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ABSTRACT Autonomous systems represent a significant leap forward in the ongoing technological
evolution of dependable and safety-related systems, integrating features such as artificial intelligence,
high-performance computing devices, General Purpose Operating Systems (GPOS) (e.g., GNU/Linux) and
security requirements. Nonetheless, traditionally employed safety techniques and measures were not defined
for safety-related systems with such features. Consequently, the need to research new methods and measures
emerges in order to be able to achieve appropriate safety assurance. In this manuscript, we explore the
limitations of traditional test coverage techniques, and we provide two complementary methods to pave the
way towards the testing of Linux-based complex safety-related systems. The methods, which are based on
statistical analyses, are presented and applied to a Linux-based Autonomous Emergency Braking (AEB) case
study, specifically focusing on the kernel execution path test coverage.

INDEX TERMS Autonomous systems, Linux, risk, safety, statistics, test coverage.

I. INTRODUCTION
Next-generation autonomous systems represent a break-
through for different industrial sectors and technological
domains. These state-of-the-art systems incorporate ground-
breaking technologies that create novel use-cases and incor-
porate a higher level of autonomy to the existent ones.
Among these technologies, we can find, for instance, Artifi-
cial Intelligence (AI) algorithms. Nonetheless, the complex-
ity of these systems has increased significantly over the last
decade, with requirements such as high computing perfor-
mance and accelerators, remote software updates, and secu-
rity. Besides, autonomous systems are currently even being
deployed in use-cases with functional safety requirements
(e.g., autonomous vehicles) [1], where a system failure can
lead to a catastrophe (e.g., loss of human lives), entailing a
significant shift for dependable and safety-related domains.
Besides, the complexity growth and the use of new technolo-
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gies bring multiple challenges to the functional safety domain
and, hence, hinders the safety assurance of these systems.

The autonomous systems that we are attempting to develop
today entail a significant shift from classical safety systems.
While traditional approaches were successful and effective
for the classic safety systems for which they were defined,
autonomous systems have features that limit the applicability
of traditional techniques and approaches [2]. Although com-
panies are announcing the development of highly complex
dependable systems, there is still a need to pave the way
towards the assurance of such dependable and safety-related
complex systems. Unfortunately, no safety standard exists
that takes into account the specific features of such complex
systems. The techniques and measures recommended by cur-
rent safety standards were not designed and intended for these
types of systems (see Section II). So, the update of current
safety standards and the definition of new types of safety
standards are in progress (e.g., ISO/PAS 21448:2019 Road
vehicles— Safety of the intended functionality (SOTIF) [3]).

The ideal for a classical safety-related system is to (i) know
all failure modes, (ii) understand all failure conditions,
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and (iii) have adequate evidence to justify the assumptions.
Nevertheless, this is generally considered not technically
feasible for next-generation autonomous safety systems [4].
Consequently, for complex software elements, an alternative
approach is necessary to achieve adequate assurance.

To pave the way towards the safety assurance of these
complex systems, we focus our efforts on analyzing the
test coverage of these systems, specifically of the Operating
System (OS). One of the most significant transformations
of these safety-related systems is the need for an OS that
meets, among others, the features mentioned above. Linux
is the leading OS in different domains [5] and provides much
of the features required by the next-generation safety-related
systems (e.g., computing performance, concurrent comput-
ing, security, updating capabilities) [6]. Therefore, different
initiatives aim to achieve an appropriate safety assurance of
a Linux kernel subsystem to be the operating system of these
safety-related systems [7]–[9]. Two of the most renowned
initiatives are OSADL’s SIL2LinuxMP project [10], [11] and
Linux Foundation’s ELISA project [8]. Companies of differ-
ent industrial domains participate in both projects, as there
is a remarkable interest in achieving the certification of
Linux for safety-related systems. However, the kernel has not
been developed with functional safety in mind. Furthermore,
the kernel size and complexity do not facilitate test coverage
measures required by safety standards. Hence, a question that
may arise is: Why Linux?

Companies and governments rely upon Linux even for
crucial applications (e.g., banking, telecommunications).
Governmental Agencies, such as the Defense Information
Systems Agency (DISA) of the United States, use Linux
for their systems with cybersecurity requirements [12]–[14].
Space domain also relies on Linux for a wide range of
their systems [15]. For instance, SpaceX relies on Linux for
their primary flight control systems on the Falcon 9 launch
vehicle and Dragon spacecraft. [15]–[17]. Linux can even be
found on Mars. Together with the Perseverance rover, NASA
deployed on the surface of Mars a Linux-based drone (i.e.,
Ingenuity) [18]. Consequently, we can state that Linux is
already increasingly relied upon for mission-critical systems.

This manuscript extends previous research works [19],
[20] that describe preliminary statistical test coverage anal-
ysis methods for Linux-based safety-related systems, with a
simple but reproducible case study. The current publication
provides two complementary contributions in the area of sta-
tistical test coverage analysis. On the one hand, we describe
a statistical analysis method that estimates the test coverage
with the remaining uncertainty. In other words, the described
method statistically estimates the maximum number of kernel
execution paths that an application can exercise in order to
calculate the number of not-covered or untested execution
paths. On the other hand, to advance in the estimation of the
residual risk of these systems as a result of the untested or
not-covered paths, we examine a method that calculates the
execution probability of the not-covered paths. The R scripts
that has been developed and used to conduct the research

activities are publicly available in a Git repository [21]. The
repository also collects the data obtained from the case study.

The remainder of this publication is organized as follows.
Section II provides a summarized problem statement in
the area of test coverage of Linux-based complex safety-
related systems. Section III collects the literature related to
the analyses that are presented in this manuscript. Then,
Section IV introduces the case study and the data set
acquisition used as guiding example for the proposed meth-
ods. Section V presents the statistical test-coverage analysis
method, using the previous case study’s data as a guiding
example. Section VI proposes a method to estimate the exe-
cution probability of not-covered execution paths, which
complements the previous statistical test-coverage analysis
method. Finally, Section VII draws the obtained conclusions
and includes an outlook on future work.

II. PROBLEM STATEMENT
The safety domain has traditionally considered testing as one
of the main methods to establish the safety system correct-
ness evidence. IEC 61508-4 Ed 2 defines dynamic testing as
running software and/or hardware in a controlled mode to
demonstrate the presence of the required behavior and the
absence of unwanted one [22]. This manuscript considers
IEC 61508 the reference standard for the conducted research
with the aim of extending the contribution to other safety
domains. Besides, IEC 61508 and ISO 26262 (automotive)
defines equivalent testing techniques [22], [23]. The results
obtained from these methods have been considered adequate
assurance for testing classical safety-related applications.
However, with the increasing complexity of the software in
applications such as next-generation autonomous systems,
relevant test coverage is hardly achievable (if feasible) by
dynamic testing and, thus, there is a need to define novel com-
plementary methods and approaches [20]. This also affects
the qualification of the Linux kernel due to distinct factors:

1) Total Existing Paths: The Linux kernel can be con-
sidered quite large due to the breadth of supported
hardware and the number of resources it offers. The
latest kernel versions have approximately 27 million
Lines Of Code (LOC) [24]. Although all these lines
do not form a Linux-based system (e.g., it does not
use all the drivers available in the kernel), a Linux-
based safety-related system is still estimated at around
1 million LOC [7].
Therefore, it is considered technically unfeasible to get
100% execution paths tested as some of them are not
even exercised by the given application in the target
system [20]. Even achieving a reduced while justifiable
coverage1 seems questionable.

2) Execution Path Variability: Different studies show
how the Linux kernel execution is non-deterministic
[25]–[29]. This means that the kernel does not follow
the same execution path, given the same application

1IEC 61508-3 Ed 2 Annex B.2 permits ≤ 100% if justified
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with identical input parameters. In other words, for
an identical system-call with the same input parame-
ters, several possible execution paths may exist. Conse-
quently, it is no longer feasible to assess the correctness
of this type of systems with a unique iteration of a
test-case for each combination of input parameters
[30]. Besides, it is challenging (if feasible) to force the
execution of a specific path.
We can consider that the Linux kernel is formed by
several interdependent state machines, which are asyn-
chronous between them, and thus, execution paths are
dependent of uncontrolled system states [20]. Simpli-
fying, the system state can be considered an input to the
function, but generally not reproducible.

3) Existing Static Analysis Tools: have traditionally been
used to identify all possible execution paths. Although
these types of tools are widely used for direct call
examination, their applicability for kernel execution
path analysis is limited. For instance, these tools have
significant difficulties in solving indirect calls [31],
which are commonly used in the kernel, and also pro-
vide traces formed by dead code that are never exe-
cuted [32]. There is also the issue of dynamic allocation
and management of resources that may lead to almost
infinitely deep paths that are theoretically possible but
increasingly unlikely and notably impossible to deter-
ministically trigger. Thereby, these types of tools also
provide traces with a defacto zero or negligible proba-
bility of execution.

Due to these limitations, an updated approach needs to
be defined. Dynamic analysis tools could be used instead
of static analysis tools [32]. Dynamic analysis is performed
during system-running time and, hence, allows recording the
actual traces during execution. Using this approach, it is
possible to identify the path variability by repeated execution,
and it does not share the limitations of static tools (e.g.,
indirect calls).

In the case of the Linux kernel, dynamic analysis tools
record the execution traces that an application exercises at
the kernel-level, on behalf of a user-space task. For that
purpose, the FTrace tool, a tracing tool that allows record-
ing the function call sequences, can be used. Besides, IEC
61508 classifies as Highly Recommended (HR) structural test
coverage for entry points and statements, which is equivalent
to path coverage. This implies that there is no need to record
inline functions, and consequently, FTrace is a suitable tool
for recording the execution traces. However, as the main lim-
itations of non-determinism remain, certain questions need to
be also answered for dynamic tracing.

• If we identify a subset of the existent traces while the
kernel is exercised repeatedly by an application, how do
we know the total number of traces?

• Thus, how do we quantify the test coverage?
• How do we know the risk related to the untested
(unknown) paths?

In this publication, we try to answer these questions by
presenting and analyzing two complementary methods to
pave the way towards acceptable safety assurance, explicitly
focusing on the test coverage of Linux-based safety-related
systems. On the one hand, we propose a statistical analysis
that allows quantifying the coverage of the kernel paths taking
as full coverage reference the paths that have a relevant
probability of occurrence. In other words, the method does
not consider full coverage of all possible execution paths but
rather the paths with a relevant probability of occurrence.
On the other hand, we propose a statistical method that esti-
mates the execution probability of the not-covered/untested
kernel paths with the aim of quantifying the risk associated
with these paths (risk = probability ∗ severity). Both of
these methods are presented and analyzed in the context of
a Linux-based Autonomous Emergency Braking (AEB) case
study. Note that the case study is a guiding example for
the methods, which are potentially extendable to other case
studies [19], [20].

III. RELATED WORK
The available literature shows that the technical challenges
for the safety assurance of complex safety-related systems
have been extensively examined. Among others, we find
studies in the field of high computing performance multi-core
devices [33], machine learning algorithms [34], remote soft-
ware updating [35], and isolation architectures [36]. There are
also a significant number of studies that rely on probabilistic
or statistical methods to advance in certain aspects of safety
certification, such as Measurement-Based Probabilistic Tim-
ing Analysis (MBPTA) [37], deep-learning uncertainty
[38]–[40], and scheduling [41].

IV. CASE STUDY - DATA SET ACQUISITION
This Section describes the case study and the data set acqui-
sition used as a guiding example in the description of the pro-
posedmethods for analyzing test coveragewith the remaining
uncertainty (Section V) and estimating the execution prob-
ability of untested paths (Section VI). The case study is
a research-grade AEB system based on Linux kernel and
Machine Learning (ML) algorithms and representative of
next-generation safety-related systems. Research activities,
and therefore the data collection, are focused on the AEB
system’s control unit, where the Linux kernel runs on a
defined system-context.

A. EXPERIMENT SETUP
The study is performed exercising a given application in a
specific target platform and system-context. Hence, we need
to define these three components for further analysis. For this
publication, we assume the following definitions:

• Target Platform: The selected platform is an Nvidia Jet-
son Nano with a quad-core ARM Cortex-A57 processor
and a Maxwell Graphics Processing Unit (GPU) archi-
tecture of 128 cores. The object detection algorithms are
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executed on the GPU cores while the control unit runs in
the CPU cores.

• Application: The analysis is performed with an AEB
case study. The application brakes or alerts (depending
on the criticality and proximity) when a pedestrian or an
obstacle is detected. The objective of the application is
to reduce the number of accidents or, at least, the severity
of the unavoidable ones.

– The system runs a Linux version 4.9.
– The platform is configured with a Layers of

Protection Analysis (LOPA) architecture, isolat-
ing the control task (safety task) on a dedicated
processor. More detailed information about the
LOPA architecture can be found in the following
publication [36].

The research activities are entirely focused on the con-
trol unit running the Linux kernel, especially in testing
the kernel execution paths. The rest of the units (i.e.,
perception understanding (GPU), vehicle control) are
considered out of the scope of this research, as they are
not based on Linux and they are replaced by a stress
benchmark (i.e., hackbench) that simulates the Worst
Case Scenario (WCS) described in the system-context.

• System-Context: refers to the context in which the sys-
tem will operate and, therefore, the cases to be tested.
Thus, the system-context is a series of test-cases. To per-
form the analysis thoroughly, we have decided to use
an ego-vehicle point-of-view video with several critical
scenarios where the AEB system’s control unit must take
different decisions.
Besides, to simulate the WCS of the system, one of
the cores is heavily loaded to stress the system. This
heavy CPU load and interruptions are performed with
the widely used hackbench stress benchmark. The aim
is to accelerate the observation of previously unrecorded
traces [29]. Note that the LOPA architecture should
reduce the interference significantly [36].

• Recording: Ftrace tool is used to record kernel traces.
This tool, included in the mainline kernel, allows saving
the execution traces at the kernel level that a specific
application has exercised. From a research perspective,
the FTrace tool is considered a reliable tool due to
its widespread usage by the kernel developer commu-
nity. However, the need for tool qualification (T3 class
tool [22]) should be considered for future industrial
safety system testing activities.

Figure 1 illustrates the architecture of the AEB system’s
control unit that is exercised for the presented research activ-
ities. The control unit runs the Linux kernel, and it is based on
the LOPA safety architecture described by the SIL2LinuxMP
project [7], [36]. This architecture uses Linux’s container
technology, widely used in security and server domains,
in order to isolate different criticality tasks. The software
application is based on four software partitions, executed each
of them in one CPU core. The SIL2 task, which is executed

redundantly in two cores, is the safety-related task that is
analyzed in this research. The SIL0 task is dedicated to the
HumanMachine Interface (HMI) (warnings to the driver) and
Monitoring is in charge of diagnosing both SIL2 tasks. Fur-
thermore, the GPU executes the perception understanding.
The case study uses Ethernet to communicate with other vehi-
cle control subsystems such as the speed and brake controls.

FIGURE 1. AEB case study: control unit architecture.

In order to provide a preliminary assessment and identify
the potential of the methods described in this manuscript,
the research activities entirely focus on the testing of the
safety function in its WCS. For this purpose, certain func-
tions, which are considered non-essential from the safety test-
ing perspective, have been replaced by a stress benchmark.
Therefore, we adapt Partition 0 to simulate a WCS by means
of the hackbench stress benchmark. Figure 1 shows with
dashed line boxes the functions that have been replaced by
the benchmark. If the results show a strong potential of the
described methods, future extended research should consider
the incorporation of all the functions.

It is worth mentioning that assessing the suitability of this
AEB system for a real autonomous car is out of the scope
of this publication. Rather than that, the intention is to use
it for our study, as it provides some building blocks that are
common in a commercialized vehicle.

B. DATA SET RECORDING
For this study, we focus on recording the kernel execution
traces that exercise the safety-related (SIL2) task. The appli-
cation requests the utilization of the kernel (or the resource
it provides) through different system-calls. System-calls are
considered the entrance function to the kernel. Therefore,
the work described in this manuscript is based on the record-
ing of all system-calls requested by the application. Further-
more, the identification and classification of the execution
traces are performed through a hash function (e.g., MD5).
Therefore, each system-call trace results in a hash value.
Designating a hash value to each specific execution trace
sequence facilitates data analysis. It allows estimating the
execution frequency of each specific trace and also iden-
tifying the appearance of a trace that has not previously
been executed. Consequently, we can consider different hash
values as different unique-traces. Figure 2 shows an overview
diagram of the data collection and post-processing process.
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FIGURE 2. Data collection overview diagram.

These traces are not the complete records of exercising the
kernel per se, as we only record the system-calls. Although
the system-calls represent the vast majority of the execution
trace, there are a few function calls between system-calls.
Therefore, it cannot be considered a completely proper verifi-
cation of the kernel but rather a contribution to the verification
of the kernel interface. However, if the method shows effec-
tiveness for the kernel interface, it could be expanded to the
overall kernel.

TABLE 1. Results of the recorded data set divided in system-calls.

Table 1 collects the results of the recorded data set. Record-
ing this data has involved an effort of exercising the system
for more than six thousand hours. The recorded data is also
available in the following repository [21]. Table 1 lists the
system-calls that are exercised by the application, the number
of times that the system-calls have been called, the num-
ber of different traces that have been executed in each case
(also known as unique-traces), and, finally, the proportion of
times that the most common paths have been executed. Note
that we define unique-trace to each different function call
sequence. In other words, two execution traces with the same
function call sequence belong to the same unique-trace. As a
result, the AEB system has exercised a total of 1996 different
unique-traces.

There are repeated system-calls but with different inputs
(e.g., futex(wait), futex(wake)). This is because they are
called with different input parameters. For example, the same
application can open a file or a device, but the traces may
have nothing to dowith each other. If we inspect the execution
frequency of the distinct traces, it is possible to observe that
in each system-call, there are a reduced number of traces that
are the ones commonly executed. Consequently, we can state
that each system-call can follow different execution paths,

but the execution probability of them is not equiprobable.
Figure 3 illustrates in a logarithmic scale how there are a small
number of traces that are executed with a significantly higher
frequency. The shown data corresponds to the entire data
set, with all test-campaigns and system-calls. Therefore, each
different execution path has its own execution probability.

FIGURE 3. Execution frequency of the different traces.

The traces that a system-call executes can be classified into
two groups: common traces and rare-traces. If rare-traces are
inspected, it is possible to identify that they are variations of
the most common traces. They are mainly built by having
the most common trace as trunk and with a series of calls
executed at different points of the trace due to variations of the
global state of the system, which are not under the control of
the application. Although the execution probabilities of these
variations are lower than the probability of the common trace,
each of the variations has a different execution probability.
Figure 4 illustrates an example of a common and a rare-
trace of system-call write. The beginning of the traces is the
same; however, there is a point where the rare-trace executes
a branch that starts with rt_spin_lock_slowunlock(). After the
branch, both traces continue executing the same trace until the
end. Furthermore, as Table 1 shows, there are a few system-
calls, such as read(), where their common path is not so
commonly executed. However, this is due to the existence
of several common paths. For example, in read system-calls
the secondmost common path is executed 39.51%of the time.

Note that the total number of different traces is not the
sum of the second column’s results. In this case study,
we identified equivalent traces between sendto(server) and
sendto(hmi). Besides, the total value of ’Common trace (%)’
is Not Applicable (NA) as the value is only representative
with respect to each system-call.

V. METHOD 1: TEST COVERAGE UNCERTAINTY
QUANTIFICATION
The objective of the method described in this section is to:
quantify the number of traces that have not yet been observed
but are to be expected and, thus, quantify the uncertainty.
In other words, the goal is to estimate the proportion of paths
that the application exercises compared to the totality of paths
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FIGURE 4. Execution trace example (system-call write) with two possible
paths: common-trace (short) and rare-trace (branched).

that have a relevant probability of occurrence. Note that this
is very much distinct from the paths that could theoretically
be reached (e.g., think of theoretically possible infinite retries
in some cases).

For test coverage uncertainty quantification, parametric
and non-parametric statistical approaches can be consid-
ered. The work reported in this section is based on the
publication [36], where a parametric approach was defined.
Nevertheless, in this research, we examine the suitability
of non-parametric estimators. Besides, this manuscript pro-
vides a higher analysis detail as the AEB case study is
more representative than the simpler case study described
in [19], [36].

A. DESCRIPTION OF THE APPROACH
Our approach is based on the species estimation techniques
available in the literature. For years, different statisticians and
biologists have investigated the estimation of the number of
species [42], [43]. Estimating the species richness (number of
different species) is a complex task as the number of observed
species increases with every increment of the sampling effort
[44], [45]. These research contributions did not initially target
technology domains, even less functional safety. However,
the literature collects different non-parametric estimators that
could be appropriate for our research [42], [43], [46], [47].

In this case, the traces are identified as the system is
exercised (dynamic analysis). Therefore, we do not know
all the traces that can be exercised with a reasonable prob-
ability. Suppose each different execution path is consid-
ered a ‘species’. In that case, it is possible to employ the
non-parametric species estimators to estimate the number of
traces that have a relevant probability of appearing. There-
fore, the study is based on one primary assumption:
• Assumption: the number of new execution traces (i.e.,
different from those that occurred previously) will
increase as the number of test iterations increases. If the
cumulative number of traces is plotted, it will result
in a species accumulation curve, where there will be a
moment that the curve approaches the asymptote. The
asymptote represents the moment when all the possible

execution traces have been exercised and, consequently,
it represents 100% of test coverage.

Since reaching the asymptote with testing techniques is a
potentially not feasible task, the aim is to estimate the total
number of traces analyzing the recorded rare-traces. Chao
et al. state that events with a lower frequency of occurrence
provide more information for species richness [42], [48].
After all, events that occur commonly provide almost no
information about rare events [48].

B. TRACES ACCUMULATION
The accumulation of new traces can be examined while the
number of test-campaigns increases. Accumulation curves
show the tendency to encounter new species as the sample
size increases. It is possible to estimate the accumulation
curve based on a sample-based species frequency data set
[49]. For this purpose, we calculate the mean and the standard
deviations of the accumulation curve by sub-sampling the
data set without replacement. This method is also known as
Randommethod and allows obtaining the accumulation curve
without depending on the order in which the traces have been
recorded.

Figure 5 depicts the accumulation curve obtained from the
recorded data set. The curve shows the traces richness by
sampling effort with 95% Confidence Interval (CI). As it
is possible to observe, the increase of the curve is more
pronounced at the beginning while the trend is to grow more
slowly afterward. However, it is possible to confirm that the
data set obtained has not yet reached the asymptote. In other
words, if we were to continue collecting data, we would still
see a significant number of new traces. Once the asymptote is
reached, one could say that it is relatively difficult to identify
any new trace that has not been executed previously.

FIGURE 5. Accumulation curve estimated with the random method with
95% CI.

C. DATA SET VALIDATION
Even though the traces are collected by differentiating the
system-calls, this method performs the analysis with the data
formed by all the system-calls. This allows obtaining the test
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coverage of the application under test. However, to carry out
the study with all the system-calls together, it is necessary to
validate some collected data requirements.

1) CROSS VALIDATION
Cross-validation is a model validation technique that assesses
the independence of results of statistical analysis. Therefore,
it allows evaluating the stability of the non-parametric results
with the incorporation of all system-calls to the analysis.
K-Fold Cross Validation analyses if all system-calls follow
equivalent new trace appearances and, hence, ensures the
steadiness of the results of the statistical study. In other words,
it allows confirming that all the system-calls belong to the
same population. K-Fold is based on examining the Mean
Squared Error (MSE) of the accumulative curvewith different
combinations (round-robin) of the identified group of traces
(folds) [50].

The aim is to know if different system-calls belong to
the same population. Therefore, each fold is formed by the
traces of a specific system-call. Nonetheless, as Table 1
indicates, each system-call provides a different number of
unique-traces. As each fold needs to have the same length,
the analysis is performed by dividing some system-calls into
different folds (e.g., clone) and joining some of them into one
fold (e.g., futex(wait), futex(wake)).

FIGURE 6. MSE values with k equal to 100. Horizontal line represents the
mean value.

Figure 6 depicts the MSE results of each fold, with a
total of 100. Performing the analysis with 100 folds allows
having folds formed with 20 traces and, thus, represented
more adequately the system-calls with a small number of
traces. The fold order follows the same as Table 1, the first
folds represent clone() data and the last folds to writev(). The
obtained MSE are adequate to validate that the system-calls
come from the same population and, thus, it is possible to
follow the analysis.

D. ESTIMATION OF NUMBER OF PATHS
The accumulation curve shows the tendency to find new
traces while testing iterations continue. Nevertheless, it does

not estimate the richness of the traces, i.e., the number of
traces that an application can exercise in the kernel. The
literature describes several non-parametric estimators [46],
[47], [51], [52]. The most commonly used estimators can be
classified into two types [53]:
• Incidence-Based Estimators: considers the number of
test-campaigns in which each unique-trace has been exe-
cuted. For instance, howmany traces have been executed
only in one test-campaign? In two test-campaigns?

• Abundance-Based Estimators: considers the number of
times that each unique-trace has been executed. For
instance, how many traces have been executed only
once? Twice?

Note that unique-trace is the equivalent to specie in this
research.

Figure 7 illustrates the classification of several non-
parametric estimators that are analyzed through this Chapter.

FIGURE 7. Relation among non-parametric estimators.

All the identified estimators (Figure 7) employ the less
frequent traces (rare-traces) to estimate the richness as the
majority of the information is provided by these traces [42].

1) INCIDENCE-BASED ESTIMATORS
Chao2 estimator based on incidence takes into account
traces that execute only in one test-campaign (i.e., uniques),
the number of traces that occur in two test-campaigns (i.e.,
duplicates), and the total number of traces recorded among
all the recorded test-campaigns [54]. Equation 1 provides
a bias-corrected form for the case that there are no dupli-
cates [46], [52].

SP =


S0 +

a1(a1 − 1)
2(a2 + 1)

N − 1
N

if a2 = 0

S0 +
a21
2a2

N − 1
N

if a2 > 0

(1)

• SP is the total richness of the traces (observed + non-
observed).

• S0 is the number of traces presented in the recorded data
set.

• N is the number of test-campaigns.
• a1 represents the number of traces that are executed only
in one test-campaign (i.e., uniques).

• a2 represents the number of traces that are executed in
two test-campaigns (i.e., duplicates).

There also estimators based on jackknife and bootstrap
statistical techniques. Jackknife is a resampling method that
recalculates the estimator leaving out sub-sets from the data
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set successively and then calculates the average value. Boot-
strap is a widely used statistical resampling method [50].
It is a test based on random sampling with replacement.
Therefore, it allows generating many ‘‘new’’ data sets by
randomly sampling with replacement from the original data
set.

First order Jackknife estimator is based on the fact that we
have unseen as many traces as the ones that appear on one
test-campaign [43], [55].

SP = S0 +
a1(N − 1)

N
(2)

Jackknife2 depends on the traces that are executed in one
and two test-campaigns (i.e., uniques and duplicates) in the
recorded data set [52].

SP = S0 +
a1(2N − 3)

N
−
a2(N − 2)2

N (N − 1)
(3)

Bootstrap is based on the approach that there is the same
number of unseen traces as those that are lost after doing re-
sampling with replacement [47]. pi execution frequency of
trace i.

SP = S0 +
S0∑
n=1

(1− pi)N (4)

2) ABUNDANCE-BASED ESTIMATORS
Chao et al. proposed an estimator that is based on the abun-
dance of the species [42]. The estimator analyzes the traces
that have been executed once (i.e., singletons) or twice (i.e.,
doubletons). Equation 5 is similar to the bis-corrected Equa-
tion 1.

SP = S0 +
a1(a1 − 1)
2(a2 + 1)

(5)

Note that in this case a1 and a2 refer to singletons and
doubletons:
• a1 represents the number of traces that are executed only
once (i.e., singletons).

• a2 represents the number of traces that are executed
twice (i.e., doubletons).

Abundance-based Coverage Estimator (ACE) analyze
species richness considering two groups of traces [47], [52],
[56]. On the one hand, Sabund represents the number of abun-
dant unique-traces. The common approach is to declare abun-
dant individuals with an occurrence higher of ten. Srare repre-
sents the number of unique-traces that are rarely (e.g., traces
executed less than ten times). ACE estimator is described in
Equation 6. Nrare refers to the total number of executions of
rare traces.

SP = Sabund +
Srare
Cace

+
a1
Cace

γ 2

where,

Cace = 1−
a1
Nrare

γ 2
= max[

Srare
Cace

∑10
i=1 i ∗ (i− 1)ai

Nrare(Nrare − 1)
− 1, 0] (6)

E. ESTIMATION
Using the estimators we have introduced, both abundance and
incidence-based, we calculate the number of total traces that
are likely to be executed by the safety function. These estima-
tions are performed using the recorded 150 test-campaigns.

Table 2 provides the richness results obtained by each
estimator and the percentage of the traces that have not been
observed. Results show certain concordance between the
majority of the estimators. All estimators except Bootstrap
and Jackknife 1 show results above 3000. Note that the data
set collects 1996 unique-traces.

TABLE 2. Estimated total number of traces and percentage of unseen
traces.

The results obtained from the different estimators are
depicted in Figure 8. The box-plot shows the results with the
95% CI of each estimator. Furthermore, it allows visualizing
the differences or the alignments of the results.

FIGURE 8. Comparison of the obtained results with 95% CI.

If we inspect Table 2 and Figure 8, we see that
Chao1 and 2 estimators, Jackknife2 and ACE estimators pro-
vide similar results. The certain equivalence of the results
obtained with estimators that are even based on different
approaches (i.e., abundance and incidence) justifies trusting
the results obtained with them. Consequently, we can state
that the total number of traces is in the range of 3315 and
3445. As a worst case approach, we could set the total number
of traces to 3645, which belongs to the upper CI of Chao2.
The results obtained with Bootstrap and Jackknife1 estimator
cannot really be judged at this stage of the research.

From a classical safety perspective, the untested paths that
we observe here would be translated into a low test-coverage.
If we consider 3645 the total number of traces, we get a test
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coverage of 54.75%. This value is far from full coverage
that has been traditionally achieved (or attempted), where
a full coverage was feasible controlling the input parame-
ters of the respective test-function. Moreover, current safety
standards do not discern between occurrence probabilities of
unobserved (untested) paths as traditional safety operates in a
‘‘software is deterministic’’ paradigm. Thus, a notion of path
probability would not make much sense. However, given the
observed data, it would not be reasonable to claim that in
the above example the coverage would be only of 54.75%
The unobserved paths have a low probability of occurring
as they depend on a random state of the system. Therefore,
we believe that there is a need to complement this result with
the execution probabilities of the paths and, consequently,
know the risk that entails a system with this coverage. This
is analyzed and addressed in Section VI.

VI. METHOD 2: EXECUTION PROBABILITY
The study presented in this section aims to estimate the
execution probability of the traces that did not appear in the
collected set of data in order to calculate the residual risk that
they entail. As they are unknown, they must be considered a
source of risk due to the fact that they hide untested behavior.
Therefore, it is necessary to quantify this residual risk that
remains in the system under test. The risk is calculated with
the following equation:

Risk = Probability of Occurrence x Severity of Consequences (7)

As Equation 7 shows, the risk is associated with the prob-
ability of occurrence of an event and the severity of the
consequences of this event. The study presented in this pub-
lication is focused on the probability of occurrence, leaving
the estimation of severity as a future task. For a conservative
lower bound one can simply set the severity to catastrophic,
which is an overly pessimistic approach but a valid baseline.

A. DESCRIPTION OF THE APPROACH
The estimation of the probability of the occurrence of an
unknown event is a field that has been examined by differ-
ent statisticians. I. J. Good proposes a method, known as
the Good-Turing frequency estimation method, to estimate
the probability of appearing unseen events [57]. Due to the
complexity of the method, Gale et al. propose a simplified
Good-Turing method [58]. Nowadays, this simplified variant
technique is used in different fields (e.g., linguistics) where it
has found wide acceptance [59].

Simple Good-Turing statistical technique allows esti-
mating the probability of unknown events [58]. Conse-
quently, this technique allows calculating the probability
of executing one of the unknown traces identified in the
previous method (Section V). The statistical method is
based on species abundance distributions. These distribu-
tions are based on frequency-frequency data (e.g., number
of traces that occurred once, number of traces that occurred
twice).

B. MODELING FREQUENCY DATA
Good-Turing statistical technique uses the frequency of fre-
quency data to estimate the probability [58]. This approach,
besides, uses the freq-freq data of the execution traces (i.e.,
the number of traces that have been executed once, the num-
ber of traces that have been executed twice, etc.). This data
also needs to be modeled to perform the analysis adequately,
as the model allows comprehending the mechanism that
generates the recorded data. Power-law distributions are com-
monly used to model frequency distribution where the fre-
quency of an event correlates with the size of the event [60].
As it is mentioned in Section IV-B and shown in Figure 4,
the rare-paths are a synthesis of the common trace plus some
extra branches at different points of the execution. Figure 4
shows how are constituted the majority of the traces with low-
frequency executions. This assumption can be validated by
comparing the number of functions executed in commonly
executed traces and rarely executed ones. The results obtained
from this analysis are collected in Figure 9.

FIGURE 9. Execution trace length depending on common (c) or rare
(r) trace.

Figure 9 validates the argument of employing Power-law
model in the vast majority of the cases. Thus, as prelim-
inary research, we believe it is valid to use this model.
However, it also illustrates a small number of corner cases.
For instance, the rare-paths of system-calls futex(wake) or
writev show a slightly lower number than the common
ones. Furthermore, there are some outliers too in some
system-calls. If we manually check these outliers (e.g.,
read), we see that these traces belong to failed executions.
Thus, we can consider them ‘‘valid outliers’’ as they have
occurred, but they do not break with the assumption we have
described.

Figure 10 depicts the Cumulative Distribution Func-
tion (CDF) of the frequencies-of-frequencies values of the
recorded data set and the estimated Power-law distribution.
Visual inspection confirms the data fits the model; thus,
it seems the appropriate model to continue the study.

Figure 11 illustrates the estimated Power-law model (blue
line) with the recorded frequencies of occurrence data.
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FIGURE 10. Data CDF of the frequency of occurrence data and the fitted
power-law (blue line).

C. DATA SET VALIDATION
The data needs to be cross-validated to follow the statisti-
cal analysis. This validation is performed with K-Fold. The
validation is similar to the one explained in Section V-C1.
However, in this case, we compare the power-law models
(originals vs. without k fold). The analysis results in rea-
sonable MSE values: mean equals 263, minimum values
in 190 and maximum 357. Therefore, we can state that the
results are adequate.

D. EXECUTION PROBABILITY ESTIMATION
Simple Good-Turing is employed with the aim of estimat-
ing the execution probability of the set of traces that we
have identified as untested [59]. This statistical technique is
based on Equation 8, where r = 0 represents the unseen
traces:

Pr =


N1

N
for r = 0

(r + 1) ·
Nr+1
N · Nr

for r ≥ 1

(8)

• r: defines the rate occurrence of the traces.
• Nr : defines the number of traces that have been executed
with rate r.

• Nr+1: represents the count of rate r+1.
• N: total number of recorded traces.
• Pr : probability of traces with rate r.

As pointed by the literature, one of the main issues is
the unreliability of Simple Good-Turing for high rates [61].
As we pointed out in Section IV-B, there are a small num-
ber of traces that are executed most of the time on Linux-
based systems. Therefore, we obtain significantly high rates.
However, the most common approach to deal with this unre-
liability is to divide the analysis into two analyses. On the
one hand, Simple Good-Turing is used with the smaller rates
and, on the other hand, Maximum Likelihood Estimation
(MLE) for the higher rates. The line that determines what

FIGURE 11. Frequency distribution of all recorded system-calls (black
points) and the estimated power-law model with function F (r ) = arb

(blue line).

is considered a high or a low rate is estimated employing
Shannon Entropy. Shannon Entropy quantifies the amount of
information of a data set, thus, we select a dividing rate where
the two classifications provide the most equivalent amount
of information. After that, the probabilities are normalized to
achieve a sum of one.

Table 3 provides the estimated probabilities for each rate.
The probability of untested kernel traces (Pzero) is defined as
the probability of rate 0.

TABLE 3. Probability results for each rate.

1) CONFIDENCE INTERVAL (CI)
Random sampling with replacement (bootstrapping) is com-
monly used in statistics to examine the variation of estimates
and estimate the CIs [62]. However, when working with
frequency-based distributions, re-sampling is often problem-
atic. While most common events (i.e. those with higher
frequency) are not affected by the re-sampling, events that
rarely occur (i.e., those of lower frequency) get re-sampled,
and hence, dramatically distorted. In other words, bootstrap
underestimated the traces with a low execution frequency as
it generates data sets with a significantly lower number of
traces with low frequencies, and therefore, underestimation of
unseen paths. To avoid this problem, an alternative approach
is to sample (without replacement) a subset of the whole data
set, to achieve a smaller data set but that is reliable and non-
distorted.
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TABLE 4. Confidence interval for untested execution probability.

For the purpose of calculating the CIs, we randomly sample
90% of the data set a thousand times. The results obtained
are shown in Table 4. This means that if we were to collect
the data again and redo the analysis, the results would most
likely be below the upper CI (97.5%). Thus, we can consider
upper CI as the WCS. Moreover, upper and lower CIs show
even higher results than the estimated value. Although this
may seem odd at first glance, the result makes sense and is
beneficial for our study. As CIs are estimated with smaller
data sets, the obtained probabilities are higher. In other words,
a larger data set reduces the probability of observing a trace
that has not previously been observed. This is also shown in
following Section VI-D2.

2) PROBABILITY DECREASE WITH TESTING EFFORT
The adequacy of the Good-Turing approach can be confirmed
by comparing the estimated results (Simple Good-Turing)
with the probability of the new traces that exist in the remain-
ing of the data set (MLE). For instance, in the 100 test-
campaign, we calculate the probability of unseen traces with
Simple Good-Turing and the MLE probability of the traces
that appear between the test-campaign 100 and 150. As we
know the traces that appear in the remaining data set and
the total number of traces, we calculate the probability using
MLE. The results are shown in Figure 12.
It can be seen how the estimated probability decreases as

the number of executions increases in Figure 12 (blue line).
Therefore, the probability of executing non-tested traces
decreases by gaining knowledge of the system. In the event
that the probability is too high for a certain system, this prob-
ability can be decreased by continuing the analysis. Besides,
we can confirm that the Good-Turing approach provides sta-
ble results after 100-200k executions. The graph also shows
the real probability, that is, the one we calculate knowing the
remaining data set. Note this probability is a rough estima-
tion, as it does not take into account unknown traces, only the
traces that appeared in the following test-campaigns.

E. DISCUSSION OF THE RESULTS
Once we have measured the probability of 1.42e−4, a rea-
sonable question is: is it sufficiently low for a SIL2 safety-
related system? Current safety standards do not provide any
reference value to determine whether this probability result is
within a tolerable risk. However, the standards do provide ref-
erence ranges for dangerous hardware failures. For instance,
IEC 61508 safety standard defines Probability of Dangerous
Failure per Hour (PFH). In contrast to software, the standard
considers the existence of random failures in hardware and,
hence, requires compliance with the PFH ranges. But as
observed in these research activities, the stochastic nature
of the untested path is not in its code-sequence but in the

FIGURE 12. Pzero values along with execution traces increase (blue
points). Pzero real value estimated with the remaining data set.

occurrence of its activation. It is not possible to determin-
istically create a system state that would deterministically
enter one particular path. Consequently, it seems legitimate
to work towards obtaining ranges for the software execution
on a given hardware, such as those that exist for hardware.

As there is currently no suitable reference for this software
execution on a given hardware, in this manuscript we take
as a reference the values established by PFH. In this manner,
we can obtain an approximate idea if the described method
(following the As Low As Reasonably Practicable (ALARP)
principle) may fit the reference ranges. For a Safety Integrity
Level (SIL) 2 the standard determines the PFH range to
10−6 < PFH ≤ 10−7. If we follow the most conservative
approach, where the execution of any untested trace leads to
catastrophic consequences, we can estimate the probability of
a dangerous failure per hour. In the case of a redundant archi-
tecture such as the SIL2LinuxMP’s two-out-of-two (2oo2)
architecture, the probability of executing an untested path
in both cores at the same time is Pzero2. It is essential to
take into account that safety is a system property and, hence,
the values set by the standard are more attainable with this
type of architecture. Consequently, we would only need to
estimate the average execution frequency of system-calls to
be able to translate it to a PFH comparable value. SIL2 task
is executed with a period of 50 milliseconds and exercises an
average of 25 system-calls per period. As a result, the system
exercises 18 · 105 system-calls per hour.

Freq = 3.6 · 106 ·
25
50
= 18 · 105 (9)

Bearing in mind that we are following the most pessimistic
approach, where the execution of any unknown trace is con-
sidered dangerous, we can estimate the probability of danger-
ous failure per hour. For this purpose, we use the Binomial
probability mass function.

Probability = 1−
(
Freq
0

)
· Pzero(1− Pzero)Freq (10)

VOLUME 9, 2021 106075



I. Allende et al.: Statistical Test Coverage for Linux-Based Next-Generation Autonomous Safety-Related Systems

We rest to 1 the probability of not executing any untested
path in Freq executions. In other words, the cumulative
probability of at least one failure. If we have a redundant
architecture, such as a two-out-of-two (2oo2), the probability
of executing an untested trace simultaneously (in the same
execution cycle) on both cores would be Pzero2.

Probability = 1−
(
Freq
0

)
· Pzero2(1− Pzero2)Freq (11)

Probability ' 35 · 10−3 (12)

As in can be observed the obtained value is significantly
larger than the PFH range determined in the safety standard.

Probability� PFHsil2 (13)

It is necessary to take into account that this calculation has
been performed following the most conservative and, hence,
pessimistic approach. Emphasize that this work intends is not
to declare that Linux is safe, but to contribute with methods
that can make that evaluation. Indeed, it is important to note
that these results are achieved with around six thousand hours
of execution data and that the values can be reduced with fur-
ther exercise. For instance, if we perform the risk calculation
with a reduced data set (equivalent of four thousand hours
exercising effort), the obtained value is 15 · 10−2. Therefore,
the data set size or the testing effort implies a considerable
difference in the risk reduction.

VII. CONCLUSION & FUTURE WORK
This publication introduces two statistical methods with the
aim of progressing in the field of test coverage of next-
generation safety-related autonomous systems, focusing in
this case specifically on the Linux kernel execution path test
coverage. The methods presented in this manuscript are not
dependent on each other. Moreover, they can be considered
complementary as the results provided by them add extra
information and knowledge to the other. It is important to
mention that the research objective is not to identify the spe-
cific statistical methods but rather to examine the viability and
benefits of statistical-based alternatives to cope with these
systems’ complexity. On the one hand, the publication studies
different non-parametric estimators to quantify the number
of traces that are not covered during the verification phase.
On the other hand, we examine a technique to be able to
estimate the execution probability of those untested traces.
Both alternatives show positive results in order to pave the
way towards the safety assurance of next-generation safety-
related systems.

Test coverage estimation by non-parametric analysis seems
an interesting alternative to traditional techniques. Although
the accumulation curve shows the large number of different
paths that an application such as AEB can exercise, it also
exhibits a trend to achieve the asymptote. Consequently,
we are able to estimate the total number of paths that have
a relevant probability of occurrence and the number of paths
that have not been covered. Although the estimators do not

give exactly the same results, most of them give significantly
similar ranges. Therefore, it can be argued that the total value
of traces that can be run is in the range where most estimators
coincide. Moreover, this argument is strengthened by the fact
that some of these estimators are based on different data
analyses (i.e., incidence vs. abundance). However, there are
some estimators that show a significant variability between
their results, especially bootstrap estimators. J. Béguinot state
that Jackknife 2 is usually the most suitable non-parametric
estimator for species richness calculation [63]. In addition,
the author argues that Chao method is also appropriate when
the data set is close to the sampling completeness. Thus,
it is necessary to continue investigating which estimator fits
more appropriately to this type of system. For this purpose,
we should examine the estimators with other use-cases and
with other system-context. For instance, we believe it would
be interesting to investigate the estimators’ variability with
the same application but different system-context (e.g., dif-
ferent CPU loads).

We also consider the execution probability estimation of
untested paths as a step forwards in the field of test cover-
age of complex safety-related systems. Contrary to the tech-
niques that have been employed traditionally, we take into
account the uncertainty that these systems possess. In fact,
the non-parametric estimators show a test coverage percent-
age significantly below 100%. Consequently, this analysis
complements the previous one and allows us to determine
the risk that entails the non-covered paths. This method also
contributes in providing adequate explanation when full cov-
erage is not achievable, as stated by the IEC 61508 standard
(IEC 61508-3 Ed2 Table B.2). Nonetheless, there is a need
for a reference value, equivalent to PFH ranges for hardware
failures, to comprehend the risk associated with untested
paths. Consequently, we believe this needs to be discussed
with Certification Authorities (CAs).

As aforementioned, in this preliminary assessment,
we have entirely focused on the system-call exercised by the
SIL2 task, leaving aside small pieces of inter-calls. Since the
obtained technical results seem promising, further analysis
needs to be carried out to include the kernel function-calls
that occur between system-calls. We believe that this can be
achieved by sampling on internal kernel functionality inmuch
the same way as we have sampled on the kernel’s system-call
interface.

It is essential to note that these methods are only justifiable
performing continuous monitoring of the process. Continu-
ous monitoring allows updating the results constantly and,
hence, it strengths the results while the data set increases.
Contrary to biology, where obtaining new samples is gen-
erally not that easy, in the software case, it is potentially
easier. Consequently, a significant higher assurance should be
doable by exercising the system continuously and using this
approach during the intensive test campaigns used to validate
safety-related systems.

Finally, we believe it is interesting and necessary that
the described methods undertake a thorough review by
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additional safety experts and a CA. As mentioned above,
this study intends to gain insight into the benefits of statisti-
cal alternatives concerning traditional techniques. Neverthe-
less, it is also essential to identify the limits and drawbacks
that these state-of-the-art techniques may have. Furthermore,
we believe that these methods may be potentially valid for
other OSs or software layers, although we cannot confirm it
as the analysis has not been conducted.
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