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ABSTRACT Streamlining is one of the most frequently utilized visualization methods to analyze the flow
structure of computational fluid dynamics (CFD) data. However, it is challenging to find a set of streamlines
showing the most prominent flow across the entire flow field due to the heavy computation time required
to generate bundles of streamlines. In this paper, we propose an efficient streamline generation method that
removes several seed candidates that are predicted as less important using a 3D U-net based regression
model. We employ 3D line integral convolution (LIC) volumes that depict the entire flow field for training
data of the proposed learning model and evaluate our method using a real-world CFD data set. We find using
our model that we can obtain quality of visualization results comparable to that of the ground truth even
when more than 90% of the seed candidates are truncated while operating 6.6∼17.1 times faster than the
competing method.

INDEX TERMS Deep regression network, dilated convolutional neural network, flow visualization, line
integral convolution, streamline.

I. INTRODUCTION
Streamline is a curved line which is instantaneously tangen-
tial to the velocity vector in the flow field. It is one of the most
frequently utilized visualization methods used to analyze
fluid dynamics data because it shows global flow streams
intuitively. However, it is challenging to determine which
seed locations may generate streamlines showing important
flow features, such as the vortex area. Much time is needed
to compute bundles of streamlines and find the seed locations
for the best streamlines across the entire flow field. Users
typically generate them by trial and error, which requires
substantial human effort.

Meanwhile, the convolutional neural networks have been
researched aggressively in relation to image classifica-
tion [1]–[4] and segmentation [5]–[8] over the past decade.
3D extensions of these techniques followed to analyze and
segment 3D medical volumes such as those from CT, PET,
or MRI data intelligently as well [9]–[11]. Many seman-
tic segmentation networks have adopted an encoder-decoder
style of architecture based on a fully convolutional network
(FCN) [5] for pixel-level classification to segment input
images.
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This paper introduces a 3D U-net-based deep regression
model that predicts the importance of streamlines generated
from densely located seed points in a 3D velocity field.
Furthermore, we present an efficient streamline generation
method that creates bundles of streamlines for the extrac-
tion of important flow features using the proposed learning
model. We apply dilated convolution instead of the standard
convolution for the lower layers of the 3D U-net to address
the checkerboard artifacts introduced by U-net’s pooling-
upsampling architecture.

Unlike most other FCN based models, our network uses
regression to predict the floating-point values of importance
scores across all voxels, in other words, it undertakes a
voxel-wise regression. This step is designed to predict the
importance of the streamlines generated from resampled seed
points in the input flow field. Our regression model is trained
by means of the 3D Line Integral Convolution (LIC) [12],
[13] volume, which depicts the global 3D flow of the 3D
velocity vector field. Given a streamline σ , line integral
convolution consists in calculating the intensity for a pixel
located at x0 = σ (s0) by the following equation [13]:

I (x0) =
∫ s0+L

s0−L
k(s− s0)T (σ (s))ds. (1)
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where T denotes an input white noise, k(s) is the convolu-
tional kernel, and L is a length of the streamline segment.
Our approach is motivated by the idea that 3D LIC generates
volumes capturing flow streams that are visually recognizable
by humans such that learning models can recognize them.

We propose an efficient streamline seedingmethod capable
of removing numerous seed candidates that are predicted as
less important after the use of the proposed learning model.
This greatly reduces the computing time for the streamline
calculation if seeds generating uninteresting streamlines are
eliminated before the process of particle integration. The deep
regression model does not judge which seeds are essential
but allows the user to decide this by setting their own range
of importance to select the streamlines to be drawn. Fur-
thermore, we present a streamline selection method based
on a curved-line clustering algorithm to address the visual
cluttering problem as well.

The contributions of this paper are as follows:

• We introduce a deep regression model which cap-
tures the global flow trends of the 3D velocity field.
We present several optimization techniques that enhance
the prediction results as well.

• We propose a novel seed placement method that extracts
streamlines showing important flow features in an inter-
active time using the proposed learning model. To the
best of our knowledge, in the context of streamline
seeding for 3D flow data, no work has yet done this.

The remainder of this paper is organized as follows: related
works are presented in Section 2. An outline of the proposed
method is described in Section 3. In Section 4, the 3D U-net
based regressionmodel for the learning of flow trends is intro-
duced, while a streamline seeding method using the proposed
model is presented in Section 5. Experiments using synthetic
and real-world CFD data follow in Section 6. Subsequently,
discussions are presented in Section 7. Finally, we conclude
the paper in Section 8.

II. RELATED WORKS
This paper deals with the deep learning-based streamline gen-
eration method closely related to two major research topics
- streamline seeding and deep learning model. This section
introduces dozens of related works by dividing them into
two categories: streamline visualization andmachine learning
techniques for flow data analysis.

A. SEED PLACEMENT AND STREAMLINE SELECTION
Various methods have been introduced so far to tackle
seed placement and streamline selection problems.
Li and Shen [14] presented an image-based streamline gener-
ation method to prevent the overlap of streamlines, making it
difficult for humans to perceive. Burge et al. [15] introduced
an importance-driven particle tracing method that reduces
visual clutter while revealing important flow structures.
Spencer et al. [16] suggested a similar method which creates
evenly spaced streamlines on the surface in a 3D space.

Several metrics measuring the importance and similarity of
streamlines have been proposed as well. Methods based on
information entropy theory [17] capable of selecting inter-
esting streamlines among numerous candidates were intro-
duced [18], [19]. Yu et al. [20] and Lu et al. [21] adopted
a curvature and torsion pair to measure the similarity of
streamlines, while McLoughlin et al. [22] added a new met-
ric, in their case tortuosity, to enhance the measurement of
the similarity of curved lines. Chaudhuri et al. [23] proposed
a novel metric, a box-counting ratio, which measures the
complexity of the geometry of curved lines by measuring
their space-filling capacities at different scales.

Recently, a survey by Sane et al. [24] provided a thorough
overview of this research field. They divided the techniques
into three different categories - density-based, feature-based,
and similarity-based methods - for automated techniques and
two categories - interactive tools and domain information - for
manual techniques. They evaluated the automated techniques
in terms of redundancy, regions of interest, and computation
as well.

Even though many studies were introduced to tackle
streamline seeding problems so far, most of them assumed
that the streamlines were precomputed and disregard this
despite the tremendous amount of computation time required.
We propose a streamline seeding strategy that reduces the
vast streamline computation time using the deep regression
network in this paper.

B. FLOW DATA ANALYSIS USING MACHINE LEARNING
Several vortex extraction methods have employed deep
learning approaches over the last decade. Many of these
had the goal of detecting eddies in oceanographic data.
Lguensat et al. [25] introduced EddyNet, a deep neural net-
work for the pixel-wise classification of oceanic eddies
from sea surface height maps. This network is based on
U-net [6], which was developed for the segmentation of
biomedical images. Franz et al. utilized a combination of a
CNN and a RNN to detect and track ocean eddies classi-
fied by the Okubo-Weiss method [26], [27]. Bai et al. [28]
proposed a streampath-based region-based convolutional
neural network(SP-RCNN) that detects ocean eddies from
streampath images. Duo et al. [29] presented a deep learning
approach based on a deep residual network (ResNet) [4]
and a feature pyramid network (FPN) [30] to detect oceanic
mesoscale eddies.

More general flow feature extraction methods have
been presented as well. Bin and Yi [31] proposed a
CNN-based model which extracts various flow features such
as clockwise vortices, anti-clockwise vortices, and saddles.
Ströfer et al. [32] introduced what they termed a Fluid
R-CNN, a model based on an R-CNN [33] that can
identify various flow features including 2D recirculation
regions, 2D boundary layers and 3D horseshoe vortices.
Liu et al. [34] proposed a CNN-based shock-wave detection
method and a novel loss function to optimize the detec-
tion results. Deng et al. [35] and Wang et al. [36] presented
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a novel vortex identification method based on a CNN. They
utilized the instantaneous vorticity deviation (IVD) to label
the ground truth vortex area for the proposed CNN-based
model. Kim and Günther [37] proposed a novel CNN-based
reference frame extraction method. Li et al. [38] presented
a method by which to extract flow features using a binary
support vector machine (SVM) which performs supervised
streamline segmentation. Hong et al. [39] employed a Long
Short-Term Memory (LSTM) network, which is a type
of artificial RNN, to enhance the performance of parallel
particle tracing in flow visualization using a novel access
pattern estimation approach. A CNN-based flow field reduc-
tion scheme was presented as well [40]. This scheme uti-
lized a CNN-based model which learns the flow features
of velocity vector fields from bundles of 3D streamlines.
Han et al. [41] presented FlowNet, a deep learning frame-
work for the clustering and selecting of streamlines/stream
surfaces. Jakob et al. [42] proposed an extensive fluid flow
data set for application to deep learning problems in scientific
visualization. The data set was employed in a recent study of
CNN-based vortex boundary identification [43].

As we have seen so far, various methods were introduced
in recent decades for flow data analysis, including streamline
visualization and machine learning techniques for flow data
analysis. This paper presents a novel importance metric to
measure streamlines to select ones to display while intro-
ducing a CNN-based deep learning technique that instantly
predicts the metric from the 3D flow field. Our deep learning
model is similar to the EddyNet [25] and SP-RCNN [28] for
a few reasons. Both EddyNet and our network are based on
the U-net [6], but the EddyNet detects local eddies, whereas
ours learns global streamlines and predicts their importance.
Both SP-RCNN and ours learn flow features from the images
generated from the flow field instead of the raw velocity
vector fields. However, SP-RCNN relies on the region-based
convolutional neural network(R-CNN) [33], [44] while ours
are based on the U-Net, which is usually adopted in medical
image analysis. Furthermore, both EddyNet and SP-RCNN
deal with 2D data only, while our network extends it to 3D.

III. OUTLINE
We present a deep learning-based approach that gener-
ates streamlines showing essential flow features efficiently.
We employ a deep regression model trained to predict the
importance scores of all streamlines instantaneously through-
out the entire set of seed candidates in the flowfield. A regres-
sion model is utilized to remove seed points predicted as
less critical from the seed candidates to reduce the com-
putation time required to create streamlines. We achieve
quality of the visualization results comparable to that of
the ground truth despite the fact that 90% of the seed
points are removed in far less time. The workflow of
our method is illustrated in Fig. 1. The proposed method
can be divided into two processes: training and streamline
generation.

A. MODEL TRAINING
The proposed model receives a set of LIC volumes as the
training data and the corresponding importance maps as the
target data to learn the seed importance distribution in the
input 3D flow. The raw flow data are resampled to a rec-
tilinear grid to fit into the proposed deep learning model.
The input LIC volumes are created by applying a 3D LIC
operation to the resampled flow volumes, while the target
data are generated by calculating the importance score of the
streamlines that are created from the entire set of resampled
voxels such that importance maps with resolution identical to
that of the LIC volume are produced.

B. STREAMLINE GENERATION
The trained model predicts the importance score of all vox-
els in the unseen flow data to remove voxels predicted as
being of low importance from the seed candidates. How-
ever, because many critical seeds may be concentrated in
a few small regions, they may generate visually cluttered
and similarly looking streamlines if all of them are drawn
together. To overcome this problem, a streamline selection
method based on curved-line clustering is added at the end
of our approach. Similar streamlines are grouped by k-means
clustering using several streamline features, and a few repre-
sentatives per group are finally drawn. In the subsequent sec-
tions, we describe our deep regression model and streamline
seeding method in detail.

IV. DEEP REGRESSION MODEL FOR THE 3D VELOCITY
FIELD
We adopt the encoder-decoder style architecture for the pro-
posed regression model, as this type is commonly utilized for
semantic segmentation. Because both models perform voxel-
wise inference, we believe that the encoder-decoder architec-
ture is applicable for our purposes here. The proposed deep
regression network is modified from the 3D U-net. It receives
the LIC volume derived from the 3D velocity field as training
data instead of the raw velocity vectors, so to utilize the image
recognition capabilities of existing segmentation models.

Details about the input training data, the target data to
predict, and the architecture of our deep regression model
are described in the following subsections - ‘‘LIC Vol-
ume’’, ‘‘Importance Score’’ and ‘‘Deep Regression Net-
work’’, respectively.

A. LIC VOLUME
LIC is a well-known dense visualization technique for vector
fields, which adopts a low-pass filter to convolve input white
noise along pixel-centred symmetrically bidirectional stream-
lines to exploit spatial correlations in the flow direction [45].
The 2D LIC technique is often used to visualize a 2D veloc-
ity field because it shows the global flow trends while not
requiring streamline seeding. However, the 3D LIC for flow
visualization is very limited due to perceptual challenges such
as depth perception, occlusion, and visual complexity [46].
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FIGURE 1. Overall procedures of the proposed streamline seeding method. (a): Set of LIC data and
the importance score map is created from the raw velocity vector fields. The LIC data is used as
train data set while the importance score map is adopted as target data to be predicted by the
trained model. (b): The trained model predicts the importance score map from the unseen flow
data. Seed candidates predicted as low importance are truncated to reduce total computing time.
The streamline selection based on the curved-line clustering is followed.

FIGURE 2. Two-pass 3D LIC operation with contrast enhancement.

We employ the 3D LIC volume as the training data instead of
the raw velocity field in this work. A semantic segmentation
network for the 3D volume data is also adopted to analyze
the 3D LIC volumes to learn the flow trends in the original
velocity fields. Moreover, there is another side benefit related
to the memory usage. The LIC volume requires less memory
than the velocity vector because the 3D velocity vector con-
sists of three components (u, v, and w), whereas LIC volume
requires only one component.

To convert a 3D velocity field into a LIC volume,
we employed the 3D version of Enhanced LIC [47], [48].
Because the basic LIC algorithm averages the texel values
of white noise that lie on an integrated path of a streamline,
the approach often produces blurry images in which not only
humans but also deep neural networks can barely recognize.
The Enhanced LIC method addresses this problem by means

FIGURE 3. LIC volumes with different configurations.

of a two-pass LIC and image enhancement technique. Awell-
known histogram equalization is employed for the LIC con-
trast enhancement in this paper. Two-pass LIC performs the
LIC operation twice, where the output image of the first
execution becomes the input image of the second execution
in place of the white noise. Fig. 2 shows a modified version
of our LIC procedure and Fig. 3 presents a comparison of
the image quality outcomes between the basic LIC and the
enhanced LIC approaches.

B. IMPORTANCE SCORE
We introduce a new metric, referred to as the importance
score, to measure each streamline’s significance. This score
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FIGURE 4. Two line segments with different importance scores.

is calculated by (2).

importance score = twistedness+ coverage (2)

Here, twistedness refers to how much the streamline is
twisted, while coverage assesses how far it reaches. Because
twistedness and coverage can have different scales, they are
standardized bymeans of z-score normalization, which is less
sensitive to outliers than min/max normalization.

The equation used here to calculate the twistedness of a
streamline is expressed below.

twistedness =
N−1∑
i=1

(
cos θi + 1

2

)
, 0 ≤ θi ≤ π (3)

Here,N denotes the number of line segments in the stream-
line while θi indicates the inner angle between the i-th seg-
ment and the i+1-th segment as illustrated in Fig. 4. Owing to
the cosine function, the score increases for a smaller angle and
decreases for a larger angle. The cosine values are rescaled
from [−1, 1] to [0, 1] so as to avoid the generation of negative
scores. In the case of Fig. 4, the streamline (a) has much
smaller inner angles than streamline (b); we can interpret this
as meaning that line (a) is more twisted than line (b), which
in turn means that the twistedness of line (a) is much higher
than that of line (b).

As noted above, coverage indicates how far the stream-
line reaches. This value is calculated using the volume of
an axis-aligned bounding box(AABB) of the streamline.
When the min point of AABB is (x0, y0, z0) and max point
is (x1, y1, z1), the coverage of the streamline is calculated
by (4).

coverage = |x1 − x0| × |y1 − y0| × |z1 − z0| (4)

We employ the proposed importance score as the target
value of our network. The streamlines should be calculated
from every voxel in the training flow volume in both forward
and backward directions. The importance map of the velocity
field is generated at the preprocessing time as follows:

1) Create bidirectional streamlines from every voxels in
the training data.

2) Calculate the importance scores of each streamline.
3) Assign the calculated score to the seed voxel.
4) Apply normalization to the calculated importance

score.

FIGURE 5. The illustration of the 2D standard convolution with kernel
size 3× 3 and the dilated convolution using the identical kernel size with
a dilated rate d = 2.

C. DEEP REGRESSION NETWORK
Since U-net [6] was originally introduced, given its accurate
segmentation of images, variants of U-net are often applied in
several different areas such as volume segmentation [9], eddy
detection [25], and vortex boundary identification [43] among
others. U-net is a fully convolutional network for biomedical
image segmentation that also adopts the encoder-decoder
scheme to enlarge its receptive field quickly by pooling lay-
ers. This elegant architecture introduces a long skip connec-
tion from the encoder layer to the corresponding decoder
layer to feed fine-grained details, which may be lost due
to the series of downsampling steps. However, there are
checkerboard artifacts introduced by the upsampling oper-
ations, which is an unavoidable and severe drawback [49].
To address these problems, several studies have proposed
replacing the normal convolutional filters with a dilated con-
volution strategy [8], [50]–[52]. The dilated convolution [50]
refers to a type of convolution that skips pixels on the pro-
cessing layer to extend the receptive field while holding the
number of parameters constant as illustrated in Fig 5.

In this paper, we present a deep regression network based
on a dilated 3D U-net approach. Fig. 6 illustrates the archi-
tecture of the dilated 3D U-net. It is divided by three parts
- the encoder part (A) and the decoder part (B), which are
connected to each other via long skip connections, and a
dilated convolution part(C). Parts (A) and (B) are equivalent
to the corresponding parts in the original U-net. The last one
- the dilated convolution part (C) replaces the lower layers
of the original U-net with a chain of dilated convolutions
to address the checkerboard artifacts. Because dilated con-
volution enlarges the receptive fields without downsampling
feature maps, we do not need to perform upscaling, which
may introduce checkerboard artifacts. In Fig. 6, the black
box is the input LIC volume while the red box is the vol-
ume of importance score, which is the target map. The blue
box is a feature map which is assumed to have passed the
convolution and pooling filter, and the white box is a copy
of the feature map from the contraction path via a long skip
connection. The black arrow indicates a series of processes
which are in this case 3D convolution, ReLU activation, and
batch normalization. The orange arrow is equivalent to the
black arrow except that it employs dilated 3D convolution
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FIGURE 6. An architecture of the dilated 3D U-net. The image in the box in the upper right corner depicts the architecture of the original
3D U-net.

instead of the standard 3D convolution, while the ‘‘d = N ’’
label below the arrow indicates the dilation rate. The red
arrow is the 3D max pooling, and the green arrow refers
to 3D up-convolution. The yellow arrow is the 1 × 1 × 1
3D convolution used here, which maps multichannel feature
maps to a single-valued target map. The long grey arrow is a
long skip connection. The labels beside the boxes present the
volume resolution. In this paper, we adopt 128 × 64 × 64
for the input flow volume. The label over the box shows
the number of channels of the feature map. Comparing the
two architectures (C) of both architectures perform similar
operations. Both receive featuremaps from the corresponding
part (A) and then execute the learning process by enlarging
the receptive field twice. The original 3D U-net enlarges the
receptive field by pooling, which may lead to checkerboard
artifacts. Moreover, it enforces a more extensive network due
to the expanded path and duplicated feature maps, as depicted
by the white box.

D. DATA AUGMENTATION
Numerous input data are required to train a robust deep learn-
ing model which is not overfitted to the training data. Despite
the effort to collect CFD data for machine learning [42], such
data are not applicable to our work because all of them are
2D flows.Many previous works employed data augmentation
schemes [6], [8], [9], [52] to address a lack of training data.
This paper employs data augmentation by applying transfor-
mation methods such as rotation, flipping, and scaling to the
original data. Furthermore, we adopt another augmentation
technique: the addition of extra LIC volumes generated by
random white noise. Fig. 7 shows LIC volumes generated
using different white noises with an identical velocity vector
field.

V. STREAMLINE SEED PLACEMENT
In this chapter, we present an efficient seed placementmethod
based on the proposed regression model. We propose a
streamline seeding strategy that reduces the vast streamline

computation time with the use of the proposed deep regres-
sion model. Our model removes numerous less essential
seeds, which greatly reduces the computation time for stream-
line integration and curved-line clustering while maintaining
prominent streamlines.

Our method consists of six steps:

1) Resample the input flow volume to fit the deep regres-
sion model

2) Predict importance scores using the model
3) Remove seeds predicted as less important. Most unin-

teresting seeds are truncated during this step.
4) Create streamlines from the seeds remaining after the

prior step.
5) Compute the actual importance score from the created

streamlines.
6) Perform curved line clustering of the created stream-

lines to select representatives to be displayed among
many similar ones.

The flow volume is resampled in the first step. Because
our model can obtain flow volumes with predetermined res-
olutions only as input data, the input flow data must be
resampled to fit the model. To avoid visualizing uninter-
esting streamlines, seed candidates predicted as less critical
are removed in the third step. In the fourth step, stream-
lines are generated from the seed points which pass the
previous step, and accurate importance scores are calcu-
lated. Because numerous seed points have been removed
by this step, we can save a considerable amount of time
during this stage. The accurately calculated scores are utilized
for curved-line clustering in the next step. Streamlines to
be drawn are determined using the seed selection method
based on curved-line clustering to avoid rendering redun-
dant streamlines. During this step, similar streamlines are
grouped, and representative streamlines are selected for each
group.

We adopted the curved-line clustering method to select
streamlines from among the many streamlines created in the
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FIGURE 7. Diverse LIC volumes for the data augmentation. A corner of each volume is clipped away to show the inside of the data. The flow patterns in
each data are slightly different due to the randomly generated white noises even if they are calculated on the identical flow volume.

FIGURE 8. Examples of the first k-means clustering using the spatial
properties. Streamlines with similar positions are grouped. Half cylinder
data set is employed. Color coded by the first cluster ID.

previous step. Our method borrows from the literature [53],
specifically one study that employed two-pass k-means

clustering using two different properties of spatial and shape
for the clustering features. The spatial property consists of
the start point, the middle point, and the end point of the
streamline, while the shape property includes the linear and
angular entropy. Instead of an entropy-based shape property,
we adopt an importance-based shape property consisting of
twistedness and coverage, which are introduced in relation
to the importance score. Twistedness refers to the amount
of angular variation along a streamline similar to angular
entropy, while the coverage score indicates the amount of spa-
tial occupancy. Fig. 8 depict the examples of the first k-means
clustering, while Fig. 9 show the examples of the second
k-means clustering.

Similar streamlines are grouped via the curved-line clus-
tering method, and a few representative lines are displayed
in the final step. The streamlines with the highest impor-
tance scores are selected as the representative streamlines
in each cluster. The process of streamline selection is as
follows:

1) Extract the spatial and shape properties from the
streamlines

2) Perform the first k-means clustering using the spatial
properties of the start point, middle point and end point
of the streamline

3) Perform the second k-means clustering using the shape
properties of the twistedness and coverage scores of the
streamline on every cluster generated during the first
clustering step

4) Select and display the most important streamlines as
representatives of each streamline cluster
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TABLE 1. Experiment data information. Four data sets are applied in the experiments. The half cylinder and the Tangaroa data are cropped, while the
solar plume and the 3D double gyre data are resized to identical resolution. Every data set is divided into three categories - train, validation, and test as a
ratio of 5.6: 1.4: 3.

FIGURE 9. Examples of the second k-means clustering using the shape
properties. Streamlines with the similar shape in the cluster 0 of Fig. 8 are
drawn. t denotes the mean twistedness while c indicates the mean
coverage of the entire streamlines in the cluster.

VI. RESULTS
We evaluated the proposed deep regression model and the
streamline visualization method using the list of data sets
shown in Table 1. Four flow data sets are used for the exper-
iments. These data sets are, from top to bottom, referred to
here as half cylinder [54], solar plume [55], Tangaroa [54],
[56], and 3D double gyre [57], [58]. The 3D double gyre data
set is synthetically created, but the others are generated by
CFD simulations. Every data set is defined on a Cartesian
grid and is time-dependent with different time steps.

Due to the GPU memory constraints, all data sets are
resized or cropped to an identical resolution - 128× 64× 64
(Table 1). The length of data should be 2n because there are
a couple of pooling operations in the proposed network. Half
cylinder and Tangaroa were cropped while the others were
resized. In the cropping cases, the most interesting regions
in the entire flow field were extracted not to loose the most
interesting flow features as shown in Fig. 10. Because most

FIGURE 10. Visualization of the cropped regions and streamlines in the
original data. A red box is the cropped region.

data sets have an asymmetric shape initially, with the axis
along the dominant flow longer than the others, we decided
to create a test set with an asymmetric shape. The normal
distribution with a mean of 0.5, a standard deviation of 0.1 is
employed to generate white noise for the LIC computation.

We adopted cross-validation for the experiments. Each data
set consisting of multiple time steps is considered as a set
of separate data blocks such that they were randomly split
into the training and testing data at a ratio of 7:3. Then,
the training data was further split into training and validation
data at a ratio of 8:2. A ten-fold cross-validation scheme was
employed using only the training data. Cross-validation is
performed on each data set independently so as not to include
toomany samples of a single data set in the training set, which
may lead to incorrect validation. Augmentation processes
were applied only to the training and validation set.

A. DEEP REGRESSION MODEL
We implemented the proposed model using PyTorch 1.7 [59]
with CUDA 10.1 [60]. The model is trained on a single
computing node with four NVIDIA V100 GPUs with 32GB
ofmemory on the Neuron supercomputer at the KISTI (Korea
Institute of Science and Technology Information) supercom-
puting center whereas it is evaluated on a desktop PC with a
single Intel Xeon Gold 6248 CPU with 376GB memory and
a single NVIDIA Titan RTX GPU with 24GB memory.

1) MODEL COMPARISON
We evaluated our model relative to the original 3D U-net.
In this experiment, the basic LIC strategy served as the input
data format, and no augmentation methods were applied.
Each learning model was trained using an identical data set,
shown in Table 1, for this experiment. Table 2 depicts the
elapsed time required to learn the models and predict the
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TABLE 2. Comparison of the original 3D U-net and our model. The top
two rows depict size of two networks in terms of the number of
parameters and receptive field size. The middle four rows show the
accuracy of the model for each test data set. Unseen data blocks are
employed for this experiments. A basic LIC and no augmentation is
applied. Metric is R2. The last two rows present the speed of the models.
Dilated 3D U-net outperforms original 3D U-net even though it runs faster
than its competitor.

importance scores across every voxel in the test data. Both
models were trained for 100 epochs. Furthermore, ten-fold
cross-validation was applied in this case as well. The dilated
3D U-net outperformed the original 3D U-net across all
training data, with the learning time and prediction time also
shorter than its competitor despite using far fewer parameters.
Both models predict the volume of importance score less
than a second, which can take over 10∼60 minutes if naively
calculating them using a single CPU. R2 is employed for the
metric to compare the accuracy of the models. The R2 value
is calculated as follows:

R2 = 1−
residual sum of squares
total sum of squares

= 1−

n∑
i=0

(yi − ŷi)2

n∑
i=0

(yi − ȳ)2
(5)

where yi is the i-th value of the variable to be predicted, ŷi is
a predicted value of yi and ȳ is a mean value of yi.

2) INPUT DATA FORMAT
We assessed the proposed model using four different input
data formats: velocity vector, basic LIC, enhanced LIC with
one-pass enhancement, and the enhanced LIC with two-pass
enhancement. The one-pass enhanced LIC performs the LIC
integration and contrast enhancement only once, whereas
the two-pass enhanced LIC performs them twice, as illus-
trated in Fig 2. Enhanced LICs outperformed others across
all training data, while the basic LIC method surpassed the
velocity vector as depicted in Fig. 11. The two-pass version
of enhanced LIC showed better results than the one-pass
enhanced LIC as well.

3) DATA AUGMENTATION
The proposed augmentation methods were evaluated on
our network model using the enhanced LIC data. Fig. 12
shows the evaluation results comparing across different
augmentation methods. Four different LIC volumes cre-
ated by randomly generated white noise were used for LIC
augmentation, while eight different transformations were

TABLE 3. A list of operations applied on the transformation
augmentation.

FIGURE 11. Evaluation results comparing across different input data
formats. The metric is R2. Higher is better. Enhanced LIC outperforms
others.

FIGURE 12. Evaluation results comparing across different augmentation
methods. The metric is R2. Higher is better.

employed for transformation augmentation. Table 3 depicts
details of the list of augmentation operations. Combined
augmentation was done with both methods simultaneously.
All three methods surpassed the baseline on all test data sets.
However, there were scant differences noted when comparing
the three augmentation methods. LIC augmentation outper-
forms the transformation method on all test data sets except
for the 3D double gyre data set. When comparing LIC and
combined augmentation, LIC showed better results on the
half cylinder and the Tangaroa data set, whereas the combined
method was superior on the 3D double gyre and solar plume
data sets. In the case of 3D double gyre, it shows higher
accuracy than others. We believe it is because the data is
synthetically created whereas the others are generated by the
CFD solvers. The proposed model may fit the data easier than
the rest. It yields very high accuracy even in the baseline,
so that there is only little room for improvement in accuracy
from augmentations.
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FIGURE 13. Comparison of the total importance score across different
seed-removal strategies. Higher is better.

FIGURE 14. Comparison of the streamline creation time across different
seed-removal strategies. The metric is seconds.

B. STREAMLINE SEEDING
We conducted experiments to evaluate the proposed model
in terms of accuracy and speed. This experiment assessed
the summation of the importance score of the 100 most
essential streamlines across different seed-removal strategies
which are non-removal (ground truth), the model-based seed-
removal, and random seed-removal. The non-removal strat-
egy generates all streamlines from all seed candidates without
any seed truncation. The second strategy removes numer-
ous seed points predicted as less important by the proposed
model. We set the fraction of removal to 90% and 95% in this
experiment. The last strategy removes seed candidates ran-
domly. Only 90% removal is included for this strategy, which
is the minimum removal fraction of the model-based experi-
ments. We also measured the total process time required to
generate streamlines to assess the reduction in the amount
of time across the strategies, as mentioned earlier. Because
the ground truth does not remove seeds, it records the exact
maximum score.

We obtained a commensurable score in the experiments
of the model-based seed-removal strategy compared to the
ground truth across all test data sets as shown in Fig. 13.
In the half cylinder data case, the model-based strategy using
90% and 95% removal levels showed scores nearly identical
to that of the ground truth. The difference was less than
0.1%. It also scored around 98% of the ground truth on the
half cylinder and Tangaroa data sets despite the fact that

FIGURE 15. Comparison of streamlines of 3D double gyre data using
different seed-removal strategies. 100 streamlines are drawn.

they utilized only 5∼10% of all seed points. In the solar
plume case, we obtained less accurate results compared to the
previous trials, i.e., 67% and 45% of the ground truth for the
90% seed-removal and 95% seed-removal strategies, respec-
tively. However, these results are very competitive compared
to the random removal strategy, which removes 90% of the
seeds randomly. The proposed model-based strategy outper-
formed its competitors by 1.5 times and 2.2 times at 95%
removals and 90% removal, respectively. In terms of speed,
any of the seed-removal strategies surpassed the non-removal
case as depicted in Fig. 14. It performed 12.8∼17.1 and
6.6∼9.9 times faster than the baseline with the 95% removal
and 90% removal strategies, respectively.

Fig. 16 shows the visualization results of the streamlines
generated in the experiments. The data blocks are chosen
from among the unseen blocks. Streamlines in the 90% seed-
removal and the 95% seed-removal cases, which are based
on the proposed model, are more similar to the non-removal
case than to the random removal case. However, many similar
streamlines are shown to be overlapped in a small region
when we draw the most important streamlines only. The
streamline selection method based on curved-line clustering
is helpful to overcome this problem. Fig. 17 shows the results.
These images present more diverse flow features than the
previous cases. Because the two model-based strategies pro-
duce nearly identical results, we omit one - 90% removals
- which preserves more seeds. For the half cylinder and
solar plume cases, the three strategies show similar results
except that random removal generates more streamlines of
less importance. For Tangaroa, the non-removal and random
removal strategies reveal less essential flows, whereas the
proposed method eliminates them. This occurs because the
proposed model predicts less important seed points correctly
and removes them from the seed candidates. However, this
method is not applicable to all data sets. In the 3D dou-
ble gyre case, our strategy’s resulting images do not show
streams between the core of the flow and the outer flows
because it removes most of the less important streamline
seeds such that no seeds remain in that area. This drawback
can be resolved by slightly modifying the proposed seed-
removal method. When removing seed points predicted as
less important, 1∼2% of those are randomly chosen and kept
as seed candidates. This slight change provides much richer
streamline results, as shown in Fig. 15.
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FIGURE 16. Comparison of visualization results showing the top 100 streamlines with the highest importance score across different
seed-removal strategies. Color coded by the importance score. One data per row: 100th time step of the half cylinder, the fifth time step of
the solar plume, 100th time step of the Tangaroa, and the 1st time step of the 3D double gyre, which are all unseen data sets.

VII. DISCUSSION
A. RECEPTIVE FIELD SIZE
In order to determine the importance score precisely, we cal-
culate the required number of layers, ensuring that the per-
ceptrons in the network can cover a large area of the flow
field. If the receptive field is too small, the model can only
utilize local information around the voxel and will thus never
learn the global stream flow information. A receptive field
that is too large may lead to lower accuracy due to the
excessive influence of distant voxels, which may be unre-
lated. Additionally, it can yield a vast neural network that
requires too many resources to process. However, there are
no related studies of the optimal size of the receptive field
for this network. In this paper, we heuristically determine
that the receptive field of the network should enable the
perceptron at the centroid of the volume to see the entire flow
field.

Considering the findings of earlier studies [61], [62],
the size r0 of the receptive field of the neural network is
expressed as:

r0 =
L∑
l=1

(
(kl − 1)

l−1∏
i=1

si

)
+ 1 (6)

where L is the number of layers, kl is the kernel size of layer l,
and si is the stride of layer i.

For the receptive field of the centroid voxel in the flow
volume to cover the entire flow field, the size of the recep-
tive field r0 should exceed the maximum length of the flow
volume.

For flow data of size W × H × D, it is necessary find L,
which satisfies the following equation:

r0 =
L∑
l=1

(
(kl − 1)

l−1∏
i=1

si

)
+ 1 ≥ max(W ,H ,D) (7)
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FIGURE 17. Visualization results of the streamline selection method based on the curved-line clustering across different seed-removal strategies. The 3D
double gyre case employed the modified seeds removal method while others adopted the original strategy. Color coded by the velocity magnitude. One
data per row: 100th time step of the half cylinder, the fifth time step of the solar plume, 100th time step of the Tangaroa, and the 1st time step of the 3D
double gyre.

Assuming that the size of the volume data is 128×64×64,
the required number of layers in the dilated 3D U-net is 14.
This leads to the network architecture shown in Fig. 6. Table 2

shows a comparison of the two networks in terms of total
number of parameters and the receptive field size. We assume
a resolution of the LIC volume of 128× 64× 64.
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B. LIMITATIONS
The proposed network has limitations, despite the fact that
it helps to reduce the time required to generate streamlines
revealing significant flow features. Because LIC performs
voxel-wise flow integration, it could not accurately depict
local flows compared to the standard streamline calculation
that performs intra-voxel integration. It may be helpful to
generate LIC volumes with much higher resolution by super-
sampling the input velocity field to overcome this problem.
However, this requires a more extensive deep regression
network, which demands more memory. Although the mag-
nitude of the velocity vector is one of the most important
features when analyzing flow data, the proposed method does
not exploit it because the LIC operation performs normaliza-
tion on the velocity vectors naturally. We may need to extend
our regression network to utilize multivariate volume data by
adding the velocity magnitude to the input training volume.

The test data set in the experiments is a set of distinct time
steps generated using a CFD solver identical to that of the
training data set. We believe that it is possible to ensure high
accuracy for a relatively small network because both training
and test data are from the samemodality. Amuchmore exten-
sive network would be needed to obtain such accuracy on
unseen data generated using a completely different modality.

C. APPLICATIONS
The proposed network can be employed to visualize massive
amounts of time-variant flow data efficiently, with calcula-
tions done by a remotely located high-performance computer.
Such data types are too vast to visualize using a desktop
PC. We can employ the proposed model to learn the flow
trend of the data set using a temporally sampled data set
on a remote server. The trained model can evaluate every
time step in the original data and determine which time steps
are worth downloading. Moreover, we can utilize the model
to accelerate the drawing of streamlines on a desktop PC.
Apart from streamline seeding, we believe that there are more
applications for our network, such as vortex identification,
flow data compression, or the upscaling of velocity vector
fields.

VIII. CONCLUSION
In this paper, we proposed a deep regression model to learn
flow trends in the velocity field to predict flow importance
levels across complete flow fields. We presented an efficient
visualization method for streamlines based on the proposed
network as well. Curved-line clustering is employed for
streamline selection to group similar streamlines. Moreover,
the proposed methods were evaluated using a single syn-
thetic data set and three different real-world CFD data sets.
We obtained quality of visualization results comparable to
that of the ground truth despite the fact that more than 90%
of the seed candidates were truncated in 6.6∼17.1 less time
compared to the proposed method’s competitors.

We adopted the dilated 3D U-net strategy in this work,
but other FCN-based networks should be applicable as well.
We will soon apply another CNN-based deep regression
network, such as pyramid dilated convolution or a residual
network, to enhance the proposed model. We will improve
LIC augmentation using more diverse LIC images generated
by various random distributions with varied statistic values
as well. Due to the memory constraint in this case, the input
flow data were resampled to a smaller resolution. This can be
resolved if a distributed deep learning technique is employed.
We plan to expand our deep regression network using a
distributed framework to overcome the size problem.
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