presented as follows. The
first group of experiments is based on Deep Learning mod-
els (DL), which have been proven to provide very good

FIGURE 7. An example of a video frame during the presentation of
number eight for user M003. results in a variety of applications in the fields of artificial
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intelligence, machine learning, and pattern recognition [25],
and specifically in data fusion [26]. DL techniques have been
successfully used in unimodal biometric approaches using
several modalities such as speech [27], ECG [28], or iris [29],
as well as in multimodal cases using a variety of traits such
as iris/face [30], or fingerprint/ECG [31]. A relevant charac-
teristic of DL models is their ability to extract and process
features directly from raw biometric data [32], although more
complex information can be extracted using deeper models,
as is the case with deeply learned residual features [33].
In general, DL techniques achieve very high performance
in both identification and verification cases [14], but with the
associated complexity cost.

In the first part of this section, we present a unimodal
recognition experiment based on CNNs, using the dataset
BIOMEX-DB with face information. In the second part,
face and voice modalities are fused following a CNN-based
bimodal approach at a feature level. Results on identification
and verification modes are described in subsection B for
face recognition. Section C presents the results of a verifica-
tion exercise for the fused modalities. A variety of speaker
recognition systems can also be designed from the voice
data; further experiments contemplate the use of a recognition
framework based on the pronunciation of a personalized pass-
word formed by a certain combination of digits, combining
speech and speaker recognition as a cancellable biometric
scheme.

B. FACE RECOGNITION

The experiment consists of a unimodal face biometric system,
with a Convolutional Neural Network. The CNN architecture
is described in table 3. The images were obtained from the
BIOMEX-DB database using 39 subjects. In this experi-
ment, 30 still frames per subject were extracted at random
moments from each video. The images were preprocessed
through a series of operations including tilt alignment, color
to grayscale conversion, and scaling down to 100 x 100 pixels.
The available dataset was further divided into three parts to
be used for training, validation, and testing, respectively. Cat-
egorical cross-entropy was used as the required cost function.
The training was carried out with a learning rate of 0.001, and
network convergence was reached after 30 epochs on aver-
age. The CNN output delivers the probability that the image
under analysis corresponds to the pattern learned during the

TABLE 3. Face recognition CNN architecture.

Layers Filters/Neurons ~ Size  Activation fcn
Conv2D 32 3x3 ReLu
Batch Norm - - -
Max pooling - 2x2 -
Conv2D 64 5x5 ReLu
Batch Norm - - -
Max pooling - 2x2 -
Fully connected 512 - ReLu
Batch Norm - - -
Fully connected 39 - Softmax
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training stage. The label with the highest probability value is
considered the best match for a specific trial.

The evaluation corresponding to the verification mode
was carried out with a feature extraction process using
the last CNN hidden layer. Therefore, each image in the
database is represented by a feature vector with a dimension
of 512 elements, and the whole set is used for training the
network. An impostor’s set was obtained from the Yale-
faces dataset [34]. Cosine distance was used as the score
to determine whether an input sample corresponds or not
to the claimed identity. Testing on identification mode was
performed using a similar approach over the available dataset.
The CNN assigns an identity to each subject according to
the minimum Cosine distance rule. In identification mode,
the results obtained when a set of 100 trials was executed
indicated an accuracy with a mean of 99.51% and a standard
deviation of 0.69. The results corresponding to the verifi-
cation mode with a set of 10 trials exhibited a mean EER
of 1.08% with a standard deviation of 0.19.

C. FACE-VOICE BIMODAL BIOMETRICS

A set of bimodal face-speech experiments is then carried out
following a direct concatenation of feature vectors previously
normalized, aiming to have initial results which can be used
for comparison purposes in further approaches. For that pur-
pose, the CNN architecture, as well as training and testing
conditions, are kept the same as in the previous experiment.
Table 4 summarizes the average verification results.

TABLE 4. Bimodal verification results.

EER (%)

SNR (dB) —gro——
0 739 055
5 271 034
10 199 0.18
15 175 025

Noiseless 2.67 0.35

VI. EXPERIMENTAL EVALUATION, CASE li: EEG-VOICE
RECOGNITION

A. EXPERIMENT DESCRIPTION

There is a consensus among many authors, such as [35],
on the levels at which the fusion of multimodal systems can
be carried out. Under a biometric system pipeline, fusion can
be applied at sensor level (aka signal level), feature level,
score level, rank level, and decision level. This experiment is
part of a performance analysis, intended to evaluate accuracy
variations across different fusion levels for an EEG/voice-
based bimodal biometric system. Results from a previous
experiment with fusion at signal level can be looked at in [36].
As a subsequent step, fusion at feature level is presented here,
according to the scheme depicted in Fig. 8. A multiple clas-
sifier performance evaluation is considered and presented for
comparison purposes. As in the previous section, unimodal
cases are evaluated before the execution of the bimodal one.

VOLUME 9, 2021
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FIGURE 8. Block diagram of the proposed system with fusion at feature
level.

To preserve gender balance, 50 users are included in the
experiment (FOO1 to FO25 and MOO1 to M025). A single-digit
utterance exercise is proposed. Therefore, the sample set is
made up of a total of 7,000 digit instances (140 per user).
For the bimodal case, each audio file is associated with its
respective EEG file. The individual digits are extracted from
the original database in the signal conditioning stages.

B. EEG RECOGNITION

As mentioned in previous sections, the available EDF
files contain information from 14 EEG channels of digit
sequences. The first step of signal conditioning consists of the
selection of channels. 12 out of the 14 available channels are
selected, namely: F3, F7, FC5, T7, P7, Ol1, O2, P8, T8, FC6,
F8, and F4; the decision to dispense with channels AF3 and
AF4 was due to their content of eye-blinking artifacts and to
a certain degree to decrease computational cost. High-pass
filtering with a cut-off frequency of 1 Hz is applied to the
12 signals, followed by low-pass filtering with a cut-off fre-
quency of 50 Hz. Next, a Common Average Reference (CAR)
re-reference is applied to the signals. Finally, segmentation
of the digit sequences to obtain single-digit samples and
discarding the REO, REC, and relaxing pause segments is
achieved employing a Matlab script using the digit markers
contained in the EDF files as segment delimiters.

Feature extraction methods for EEG signals can be classi-
fied into three main types: time-domain, frequency-domain,
and time-frequency domain [37]. For this experiment, the fea-
ture vector for the processed EEG signals is formed by
the Power Spectral Density (PSD) of the beta and gamma
sub-bands for all the selected channels, each one segmented
on five windows with 50% overlap. Therefore, for 12 chan-
nels, the resulting feature vector has a length equal to 120.

Several classifiers were tested in an identification task to
validate the suitability of the selected feature vector, with
75% of the samples reserved for training and the remaining
for testing, with a 5-fold validation scheme. The most relevant
results are shown in Table 5.

C. SPEAKER IDENTIFICATION

In terms of signal conditioning for the voice files,
the 20 sequences of digits from each user are first segmented
to obtain 140 audio files of 2.5 seconds length for each of the
subjects. After the segmentation process, each audio file is
normalized and then processed by a voice detection function
which eliminates the silences in order to extract the features
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TABLE 5. Classifiers’ accuracy comparison for EEG features.

Accuracy (%)

Classifier
Mean o

ANN 92.8  0.67
Cubic SVM 89.4 0.12
Quadratic SVM 89.4 0.18
Linear SVM 88.2 0.12
Medium Gaussian SVM 83.8 0.10
Weighted KNN 77.8 031
Fine KNN 73.8 0.27
Subspace discriminant 69.7  0.24
Cosine KNN 67.8 0.31
Linear discriminant 67.1 0.34

TABLE 6. Classifiers’ accuracy comparison for voice features.

Accuracy (%)

Classifier
Mean o

ANN 94.2  0.64
Fine KNN 92.0 0.17
Weighted KNN 90.7 0.21
Medium gausian SVM  90.5  0.19
Cubic SVM 90.1  0.27
Quadratic SVM 88.9 0.22
Cosine KNN 88.2 0.13
Linear SVM 68.7  0.23
Subspace discriminant ~ 63.0  0.21
Linear discriminant 60.9 0.16

TABLE 7. Classifiers’ accuracy comparison for fused features.

Classifier _Accuracy (%) _

Mean o
ANN 97.6  0.63
Quadratic SVM 96.6 0.12
Cubic SVM 96.3 0.18
Linear SVM 96.0 0.10

Medium Gaussian SVM~ 94.7  0.08
Subspace discriminant 94.3 0.10

Linear discriminant 93.8 0.08
Fine KNN 93.7 0.10
Weighted KNN 92.5 0.24
Cosine KNN 91.2 0.23

in the subsequent stages exclusively from voice segments of
the signal. Once treated, for the resulting voice files, Mel
frequency cepstral coefficients (MFCCs) and their respective
delta coefficients are calculated. A Hanning window of 40 ms
with 20 ms overlap is used for the extraction of 20 MFCCs
and 20 delta coefficients, for a total vector length of 40. The
number of feature vectors (windows) per file is variable since
only the voice segments are considered for the extraction
process, being the shortest one a five-windows sample and
the longest, a 94-windows one.

By the addition of a fixed-length feature vector restriction,
only the first five windows of all the samples are considered
to obtain 200-long coefficients vectors, resulting from the
concatenation of the 5 MFCCs vectors. As for the EEG
case, the resulting set is tested with several classifiers under
the same conditions with 75% of the samples reserved for
training and under the same validation scheme. Results are
shown in Table 6.
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TABLE 8. Classification report for the feature-level fusion analyzed cases, using ANNs as classifiers.

EEG Voice Fusion
User Precision Recall Fl-score Support | Precision Recall Fl-score Support | Precision Recall Fl-score  Support
F001 1 1 1 34 0.917 0.971 0.943 34 0.971 1 0.986 34
F002 0.854 1 0.921 35 0.939 0.886 0.912 35 1 0.914 0.955 35
F003 1 1 1 35 1 0.886 0.939 35 0.946 1 0.972 35
F004 0.879 0.829 0.53 35 0.895 0.971 0.932 35 1 0.914 0.955 35
F005 0.914 0.914 0.914 35 0.833 0.714 0.769 35 1 0.857 0.923 35
F006 0.97 0.914 0.941 35 1 1 1 35 0.919 0.971 0.944 35
F007 0.941 0.914 0.928 35 0.97 0.914 0.941 35 0.895 0.971 0.932 35
F008 0.919 0.971 0.944 35 0.868 0.943 0.904 35 0.972 1 0.986 35
F009 0.972 1 0.986 35 1 0.914 0.955 35 0.972 1 0.986 35
FO010 0.971 0.971 0.971 35 0.938 0.857 0.896 35 0.946 1 0.972 35
FO11 0.971 0.971 0.971 35 0.97 0914 0.941 35 0.972 1 0.986 35
F012 0.938 0.857 0.896 35 0.882 0.857 0.87 35 0.944 0.971 0.958 35
F013 0.969 0.886 0.925 35 0.971 0.943 0.957 35 1 0.971 0.986 35
FO14 0.972 1 0.986 35 0.892 0.943 0.917 35 1 0.943 0.971 35
FO15 1 0.943 0.971 35 0.972 1 0.986 35 1 1 1 35
F016 1 0.971 0.986 35 0.919 0.971 0.944 35 1 1 1 35
F017 1 0.971 0.986 35 0.861 0.886 0.873 35 1 0.943 0.971 35
FO18 1 0.943 0.971 35 0.944 0.971 0.958 35 0.944 0.971 0.958 35
F019 0.969 0.886 0.925 35 0.861 0.886 0.873 35 0.944 0.971 0.958 35
F020 0.795 0.886 0.838 35 1 0.943 0.971 35 0.972 1 0.986 35
F021 0.97 0.914 0.941 35 0.889 0.914 0.901 35 1 0.943 0.971 35
F022 1 1 1 35 1 0.971 0.986 35 0.972 1 0.986 35
F023 1 1 1 35 0.972 1 0.986 35 0.944 0.971 0.958 35
F024 0.914 0.914 0.914 35 0.829 0.971 0.895 35 0.921 1 0.959 35
F025 0.939 0.886 0.912 35 0.892 0.943 0.917 35 0.971 0.943 0.957 35
MO001 0.917 0.943 0.93 35 1 1 1 35 1 1 1 35
MO002 0.946 1 0.972 35 0.895 0.971 0.932 35 1 0.943 0.971 35
MO003 0.972 1 0.986 35 0.895 0.971 0.932 35 1 1 1 35
MO004 0.816 0.886 0.849 35 0.921 1 0.959 35 0.97 0.914 0.941 35
MO005 0.838 0.886 0.861 35 0.971 0.943 0.957 35 1 0.971 0.986 35
MO006 1 0.914 0.955 35 0.914 0.914 0.914 35 0.971 0.971 0.971 35
MO007 1 0.857 0.923 35 1 0.971 0.986 35 1 0.943 0.971 35
MO008 0.875 1 0.933 35 0.971 0.971 0.971 35 0.972 1 0.986 35
MO009 0.943 0.943 0.943 35 1 1 1 35 1 1 1 35
MO10 1 1 1 35 1 0.829 0.906 35 1 1 1 35
MO11 0.895 0.971 0.932 35 0.971 0.943 0.957 35 0.944 0.971 0.958 35
MO12 0.727 0.914 0.81 35 1 0.943 0.971 35 1 1 1 35
MO13 0.944 0.971 0.958 35 0.943 0.943 0.943 35 1 1 1 35
MO14 0.917 0.943 0.93 35 0.966 0.8 0.875 35 1 0.943 0.971 35
MO15 0.732 0.857 0.789 35 1 1 1 35 0.972 1 0.986 35
MO016 0.906 0.829 0.866 35 0.971 0.971 0.971 35 1 0.971 0.986 35
MO17 0.971 0.943 0.957 35 1 1 1 35 0.972 1 0.986 35
MO18 0.88 0.629 0.733 35 0.972 1 0.986 35 0.971 0.971 0.971 35
MO19 0.886 0.886 0.886 35 0.971 0.971 0.971 35 1 0.971 0.986 35
M020 0.914 0.914 0.914 35 0.972 1 0.986 35 0.972 1 0.986 35
MO021 0.97 0.914 0.941 35 0.971 0.971 0.971 35 1 1 1 35
M022 0.944 0.971 0.958 35 1 0.914 0.955 35 1 1 1 35
M023 0.97 0.914 0.941 35 0.81 0.971 0.883 35 0.921 1 0.956 35
MO024 0.919 0.971 0.944 35 0.941 0.914 0.928 35 1 1 1 35
MO025 0.824 0.8 0.812 35 0.921 1 0.959 35 0.971 0.971 0.971 35
Accuracy 0.928 1749 0.942 1749 0.976 1749
Macro avg 0.931 0.928 0.928 1749 0.944 0.942 0.942 1749 0.977 0.976 0.976 1749
Weighted avg 0.931 0.928 0.928 1749 0.944 0.942 0.942 1749 0.977 0.976 0.976 1749
Cohen Kappa 0.926 0.940 0.975
score

D. EEG-VOICE BIMODAL BIOMETRICS
After the unimodal evaluation, both EEG and voice feature
vectors are then fused by concatenation to form a resulting
vector with 320 elements to be fed as input to the classi-
fication stage. As well as for the single modalities cases,
the same classifiers were tested, producing the results shown
in Table 7.

As it can be appreciated in Table 7 the best perfor-
mance was obtained by an ANN, made up of an input layer
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of 320 nodes, a hidden layer with 640 neurons and ReLu
activation function, a dropout layer with a dropout coefficient
of 0.25, and a Softmax-activated output layer with 50 output
nodes. The network was set to be trained with an Adam opti-
mizer and a sparse categorical cross-entropy as loss function.
To preserve consistency for the network performance eval-
uation, a 4-fold validation scheme is selected, with 75% of
the available samples for training and the remaining 25% for
testing. The ANN is trained across 150 epochs. Fig. 9 shows
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FIGURE 9. Loss function evolution across epoch of the training stage.

the loss function evolution across epochs, whereas Fig. 10
shows the accuracy evolution as the network is trained.
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FIGURE 10. Accuracy evolution across epoch of the training stage.

For comparative purposes, Fig. 11 summarizes the results
obtained for the best-evaluated classifiers. As expected,
the obtained results confirm the achievement of higher accu-
racies when bimodal systems are attempted. To complete
the comparative analysis, Table 8 presents the classification
report for both unimodal cases and the fused one for the ANN
classifiers.

Classifiers performance comparison

=EEG
m Voice

Accuracy

Fusion

FIGURE 11. Classifiers’ accuracy comparison: EEG, Voice and Fusion.

VII. CONCLUSION

An open-access database of synchronously recorded EEG,
voice and video signals to be used in biometric projects has
been introduced, and a collection of experiments explored
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data separability of each modality. As previously established,
the main underlying justification for multimodal biometrics is
the improvement of one or more of the system’s desired char-
acteristics. The experimental cases presented in this article
validate this argument taking into consideration mainly the
performance dimension. The presented database gathers three
modalities with different characteristics whose objective is to
create a robust recognition system, in which the weakness of
a modality is compensated by another modality’s strength.
In particular, the database relies on the proven collectability
and acceptance of voice recognition, the universality and
circumvention of EEG, and the permanence and collectability
of video stream modalities. Furthermore, when modalities
are synchronously used, the robustness of liveness detection
increases. The database represents a rich source for multi-
modal biometric investigation projects and in general for any
project in which the use of video feed, voice samples, or EEG
signals is required.
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