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ABSTRACT To objectively evaluate weak neural responses such as auditory steady-state responses (ASSRs)
often involves repetitive measurements, after which the accumulated trials are averaged or analyzed by
statistical methods to detect a significant response. Such detection methods are often performed off-line
on all measured trials. However, the number of required trials, and therefore the measurement time, is often
heuristically chosen, and might be suboptimal. In this work, we compared three real-time signal-detection
algorithms that could yield improved detection performance, at reduced measurement time. The classical
Neyman-Pearson (NP) detector was evaluated by quantifying the signal-to-noise ratio (SNR), and detection
probability of ASSRs, as a function of accumulated trial number. We also analyzed the performance of the
Bayes factor (BF) to detect ASSRs at different thresholds. Finally, we modified the sequential probability
ratio test (SPRT), with a cropped maximum likelihood (ML) estimator, such that it can detect ASSRs
(with unknown SNRs) sequentially. We compared the three real-time detectors by using Monte Carlo
simulation, and evaluated their performance on detecting ASSRs, generated from the superposition of a
pair of amplitude-modulated (AM) tones near 40 Hz in the EEG of nine subjects with normal hearing.
The low-order ASSRs (i.e., envelope frequency-following responses) have been sufficiently evaluated in
the literature. However, the higher-order ASSRs might reflect further nonlinear mechanisms in the upper
ascending auditory pathway. Results show that the real-time detectors can detect not only all low-order
ASSRs but also higher-order ASSRs at frequencies with lower SNR. The NP detector yielded the best
simulation and actual detection performance. For all subjects, the second-order ASSRs could already be
detected with the NP and BF detectors within five trials, but more trials were needed for the modified
SPRT detector. In general, higher-order ASSRs require more trials to detect, with the exception of ASSRs
near 40 Hz and 80 Hz. In conclusion, compared with traditional off-line detectors, both (real-time) NP and
BF detectors showed improved detection performance, and their application in EEG experiments can save
valuable measurement time.

INDEX TERMS Auditory steady-state response, amplitude modulation stimuli, Bayes factor, EEG,
high-order monaural beats, Neyman-Pearson detector, spectral F test, sequential probability ratio test.

I. INTRODUCTION
The auditory steady-state response (ASSR) is an envelope-
following response [1] to periodic sound complexes, which
manifests as stable brain oscillations that are locked to the
frequencies present in the sound envelopes [2]. ASSRs are
due to nonlinear signal processes that may be generated at
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different levels within the auditory pathway, ranging from as
early as the cochlear nerve and subcortical sources, to the
neocortex [3], [4]. Because of their reproducibility and invol-
untary nature, ASSRs have been considered a valid objective
biomarker to assess hearing thresholds for clinical use and
auditory system disorders [3], [5].

This characteristic of ASSRs thus allows objective
response detection methods to extract the relatively weak
ASSRs from noisy EEG measurements, by analyzing
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a number of repetitive trials. The commonly used
detection methods include the t-test and the spectral
F test [6]–[8], the phase synchrony measure (PSM) [9] and
the component synchrony measure (CSM) [10], the mag-
nitude squared coherence (MSC) [11], the Hotelling T 2

(T square) test [12] and the circular T 2 test [13]. Com-
parative studies [6], [14], [15] have evaluated the relia-
bility of these different methods, although no consensus
has been achieved regarding the most efficient detection
method.

Note that the aforementioned detectionmethods aremainly
used off-line, after having measured a sufficiently large num-
ber of trials, judged necessary (a priori) to detect significant
responses. However, it is so far not known: (i) how many
experimental trials are required for detecting a significant
response, and (ii) whether it is possible to determine the min-
imum number of required trials in real-time while performing
an EEG recording experiment.

To answer these questions, we investigated the potential
use of real-time signal detectors for analyzing ASSRs. In this
study, we use the spectrum F test [7] combined with several
real-time detectors, as it allows to easily estimate the signal-
to-noise ratio (SNR) of a target response. This facilitates the
evaluation of the relationship between detection performance
and accumulated number of trials. Compared with off-line
detectors, real-time detectors have the potential advantage to
save valuablemeasurement time by not having to recordmore
trials than needed. Thus, one could terminate the experiment
as soon as the detected target signal reaches significance,
or one may decide early on that the number of trials required
will exceed the maximally allowed duration for the exper-
iment. Furthermore, using more trials than needed is not
a guarantee for optimal results, because of potential con-
founding factors that could interfere with the measurements,
such as subjects’ fatigue [16] or other nonstationarities in the
EEG signals.

Existing off-line detection methods are mainly based on
hypothesis testing, in which the null hypothesis (H0) refers
to the absence of a response to a stimulus vs. the alterna-
tive (H1), which indicates the presence of a response [17].
A classical off-line method is the Neyman-Pearson (NP)
detector [18], which can be readily applied in real-time [7].
The NP detector maximizes the probability of detection (PD)
of a target response with the constraint of a pre-defined
Type-I error (e.g., α = 0.05) for false detection. According
to a frequentist approach, the NP detector is optimal for
maximizing PD, given a fixed threshold for the prob-
ability of a false alarm (PFA). A fixed threshold for
PFA will also set a fixed threshold on the estimated SNR
of ASSRs.

Alternatively, a Bayesian approach shifts the empha-
sis from hypothesis testing to an estimation based on
confidence [19]. In Bayesian hypothesis testing, a common
decision rule is based on the Bayes factor (BF), which is
computed from the marginal likelihood ratio. The BF is
the degree to which the model estimation shifts from prior

to posterior probability. In the decision procedure, the
BF is compared against a decision threshold, which is set
by a criterion regarding the evidence. For example, the
BF detector with the threshold of 3 has been employed
as the evidence of the ASSR at 40 Hz [20]. In general,
a BF between 3 and 10 is indicative for ‘moderate’ evi-
dence for the alternative hypothesis, a BF between 10 and
30 indicates ‘strong’ evidence, and BF > 30 indicates ‘very
strong’ evidence [21], [22]. Here, we studied the reliability
of the Bayes detector for ASSR identification by varying
the BF. In addition, we evaluated the relationship between
a BF detector and the decision rule of minimizing the
Bayes risk.

For continuous sequential analyses, Wald [23] proposed a
sequential probability ratio test (SPRT), which decides for the
presence (or not) of a signal as soon as the likelihood ratio
exceeds a certain upper bound (or falls below a certain lower
bound). Otherwise, it continues to collect more data sam-
ples. SPRT is optimal when comparing two alternatives [24].
To extend the classical SPRT from single hypothesis test-
ing to composite alternative hypotheses, the maxSPRT
algorithm [25] employs a maximum likelihood (ML)
estimate. However, so far the maxSPRT method has only
been applied to simple Poisson and binomial distribu-
tions. To extend the use of SPRT to the F distributions
(of SNRs) and to complete hypothesis tests (as SNR is
unknown in this study), we modified the classical SPRT
with a ‘cropped’ ML estimator, which can estimate SNR
values and enable an early stop for data collecting when
the estimated SNR falls below a predetermined lower
threshold.

Figure 1 illustrates how we applied these three real-time
detectors in this study. The real-time detectors will stop col-
lecting more data as soon as a (positive or negative) deci-
sion is made. Each detector employed a different threshold
strategy for the estimated SNRs of ASSRs from the spectral
F test. Specifically, the NP detector uses a fixed threshold,
the so-called NP critical value; the Bayes factor (BF) uses
dynamic thresholds, which are updated with the arrival of
each new trial; the modified SPRT method uses two (upper
and lower) bounds to divide the estimated likelihood ratio
into three decision zones (Z0, Z1, Zu), which correspond to
‘non-significant’, ‘significant’, and ‘unknown yet’ (i.e., need
more data). To validate these detectors, we applied the three
real-time detectors to the EEG data from nine normal-hearing
human subjects. From the results of our earlier study [5],
we imposed a measurement time of 12.3 s for each EEG trial
to ensure a sufficient frequency resolution. The maximum
trial number (i.e., 100) was determined from one pilot mea-
surement (on one subject) to ensure the detection for most of
target ASSRs. Then, we set this maximum trial number for
all experimental participants. To mimic real-time detection,
we evaluated each detector on a trial-basedmanner, computed
the detection probabilities, and reported the minimum num-
ber of trials needed to reach a significance decision for each
ASSR frequency.

108976 VOLUME 9, 2021



L. Wang et al.: Towards Real-Time Detection of ASSRs

FIGURE 1. Application of three real-time ASSR detectors on EEG signals, using their specific thresholding strategies as
described in the text. The NP and BF detectors apply the spectral F test on time-averaged EEG trials, whereas the modified
SPRT detector applied it to accumulated single EEG trials.

II. METHODS
A. PROBLEM DESCRIPTION
A typical application of objective response detection is to
detect the steady-state responses that are phase-locked to
periodic stimuli, e.g., extracting sinusoids from noisy back-
grounds. As the steady-state responses are often too weak to
detect from one measurement trial, it is necessary to repeat
many trials to determine the presence of a response.

There are mainly two types of approaches for detecting
a steady-state response. First, statistical methods are used
on accumulated trials at only the target frequency compo-
nent. For example, phase coherence [26] measures the degree
to which the phases in K measurement trials are clustered
(i.e., signal is present) or randomly dispersed (i.e., noise) at
the target frequency. Similarly, the Hotelling T 2 test and the
circular T 2 test (CT2) have been proposed to quantify
the amplitude and phase information. The latter is related
to the magnitude squared coherence (MSC) measure [6].
In addition to consider only the target frequency components,
the second type of approaches considers also neighboring
frequency components around the target frequency. One com-
monly used method was the spectral F test [7], [27]. The per-
formance of the spectral F test (see below) has been reported
to be identical to the MSC and CT2 test [6], [14].

We here used the spectral F test, as it allows to readily
estimate the SNR of the signal at the target frequency, which
facilitates real-time detection of ASSRs. The goals of this
study were to quantify the detection probability of an ASSR
(second-order and higher orders) during the accumulation
of EEG trials for different real-time signal detectors, and
to assess to what extent valuable measurement time can be
optimized.

Objective response detection is often performed in the
frequency domain [14]. The null hypothesis H0 is that the
observed random frequency component, x0 (k) (extracted
from the Fourier transform at the target frequency of the
k th trial) contains only noise, with real part, Rk , and imag-
inary part, Ik . The alternative hypothesis, H1, holds that
the observed random variable, x1 (k) contains both signal
and noise, with the signal’s real part, A, and imaginary
part, 0, and the noise real part, Rk , and imaginary part, Ik .

Note that the signal is considered to be a phase-locked ASSR
component (cosine) with amplitude A and initial phase zero.

H0 : x0(k) = Rk + jIk , k = 1, 2, . . . ,K

H1 : x1(k) = (A+ Rk )+ jIk , k = 1, 2, . . . ,K , (1)

where Rk , Ik ∼ N (0, σ 2), and K is the maximum number
of observation trials. The signal-to-noise ratio (SNR) is a
function of amplitude A (SNR = A2/2σ 2).
To estimate the unknown SNR from the EEG, a common

method is to repeat the measurement with a certain number
of trials. Then, the improved SNR can be estimated from time
averaged signals across trials (see section ‘Time-averaged
trials’). Alternatively, the single-trial SNR can be directly
estimated from accumulated single trials (as in the
SPRT method). The problem is to minimize the num-
ber of trials needed for accepting H1 (when SNR > 0)
with desired detection performance, e.g., detection probabil-
ity (PD), acceptance confidence (AC), and constraints on false
detections (see below sections).

B. TIME-AVERAGED TRIALS
Temporal averaging of sequential EEG trials can improve the
SNR of a phase-locked weak response. The averaged signal
across K trials is

x̄1(K ) =
1
K

K∑
k=1

x1(k). (2)

Given that SNR(1) is the SNR of a single-trial EEG
signal x1 (k), the SNR of K averaged trials, SNR

(K )
, is

K times of SNR(1), or equivalently (see also Fig. 4),

SNR
(K )
dB = 10log10(K )+ SNR(1)dB, (3)

where SNR(1)dB = 10log10(SNR
(1)). Whereas the SNR of

time averaging noisy variables, x0 (k), will not change, as
SNR = 0 (−∞ dB).

C. SPECTRAL F TEST
The spectral F-test is used to estimate the SNR of the
time-averaged signal x̄1(K ). The spectral F-score on a target
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frequency bin, F(ft ), is calculated by the relative neighboring
SNR around the target frequency of the ASSR:

F(ft ) =
|X (ft )|2

1
M

M∑
i=1
|X (fi)|2

, (4)

where X (ft ) is the Fourier transform of a time-averaged signal
at the target frequency bin, ft , obtained from a single trial,
or from the time-averaged trials, x̄1(K ). M is the number
of neighboring frequency bins used for estimating the SNR.
Note that the F score is not an unbiased estimate of SNR
(see Appendix) [6]. The relationship between the expected
F score and SNR is:

E(F) = SNR+ 1. (5)

Thus, the single-trial SNR is estimated by SNR(1) =
1
K (F −1), where F (>1) is computed from the time-averaged
signal with trial number K . In practice, F is often reported
in F (dB), i.e., FdB = 10log10(F). Thus, the single-trial
SNR(1)dB is estimated by

SNR(1)dB = 10log10(
10(FdB/10) − 1

K
). (6)

Given H0 (no signal present), F(ft ) will have an
F distribution with (2, 2M) degrees of freedom. Given
H1 (signal present), F(ft ) will have a noncentral F distribution
with (2, 2M) degrees of freedom, and the non-centrality
parameter, 2SNR [7], as below.

F(ft ) ∼
{
F2, 2M , under H0
F2, 2M (2SNR), under H1

}
, (7)

where SNR can be estimated from F(ft ) of the time-averaged
signal. See examples of probability density functions (PDF)s
of F distributions (H0) and noncentral F distributions (H1)
in Fig. 11 in Appendix.

D. NEYMAN-PEARSON DETECTOR
TheNeyman-Pearson (NP) detector [18]maximizes the prob-
ability of detecting an ASSR component, PD, under a fixed
constraint for the probability of a false alarm, PFA, a so-called
type I error (α). A type I error is the rejection of a true
null hypothesis (also known as a false positive) [28]. The
NP detector will accept H1 (signal present), if the likelihood
ratio

3(x) =
p(x;H1)
p(x;H0)

> γ. (8)

Otherwise, the NP detector will decide H0. Note that
γ is determined from PFA =

∫
{x:3(x) >γ }

p(x;H0)dx = α.

Accordingly, a fixed threshold of x, so-called NP critical
value (NPcrit ), is determined from the PDF of H0, such that,

∞∫
NPcrit

p(x;H0)dx =α. (9)

The detection rate, PD, hence is computed as,

PD =

∞∫
NPcrit

p(x;H1)dx. (10)

E. BAYES-FACTOR DETECTOR
The classical Bayes risk (R) is defined by [18]:

R =
1∑
i=0

1∑
j=0

CijπjP(Hi|Hj), (11)

where Cij represents the cost of selecting hypothesisHi when
hypothesis Hj is true; P(Hi|Hj) is the probability of selecting
hypothesis Hi conditional on that Hj is true. πj is the prior
probability of the hypothesis Hj (π0 + π1 = 1). Minimizing
the Bayes risk (R) will lead to the decision rule accepting
hypothesis H1 if:

3(x) =
p(x|H1)
p(x|H0)

≥
π0(C10 − C00)
π1(C01 − C11)

= η, (12)

where3(x) is the marginal likelihood ratio, referred to as the
Bayes factor (BF) [21] in Bayesian hypothesis testing, and
η is the BF threshold, which is a lower bound for
accepting H1 and an upper bound for accepting H0.

1) RELATIONSHIP BETWEEN THE BAYES RISK AND TWO
TYPES OF ERRORS
When assigning a null cost to correct decisions
(i.e., C00 = C11 = 0), and a unit cost to wrong decisions
(i.e., C01 = C10 = 1), minimizing the Bayes risk is identical
to minimize the sum of probabilities of two types of errors,
as shown below.

R = π0P(H1|H0)+ π1P(H0|H1)
1
= PE . (13)

That is, PE = π0PFA + (1 − π0)(1 − PD), where PD =∫
{x:3(x) >η}

p(x|H1)dx and PFA =
∫

{x:3(x) >η}
p(x|H0)dx.

With equal prior (π0 = π1 = 0.5),

PE = 0.5(PFA + (1− PD)). (14)

The probability of correct decision is

PC = 1− PE . (15)

Note that a predefined BF threshold (e.g., η = 1) will
determine different thresholds of x (denoted by θF later)
for different SNRs that change when averaging more trials.
Hence, we call θF a dynamic threshold on F. See an illustra-
tion (η = 1) in Fig. 11.

2) RELATIONSHIP BETWEEN BF AND ACCEPTANCE
CONFIDENCE
Besides, according to the Bayes’ theorem, the posterior prob-
ability can be written as follows,

P(H1|x)
P(H0|x)

=
P(x|H1)π1
P(x|H0)π0

= 3(x)
π1

π0
. (16)
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For a binary hypothesis test,P(H1|x)+P(H0|x) = 1. It then
follows that

P(H1|x) =
π13(x)

π0 + π13(x)
. (17)

Assuming equal prior (π0 = π1 = 0.5) in the absence of
prior knowledge of either hypothesis before testing, the pos-
terior probability P(H1|x), also referred to as the acceptance
confidence (AC) [29], is then defined by:

AC =
3(x)

1+3(x)
. (18)

Therefore, 3(x) = 0 indicates zero confidence for
accepting H1, and 3(x) → ∞ indicates 100% confidence.
In contrast to PC, AC is independent of the BF thresh-
old, η, and it thus can objectively assess the confidence
(between 0 and 1) to accept the alternative hypothesis. The
chosen BF threshold η will determine a fixed threshold θAC
for AC:

θAC =
η

1+ η
. (19)

Thus, θAC is between 0.5 and 1 with η ≥ 1, and in
practice η is often chosen as an integer larger than 1.

F. MODIFIED SEQUENTIAL PROBABILITY RATIO
TEST (SPRT)
1) STANDARD SPRT
According to the definition of the standard SPRT [23],
a sequence of independent and identically distributed (iid)
F-score observations for each trial, under hypotheses H0
and H1, is described as:

Hi : F1, F2, . . . ,Fk
iid
∼ pi, i = 0, 1. (20)

Rather than fixing n observations, SPRT provides a sequen-
tial approach to test whether it is necessary to continue
gathering samples until a confident decision regarding the
presence (H1) or absence (H0) of a signal can be made. The
sequential probability ratio is defined as

3(k) = ln(
k∏
i=1

p1(Fi)
p0(Fi)

), k = 1, 2, . . . (21)

To implement SPRT, two thresholds, γ1 and γ0, (γ1 > γ0),
are preset. if3(k) > γ1, one accepts H1 and stops collecting
more data. Alternatively, if 3(k) < γ0, one accepts H0 and
stops collecting data; else continue.

By specifying two types of error probabilities, 0 ≤ α,

β ≤ 1, where α and β are the probabilities for a false positive
(i.e., P(H1|H0)) and false negative (i.e., P(H0|H1)) decision,
respectively, SPRT will acceptH1 if3(k) ≥ ln 1−β

α
, and will

accept H0 if3(k) ≤ ln β
1−α . Note that SPRT is conservative,

the actual detection rate PD and false alarm rate PFA need to
be computed from simulations [24].

2) MODIFIED SPRT WITH A CROPPED ML ESTIMATOR
The standard SPRT applies only when the PDFs under both
hypotheses (SNRs) are known. We extended the standard
SPRT to allow for composite hypotheses testing (where SNR
is unknown) by using a cropped maximum likelihood (ML)
estimate, which estimates the PDF parameter (i.e., SNR) from
currently available observations. Thus, the log-likelihood
ratio (LLR) reads

3(k) = ln(
k∏
i=1

p1(Fi|SNR = SNRkML)
p0(Fi)

), k = 1, 2, . . .

(22)

where the estimated SNR from the cropped ML is defined as,

SNRkML = max{SNRθ , argmax
SNR

(
k∏
i=1

p1(Fi(SNR)))}, (23)

where SNRθ is the predetermined low band of the estimated
SNR (e.g., −13 dB for a PD of 0.8). The expected stop
time (trial numbers) of the SPRT, and its relationship to PD,
is provided in the Appendix D.

G. SIMULATION METHODS
Monte Carlo simulations are often used to model the proba-
bility of different outcomes in a process that cannot easily be
predicted due to the intervention of random variables (in this
case, the spectral F distribution). Monte Carlo simulation is
a technique that uses repeated random sampling to obtain the
likelihood for the occurrence of target results [30]. Instead of
using traditional statistical methods (e.g., t-test) that compare
the obtained p-value against a threshold (e.g., 0.05) to make a
binary decision (i.e., significant or not), we here used Monte
Carlo simulation to compute the probability of detection, PD
(i.e., the likelihood of exceeding a threshold) for the three
detectors, and also to compare results with the theoretical pre-
diction ofPD based on the PDFs of the spectral F distributions
for the NP detector (see Fig. 3).

The signals (H1, SNR > 0) and noise (H0, SNR = 0)
for simulation were generated by using (1). For signals,
the amplitude A and standard deviation (σ = 1) were cho-
sen such that SNRs varied between −30 dB and +20 dB,
which will cover the potential range of actual ASSRs in
EEG signals. For noise (no signal present), the amplitude
A = 0 and standard deviation σ = 1. The number of neigh-
boring frequency bins, M (in (4)), was affected by the fre-
quency resolution and the measurement duration of each trial,
which can vary from seconds to several minutes in different
studies [6]. To simulate the spectral F test, we evaluated
different values for M (4, 6, 12, 24). For the ASSR detec-
tion in EEG, we used M = 12 and the width of each fre-
quency bin of 1/12 Hz. For each SNR, we generated 100,000
(n= 1e5) samples of signals (H1) andM*n samples of neigh-
boring frequency bins (H0) for the Monte Carlo simulation.
For both NP and BF detectors, each SNR (every 1 dB

between −30 and +20 dB) was specified to analyze the
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detection performance. The PDF of H1 was thus determined
for each SNR. To assess the detection performance, we per-
formed both theoretical analysis and numerical simulation
to compute PD and PC. Specifically, after computing the
fixed NP critical value (NPcrit ) for the NP detector and
the threshold θF (determined by SNR) for the BF detec-
tor, we used (9-10) and (13-15) to compute the theoretical
values of PD and PC. The corresponding numerical results
of PD were computed by counting the number of cases
(n = 1e5) in which F exceeded the thresholds (NPcrit or
θF for the NP or BF detectors, respectively). The modified
SPRT detector, instead of specifying an SNR, estimated a
(single-trial) SNR by using a cropped ML estimator, PD was
obtained from the numerical simulation (n = 1e4 for the
Monte Carlo simulation). Therefore, the modified SPRT
could be readily applied to actual EEG signals, for which the
SNR is unknown. In contrast, the NP and BF detectors need
to estimate the SNR from time-averaged trials by using (5),
or from a single-trial SNR by using (6). The expected F can
be obtained from time-averaged trials by using (4).

Matlab (R2018a) was used for the simulations and for
the ASSR detection in recorded EEG. We used Matlab’s
‘Statistics and Machine Learning Toolbox’, and built-in
functions including normrnd.m (for random number gen-
eration) for Monte Carlo simulations. For the NP detec-
tor, given a type-I error (α), the NP critical value is a
function of the number of neighboring frequency bins M,
i.e., NPcrit = F−1 (1− α, 2, 2M) (with F−1 (x) the inverse
of the cumulative F-distribution, calculated by using the func-
tion ‘finv.m’). For a predefined BF threshold η (e.g., η =
1, 3, and 6 in this study), thresholds of F (i.e., θF ) were
computed for each SNR from (12) and (7). To implement (7),
Matlab’s functions fpdf.m and ncfpdf.m were used to quan-
tify PDFs of both F distributions (H0) and noncentral F
distributions (H1). To help reproduce this study, we have
made the Matlab scripts for the simulations available online:
https://github.com/ieeeWang/ASSR-Realtime-Detectors

H. EEG EXPERIMENTS
Amplitude modulation (AM) is the elementary feature of
natural stimuli, which could reveal dynamic properties of the
auditory system not addressed with simpler, static stimuli [3].
The contour of an AM sound is the envelope, which shows a
single sinusoidal component corresponding the modulation
frequency (MF). The low-order ASSRs (i.e., brain responses
found at the MFs) generated from AM tones with a range
of carrier frequencies are used to obtain objective audiom-
etry [31], [32]. Here, we used an ensemble of a pair of AM
tones to represent more complex stimuli in the real world, and
to generate a number of higher-order ASSRs, which include
harmonics and intermodulation of the MFs [33]. Studies
have shown that ASSRs tend to reach maximum responses
near 40 Hz [32], which may reflect a superposition of audi-
tory brainstem responses and middle latency responses [34].
We therefore selected a pair of MFs at 37 and 43 Hz to ensure

well-detectable ASSRs that would also include a series of
unique higher-order ASSR frequencies (See Table 3).

We evaluated performance of the three real-time detectors
on the detection of ASSRs, generated from AM sounds in the
EEG of nine normal-hearing subjects (<30 dB SPL HL) in
a passive listening task as shown in Fig. 2A. The AM sound
stimulus used in this study was given as:

x(t) = [1+ m cos(2π fmt)] cos(2π fct) (24)

where m = 1 (i.e., 100% amplitude modulation), and the
initial phase set to zero. The MF and carrier frequency (CF)
are denoted by fm and fc, respectively. For each trial,
t = 12.3 sec with the first 0.3 sec (evoked potentials, that
included non-ASSRs, which was called the pre-steady-state
phasic response phase [35]) excluded for analysis. We pre-
sented the superposition of two AM tones to the left ear
with the same CF of 500 Hz, and two MFs of 37 and 43 Hz
(see Fig. 2B). Stimuli were generated by TDT (Tucker-Davis
Technologies) System-3 hardware, and presented through
ER3C insert earphones (Etymotic Research), which were
connected to the listeners’ ears via 30 cm-long plastic tubes
and foam earplugs. The stimuli were calibrated by using the
Bruel & Kjaer sound-level calibration meter (model 2260),
such that the level of each AM tone was 60 ± 1 dB SPL.
We confined this study to the detection of monaural beats
from the left ear only. Thus, the stimuli in the right ear
and potential binaural beat responses were not included and
analyzed here. We repeated 100 trials on each subject. The
experiments were approved by the ethics committee at Rad-
boudUniversity and performed in accordance with the human
experiment guidelines and regulations of Radboud university.

We applied a three-stage preprocessing protocol on the
raw EEG recordings as described in our previous study [5].
First, EEG signals were re-referenced to a common average
reference (CAR) after excluding the EEG electrodes above
the eyes due to eye-blink and eye-movement artifacts. Sec-
ond, each EEG channel was filtered with a zero-phase shift
filter that consisted of a 10th-order Butterworth high-pass
filter with a cutoff frequency of 1 Hz, and two notch filters
at 50 Hz and 100 Hz to remove the line noise. Third,
to exclude severely contaminated EEG trials by electromyo-
graphic artifacts from further analysis, we computed the
mean and the variance of the peak-to-peak amplitude range
as indicators for each EEG trial. The EEG trials with the
two indicators as positive outliers were excluded (up to 5%
of 100 trials) from the analysis.

It was found that ASSRs show a general strong activa-
tion in the frontal-central brain [5], [36]. Therefore, in this
study, to illustrate the real-time detectors, we performed the
ASSR detection for all subjects on the same frontal-central
brain region (near EEG channel FCz). The five EEG chan-
nels (Fz, Cz, FCz, FC1, FC2) around FCz were averaged
as one (denoted as AVG-FCz) to improve the robustness of
EEG signals over one signal channel.

Note that ASSRs are generated because of the non-
linear mechanisms in the auditory system [3], [37].
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FIGURE 2. Experimental design, i.e., a passive listening task (A), sound stimulus (B), and expected nonlinear ASSRs (C).
(A) The sound stimuli (through ER3C insert earphones) were present (trial by trial) to both ears of a normal-hearing subject
while the EEG signals were continuously measured (64-channel cap) from the listener sitting in an anechoic chamber,
watching a silent video. Each trial started with a silent break with a random duration between 2 and 3 sec, and lasted
12.3 seconds. The first 0.3-sec EEG of each trial was excluded from the analysis to avoid the influence of event-related
potentials (i.e., non-ASSRs), and the remaining 12-sec EEG segment (i.e., ASSR phase) was used to detect significant
ASSRs. We repeated maximum 100 trials for each subject. Note the stimulus illustrated here were present to the left ear,
and we showed only 200 ms at the beginning of the stimulus for clear visualization. (B) The stimulus (at the left ear) for
each trial was the superposition of two AM tones (each with 60 dB SPL) with the same CF of 500 Hz, and two MFs
of 37 and 43 Hz. The waveform (blue) and its envelopes (red) were shown in the top panel. The amplitude spectrum of the
stimulus and the positive envelop (in red) were shown in the middle panel and bottom panel, respectively. (C) The
nonlinear system outputs (i.e., ASSRs) were demonstrated with a 2nd -order system and a 3rd -order system. Note that the
two MFs (37 and 43 Hz) are already 2nd -order outputs of the stimulus frequencies (i.e., the difference between two
stimulus frequencies as shown in the middle pane of B). Therefore, the 2nd and 3rd order outputs of the MFs correspond
to 4th and 6th outputs (ASSRs) of the stimulus, respectively. See these ASSR frequencies in Table 3.

The 2nd -order nonlinear ASSRs (also known as binaural
and monaural beats) were sufficiently evaluated in previous
studies [3], [36], and they were thought to already arise at
the auditory nerve [38]. However, in the ascending audi-
tory pathway, the nonlinear mechanisms might also evoke
higher-order nonlinear components, which in turn could give
rise to additional ASSRs. The higher-order ASSRs often
cover a larger frequency range and have been used to esti-
mate multiple frequency-related apparent latencies of the
auditory system [5]. For a nonlinear system with system
order R, given two input frequencies (f1 and f2), a series of

combination frequencies is produced at the output, charac-
terized by nf1 ± mf2 (> 0), with n and m positive integers,
such that n + m ≤ R [5], [39]. See Fig. 2C for an example
of R = 2 and 3. In this study, by using a pair of MFs as
stimuli, we expect significant ASSRs at not only the MFs
(also known as the envelope frequencies, which are the 2nd

order ASSRs), but also higher-order ASSRs (4th and 6th),
which correspond to the 2nd and 3rd order outputs of theMFs,
respectively. These higher-order ASSRs often show lower
SNRs, and are therefore harder to detect [5]. Table 3 presents
the relevant ASSR frequencies. So far, few studies have
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systematically evaluated the detection task for such
higher-order ASSRs in the EEG responses of the human
auditory system.

I. ASSR DETECTION PERFORMANCE CRITERIA
All potential ASSR frequencies were considered as posi-
tive class while non-ASSR frequencies as negative class.
The detection performance was assessed in two ways. First,
receiver operating characteristic (ROC) curves were plotted
and the area under curve (AUC)was used to quantify the over-
all performance [6]. Second, for unbalanced class distribu-
tions, the precision and recall (P-R) curves and its AUC have
been cited as an alternative to ROC curves [40], [41]. Also,
algorithms that optimize the AUC of the ROC curve are not
guaranteed to optimize the AUC of the P-R curve [42]. There-
fore, P-R curves were also used here because we employed a
large non-ASSR frequency set (n = 88) as the negative class
(control group), which significantly outnumbered the positive
class (n= 12). Each point in ROC and P-R curves represents
a specific classifier with a specified threshold that determines
a positive sample if this sample is larger than the threshold.
We used a full set of threshold values from all available sam-
ples to ensure a maximum ‘resolution’ plot. Subsequently,
the interpolation method [42] was used to estimate the AUC
of both curves. Furthermore, to show the effect of param-
eters of these detectors (e.g., values of α), we reported the
commonly used performance indicators including sensitivity
(i.e., TP/#positive class), specificity (i.e., TN/#negative class)
and precision (i.e., TP/#positive detection; 1-precision is
known as false detection rate), where TP and TN denote the
numbers of true positive samples and true negative samples,
respectively.

III. RESULTS
A. SIMULATIONS
1) NEYMAN-PEARSON (NP) DETECTOR
Figure 3 shows the detection performance of the NP detector
on each SNR value. The lower panel shows that the detection
probability, PD, of the signal increases with SNR. In addi-
tion, PD slightly increases with the number of neighboring
frequency bins,M (see Fig. 12 in Appendix).
Table 1 shows that the critical value of the NP detector is

affected by both M and the type-I error α (i.e., PFA).
Temporal averaging of a number of EEG trials leads to

an improved SNR for the averaged trial. Figure 4 (A, top)
shows the improved SNR (and corresponding PD, bottom)
as a function of the number trials used for the averaging,
for signals with different (single-trial) SNRs. For example,
when SNR(1)dB = 0 dB, after averaging 10 trials, the PD is very
close to 1.

Table 2 shows a slice of information extracted from
Fig. 4 (B). It shows, for example, that the minimum
single-trial SNRs (dB), needed for achieving PD = 0.8,
are −3, −13, and −23 dB when time-averaging over
Ntrials = 10, 100, and 1000, respectively.

FIGURE 3. Performance of the NP detector as a function of the SNR (with
M = 12). (top) Expected value of the F (dB) (i.e., 10log10(F)) with the 95%
confidence interval (vertical bars); The critical value of the NP detector for
a probability of a false alarm of 5% (red dashed line at NPcrit = 5.32 dB);
(bottom) The probability of detection (PD) obtained in the simulations
(denoted by circles, n = 1e5 for Monte Carlo simulations) overlaid on the
theoretical line (red line; see methods).

TABLE 1. Critical values of F for the NP detector.

TABLE 2. Minimum single-trial SNR (dB) needed for each PD.

2) BAYES-FACTOR (BF) DETECTOR
In our simulation, the PDFs of H1 and H0 were both known
because the SNR value was specified. Given a specified
BF threshold η, we computed the dynamic thresholds of F
(i.e., θF ) by searching for the F that satisfied the relationship
of the two PDFs, p(F |H1) = ηp(F |H0), according to (12).
See Fig. 11 (in Appendix) for an illustration of θF that was
computed for a number of different SNR values when η = 1.
When the BF threshold η increases, the θF will move to
the right side of the according intersection of both PDFs
(H1 andH0), yielding a larger θF . However, since it is difficult
to obtain an analytical solution of θF , we performed a numer-
ical approximation with an SNR resolution of 0.1 dB (more
details were given in our open-access code), and assessed the
BF detector with three typical thresholds of η= 1, 3 and 6. For
each value of η, the obtained dynamic thresholds (θF ) were
a function of E(F) (as shown in Fig. 5A) and this function
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FIGURE 4. NP detector: Effect of time-averaging. (A) The SNR (top) and probability of detection (PD) (bottom) both increase with the number of
time-averaged trials, which is demonstrated for different values of single-trial SNRs, SNR(1)

dB = −30 dB, −20 dB, −10 dB, 0 dB and +10 dB,
respectively. (B). Contour plot of PD as a function of SNR and the accumulated trial numbers (SNR resolution is 1 dB for this simulation).

FIGURE 5. (A) Performance of the BF detector as a function of the SNR: (top) The expected F scores, E(F), and the thresholds of F (θF ) corresponding
to η = 1, 3, and 6. (bottom) the AC determined from E(F). The values of PC were computed by 1-PE for η = 1, 3, and 6. (B) Performance comparison
between the BF and NP detectors. The BF detector with three thresholds (η = 1, 3, and 6) yields three pairs of PD and PFA values. When η = 1,
PD and PFA converge to 0.38 at −30 dB, respectively, and when η = 3 and 6, PD and PFA were computed for SNRs larger than −9 dB and −6 dB,
respectively. AC does not depend on η. The PD of the NP detector was computed for α = 0.05.

was also applied to the ASSR detection in the EEG, with the
E(F) estimated from (4).

As described in Methods, the BF detector with η = 1 is
equivalent to the decision rule that minimizes the Bayes
risk by assigning a unit cost to wrong decisions (zero
cost to correct decisions), with equal prior probabilities.
Figure 5A shows the dynamic thresholds of F (θF ) deter-
mined by η (top panel), and corresponding PC values (bottom
panel). The minimum value of PC is 0.5 because it con-
siders the probability of correct decisions for both hypothe-
ses. In contrast, PD (with the minimum value of zero) of
the NP detector considers only correct detection for

hypothesis H1. The AC was computed from the estimated
SNR from F scores and thus did not depend on η. Note that
both AC and PC show the same range (between 0.5 and 1).
However, it is not to be expected that PC and AC are equal
because the former quantifies the probability of correct deci-
sions, while the latter quantifies the posterior probability
of H1.
The comparative analysis in Fig. 5B compares both PD and

PFA between theNP andBF detectors. The BF(η= 1) detector
yields a high false detection rate (approaching 38%) when the
SNR is low, which is thus not feasible in practice. Compared
with the NP detector (α = 0.05), BF(η = 3) yields a slightly
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FIGURE 6. (A) A simulation of the modified SPRT with a cropped ML estimator (SNRθ = −13 dB). (top) LLR of each signal on accumulated trials. The
upper and lower bounds of SPRT are 2.77 and −1.56, respectively (with α = 0.05, β = 0.2). (bottom) The estimated SNR from the cropped
ML estimator, which updates every ten samples (trials). (B) The detection probability PD of several signals with single-trial SNRs (5, 0, −5, −10,
−20 dB) as a function of accumulated trials by using NP and the modified SPRT detectors (n = 1e4 for the Monte Carlo simulations).

higher PD, but also a higher PFA (between 1 and 7 dB), while
BF(η = 6) yields an overall lower PD and PFA. Furthermore,
the BF(η = 6) will not generate a positive signal detec-
tion for lower SNR (e.g., <−6 dB) to ensure an extremely
low PFA. Therefore, the BF(η = 6) can be viewed as a more
‘conservative’ detector than the NP detector. The BF detector
yields a dynamic PFA that is affected by the SNR. In contrast,
the PFA for the NP detector remains constant (e.g., 5% with
α = 0.05). In general, the false detection rate of the
BF detector declines with increasing η.

3) MODIFIED SEQUENTIAL PROBABILITY RATIO TEST (SPRT)
To estimate the unknown SNRs and to enable an early stop
for accepting the null hypothesis (no signals), we modified
the standard SPRT with the cropped ML estimator, which
has a lower bound for estimating the SNR of weak signals,
i.e., lower SNRs will be replaced by a predetermined lower
bound. Here, we set the lower bound at −13 dB, which was
chosen on the basis of Table 2, from which we determined
that the minimum single-trial SNR was −13 dB to reach a
PD = 0.8 within 100 trials.

Figure 6A illustrates the results for a simulation, in which
several signals were generated from the non-central F dis-
tribution with the non-centrality parameter (see Methods).
Signals with SNRs exceeding the lower bound were detected
(i.e., LLR beyond the upper bound), while the LLR of noise
(i.e., F distribution with M= 12) fell below the lower bound,
and hence was indicated as non-significant. We repeated this
simulation 10,000 times to calculate the detection rate (PD).
As SPRT has been reported to be a ‘conservative’ detector,
Fig. 6B shows that the PD of several signals by the modified
SPRT were much lower than obtained for the NP detector.
Note that the PD provided by the NP detector represents the
chance exceeding NPcrit (here, set at α = 0.05). In contrast,

the PD of SPRT represents the probability exceeding the LLR
upper bound, here at 2.77, (i.e., α = 0.05, β = 0.2). The
lower value of PD for SPRT results from the extra constraint
(i.e., β = 0.2), which means that only signals for which
PD > 0.8 will surpass the LLR upper bound, and will be
counted as a significant detection.

B. ASSR DETECTION IN EEG DATA
1) ESTIMATION OF NUMBER OF REQUIRED TRIALS
We performed a pilot experiment (Ntrials = 100) with subj #1
to determine the required number of experimental trials for
detecting ASSRs. We evaluated the monaural beats up to
6th order (see Table 3) generated from MFs at 37 Hz and
43 Hz presented to the left ear, and computed the spectral F of
the ASSRs from the time-averaged EEG (100 trials of 12 s).
Then, the single-trial SNR was estimated from the F-score
(by (6)). From the results in Table 2, we estimated the required
number scales of trials, which are given in the bottom row
of Table 3. These results show that most ASSRs could be
detected within 100 trials with PD > 0.8. Only the 6th order
ASSR at 111 Hz could not be detected, and the two ASSRs
at 6 Hz (4th order) and 129 Hz (6th order) required more
trials (103) to detect. Therefore, we set the maximum number
of trials to 100 for all subjects to perform the remaining
experiments.

2) ASSR DETECTION RESULTS
Figure 7 illustrates the detection process of the three real-time
detectors on the averaged EEG channel (AVG-FCz) of sub-
ject S1 for three example ASSRs, indicated as MF (43 Hz),
2MF (80 Hz) and 3MF (117 Hz), respectively. For the NP
(Fig. 7A) and BF detectors (Fig. 7C, D), the spectral F was
computed on time-averaged accumulated trials up to the
maximum of 100 trials. The difference between the
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TABLE 3. Estimated SNR and required trial numbers for ASSR detection (subj#1).

FIGURE 7. Performance of the three real-time detectors for the EEG data of subj#1 (on AVG-FCz) over the course of 100 trials. Three ASSR example
frequencies: 43 Hz (MF; 2nd order) 80 Hz (2MF; 4th order), and 117 Hz (3MF; 6th order). (A) F (dB) of the three ASSRs on accumulated trials, and the
critical value (with α = 0.05) shown by the dashed line, and corresponding PD of the three ASSRs (lower panel). (B) LLR of the three ASSRs on
accumulated trials (top panel) and the estimated single-trial SNR from accumulated trials (bottom panel). (C) and (D) (top panels) F of the three
ASSRs on accumulated trials, and the corresponding thresholds (θF ) determined by the BF threshold η; (bottom panels) corresponding AC and PC of
the three ASSRs. The black dashed lines correspond to θAC shown in (19) for the BF thresholds η = 1 in (C) and 3 in (D).

two detectors is that NP adopts a fixed threshold (NPcrit )
on F (black dashed line), the same for all ASSR frequen-
cies, while BF adopts a dynamic (estimated) SNR-dependent
threshold (θF ) on F, resulting in frequency-dependent thresh-
olds. The latter was determined by η, and θF corresponded
to a fixed threshold for AC (i.e., θAC ), as shown by the

dashed lines in bottom panels of Fig. 7C and D (θAC =
0.5 and 0.75 for η = 1 and 3, respectively). Note that
AC was fully specified by the data (i.e., F), whereas PC was
also affected by the threshold, η (see Methods). Hence, the
AC values are the same in Fig. 7 C and D, but the values of
PC differ.
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We evaluated the detection performance of the three detec-
tors on the EEG data from all subjects, and compared the
results with the commonly used off-line Hotelling T 2 test,
which computes the value of T 2 from the distribution of
bivariate values of the real and imaginary parts of a frequency
component [12]. To make a fair comparison among detectors,
we used the same number (i.e., 100) of accumulated trials.
In addition to the target ASSR frequencies (i.e., 2nd and
higher-order monaural beats generated from the two modu-
lation frequencies of 37 and 43 Hz in the left ear), we also
evaluated the detection on a large group of non-ASSR fre-
quencies as the control group. These non-ASSRs corre-
sponded to 88 integer frequencies (<150 Hz) at ≥1 Hz
distance from potential ASSR frequencies (including monau-
ral and binaural ASSRs caused by stimuli from both ears).
Assuming that all theoretical ASSRs (n = 12) encompassed
the positive class, and all non-ASSRs the negative class,
we evaluated the binary classification performance by using
ROC and P-R curves.

Figure 8 shows the detection performance of three
real-time detectors and the Hotelling T2 off-line detector over
100 accumulated trials. For easy visualization we also plotted
the grand-average indicators (i.e., F, AC and LLR) on each
integer frequency. The ROC and P-R curves were obtained
for each detector from pooling the samples (of ASSRs and
non-ASSRs) from all subjects. The higher AUC values indi-
cate that the NP detector yielded the best overall performance
(with the BF detector achieving a similar performance), while
the modified SPRT performed worst, but similar to T2.
In practice, use of the real-time detectors may take fewer

than 100 trials for a reliable detection. Figure 9 shows
the minimum number of accumulated trials required for
detecting ASSRs of different order. The 2nd order ASSRs
(at 37 and 43 Hz), were detected as significant by the NP
and BF detectors already after the first available trial for
most subjects. In contrast, the modified SPRT requires at
least 20 trials. In general, the higher-order ASSRs (4th and
6th orders) required more trials to detect than the lower order
(2nd and 4th order) ASSRs. However, we also found some
exceptions to this rule for the ASSRs at 80 Hz (4th order)
and 49 Hz (6th order), which were detected for all subjects
within 100 trials.

Figure 10 summarizes the probabilities (maximum values
obtained within 100 trials) of the NP and BF detectors. The
detection probability PD of the NP detector was affected by
the threshold (NPcrit ) determined by the α values. In contrast,
the acceptance confidence, AC, of the BF detector did not
depend on the BF threshold (η). Both detectors showed simi-
lar trends: the detection probability (or confidence) tended to
drop with increasing ASSR order, with some notable excep-
tions, such as 80 Hz (=37 + 43) and 49 Hz (=43 ∗ 2 − 37).
Note that the minimum value for AC is 0.5, which means
that for signals with extremely low SNR, the confidence that
signals are present is 50% (given equal priors for signals
present, or not). A lower α value (e.g., 0.01) for the NP
detector will yield fewer false positives on the non-ASSR

FIGURE 8. Detection performance of the three real-time detectors over
100 accumulated trials. (A) The grand-average values (average across
subjects) of F, AC, LLR and Hotelling T 2 on integer frequencies including
ASSRs and non-ASSRs. For each detector, typical thresholds were denoted
by horizontal dash lines. Two thresholds (θAC ) plotted for BF are 0.75 and
0.86 corresponding to the BF thresholds η = 3 and 6, respectively. Two
MFs were denoted by f1 and f2 (37 and 43 Hz). The three cut-off values
for LLR are 126, 137 and 30 at 37, 43 and 80 Hz, respectively. The three
cut-off values for T 2 are 374, 400 and 103 at 37, 43 and 80 Hz,
respectively. (B) The ROC curves and P-R curves of four detectors were
plotted by varying the thresholds from the minimum to maximum on the
pooling data from all subjects.

FIGURE 9. Boxplot of the number of accumulated trials needed to detect
ASSRs of specific order (see Table 3), and for the two higher-order ASSRs
at 80 and 49 Hz, mentioned in the text. The parameters are: α = 0.05
(NP); η = 3 (θAC = 0.75) for the BF detector; α = 0.05, β = 0.2 for the
modified SPRT.

frequencies, but also overall lower detection probabilities
for ASSRs. It is also worth noting that (1-PD) is the
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FIGURE 10. Mean and standard deviation (SD) of the probability
measures for the performance of the NP (PD) and BF (AC) detectors. The
SDs on ‘Order 2’ are close to zero. The sample sizes were 2*n (Order 2),
4*n (Order 4), 6*n (Order 6), n (80 and 49 Hz), and 88*n (non-ASSR),
respectively, where n = 9 subjects.

TABLE 4. The performance of detectors.

probability of false negatives, and the PD on the category of
non-ASSR represents the probability of false positives, as all
non-ASSR frequencies belong to the negative class.

The AUC of the ROC (or P-R) curves is an indicator for
the overall detection performance (i.e., discriminative power
between classes) as it can assess classification performance
for all possible threshold values. In practice, we need to
specify a threshold (by choosing proper parameters) that
reaches an adequate trade-off between sensitivity and speci-
ficity (or precision). Sensitivity (also known as recall on the
P-R curve) indicates the percentage of how many theoretical
ASSRs (n = 12) can be detected as significant. Specificity
considers the percentage of correct negative detection on
the negative (control) group, i.e., the non-ASSR frequencies
(n = 88). The precision indicates the percentage of correct
detection among all positive detections (1− precision= false
detection rate), and it is often used for imbalanced classes,
i.e., the negative sample size is much larger [43]. We eval-
uated the real-time detectors with the thresholds determined
by commonly used parameters (e.g., α, η and p values) and
compared the results with an off-line detector. The obtained
performance metrics are shown in Table 4.

Table 4 clearly illustrates the trade-off between sensitivity
and specificity (or precision) for each detector, i.e., a lower
sensitivity will correspond to higher specificity (or precision).
It is worth noting that not all theoretical ASSRs of all subjects

can be detected within 100 trials, as higher-order ASSRs are
generally harder to detect due to lower SNRs. As a result,
the maximum sensitivity (and AUC of both ROC and P-R
curves) should be lower than 100%. The baseline perfor-
mance was provided by the off-line Hotelling T 2 test, for
which 90% specificity was achieved with the p value of 0.05.
Thus, we considered only detectors that yield larger speci-
ficity than 0.9, which means that less than 10% non-ASSR
frequencies were falsely detected as significant. In prac-
tice, only the NP detector with α of 0.01 (or smaller) and
BF(η ≥ 6) are suitable. (See for a more detailed comparison
for the NP detector between α of 0.01 and 0.05, Fig. 14 of the
Appendix.) The NP(α = 0.01) detector with yields similar
performance as the BF(η = 6) detector, achieving specifici-
ties of 96% and 92%, respectively. The low precision values
in Table 4 were partly due to the unbalanced sample sizes
of the ASSR and non-ASSR frequencies. For imbalanced
datasets, the precision tends to fall with the increasing size
of the negative class [42], [43]. Thus, precision values may
differ across different studies, due to different negative sam-
ple sizes.

IV. DISCUSSION
A. SUMMARY
In this study, we evaluated the real-time performance of
the classical NP detector, by quantifying the probability of
detecting an auditory steady-state response in the EEG as
function of the accumulated number of recorded trials and the
signal-to-noise ratio. The NP detector was used to estimate
the required number of trials from recorded data obtained in
a pilot study, either off-line, or in real-time measurements
(see section ‘ASSR detection in EEG data’). It is relatively
straightforward to apply the NP detector on EEG signals to
detect ASSRs, as it uses a fixed threshold of F(dB). By con-
trast, the BF detector uses a dynamic threshold of F, and is
therefore more tedious to implement. To simplify its appli-
cation, we proposed to use the acceptance confidence, AC,
which does not depend on the empirically-chosen BF thresh-
old (η). Furthermore, we demonstrated that using a dynamic
threshold for F was equivalent to using a fixed threshold on
AC (Fig. 7). Therefore, AC is more suitable for application in
the BF detector as an objective indicator.We also analysed the
performance of the BF detector on ASSRs, and compared the
results (i.e., PD and false detection rate) with the NP detector
for typical threshold values.

The NP and BF detectors can be readily used in both
off-line and real-time applications, whereas the SPRTmethod
was particularly designed for real-time detection. Here,
we modified the standard SPRT detector by a cropped
ML estimator, such that it can sequentially detect ASSRs
with unknown SNRs. Setting a lower bound for the
ML estimator yielded two advantages. First, it resulted in
faster ML estimation because only a limited range of can-
didate SNR values needs to be evaluated. Second, given a
limited number of trials (e.g., N = 100), an ASSR with an
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extremely low SNR value technically cannot be detected.
After cropping estimated SNR values at a lower bound, sig-
nals with SNRs below the lower bound will be determined
as non-significant, rather than remaining in an undetermined
status during the remainder of the experiment. However,
the modified SPRT yielded only a similar performance to the
off-line detection, which is due to two reasons. First, SPRT
is a ‘conservative’ method because it generates a positive
detection under the two preset constraints: a detection rate
(i.e., 1 − β) and a false detection rate (α). Second, in this
study we used a limited sample size (maximum 100 trials),
which limited an accurate estimation for the unknown SNR
by point estimation with the maximum likelihood algorithm.
We expect improved performance of the modified SPRT
detector when a larger number of trials (>1000) is available.

Finally, the NP detector yielded the best overall detection
performance for the simulations as well as the EEG signal
analysis, with the BF detector yielding a similar performance.
The detection results on EEG signals show that the 2nd order
ASSRs (i.e., monaural beats) were detected within five tri-
als by the NP and BF detectors, and that more trials were
required for the modified SPRT detector (Fig. 9). In gen-
eral, the higher-order ASSRs took more trials to detect, with
exception of the higher-order ASSRs at 49 and 80 Hz. These
two particular ASSRs could be detected within 100 trials
for all subjects. These frequencies have been argued to arise
mainly from brainstem (around 80 Hz) and cortical processes
(around 45 Hz) in the auditory pathways [4], [37], and have
been shown to be quite robust in many studies [44], [45].

B. RELATION TO OTHER STUDIES
The Hotelling T 2 test and the spectral F test (which was
implemented in both NP and BF detectors) represent the two
main approaches for detecting a steady-state response. The
former quantifies the amplitude and phase information only
on the target frequency, the latter also considers neighboring
frequencies around the target frequency. The spectral F test
has been reported to be equivalent to many classical off-line
methods, like the magnitude squared coherence (MSC) mea-
sure and the circular T 2 test (CT2) (see Methods). Here,
we evaluated the spectral F test for real-time application,
i.e., making a decision for each newly obtained trial and
existing trials.

Compared with off-line detectors that rely on averag-
ing or statistically analyze all available trials, the proposed
real-time (NP and BF) detectors showed improved perfor-
mance because the maximum SNRs and corresponding PD
were often achieved well before reaching the maximum num-
ber of trials. In addition, we also observed that the SNRs
of weak ASSRs often fluctuated during the measurement
(as shown e.g. in Fig. 7), which might be caused by factors
such as subjects’ fatigue [16], or other non-stationarities
in the EEG signals. In practice, during real-time detection,
if the current accumulated set of trials is sufficient to deter-
mine the presence of a particular target ASSR, no more
trials are needed. Furthermore, we showed that one can

estimate an approximate estimate for the required number of
trials for target ASSRs from the calculated single-trial SNR
(Fig. 4 and Table 2). If the estimated number of trials is much
larger than the maximum experimental time allowed, one
could immediately decide to make an early stop. This will
save valuable measurement time and unnecessary inconve-
nience for hearing impaired subjects, whose hearing thresh-
olds are higher than normal-hearing listeners, and perhaps
may lack the healthy nonlinearities in their early auditory
processing stages, which may therefore prevent them from
generating the corresponding ASSRs.

Many previous studies did not evaluate their meth-
ods on the ensemble of non-ASSR frequencies as a con-
trol group. Consequently, the reported high detection rates
(or sensitivities) in the literature may come at a potential
cost: a high false-detection rate on non-ASSR frequencies
(as shown by Table 4). Therefore, it is important to choose
proper parameters for the detectors, in order to make a
‘reliable’ detection with an acceptable low false-detection
rate. We recommend to use the NP and SPRT detectors with
α = 0.01 (a stricter criterion than 0.05, see an example in
Appendix Fig. 14), and the BF threshold η ≥ 6. These settings
will reduce the false detection rates for both ASSRs and non-
ASSRs, especially when the EEG channels with higher SNRs
are selected for detection [5].

C. POSSIBLE APPLICATIONS IN OTHER DOMAINS
In this study, the online detection was performed to detect
both low and high order auditory steady-state responses.
However, it is worth noting that these online detection
methods could also be applied for the detection tasks of
event-related potentials, such as P300-based brain-computer
interfaces, for which multiple trials are required to improve
SNRs [46]. Similar online detection strategies have been
used to reduce the calibration time [47], and for visual
stimulus studies to reduce the intensity of stimuli, yielding
reduced visual fatigue [48]. In addition, a similar (online)
Neyman-Pearson (NP) detection rule has been used in other
signal detection tasks, such as photoplethysmogram (PPG)
signals endowed with motion artifacts [49].

D. FUTURE WORK
A limitation of the real-time detectors is that their perfor-
mance still relies on empirically chosen parameters, which
determine a trade-off between correct detections and false
alarms. Future studies could consider two options to funda-
mentally improve detection performance: (i) increasing the
SNRs of target ASSRs, and (ii) properly setting the prior
of ASSRs. First, ASSRs can be detected at increased SNRs by
combining multiple electrode EEG with source-localization
techniques [50]. However, the improved SNR of ASSRs
will be affected by the proper estimation of multiple ASSR
sources. Second, for the BF detector in this study we did not
vary the prior probabilities of potential ASSRs (we used equal
priors for signals present or not). However, another study [7]
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FIGURE 11. PDFs of F distributions (H0; green)) and non-central F
distributions (H1−3) under different SNRs with the neighboring frequency
bin number, M = 12. The critical value (NPcrit ) of the NP detector was
determined by α = 0.05 or 0.01). The thresholds of F (θ1−3, denoted by
the thick dashed lines) for the BF(η = 1) detector are determined by
intersections of the PDFs for H0 and H1 with SNR values of 1, 5 and 10.

has suggested that the use of prior probabilities of ASSRs
potentially further reduces measurement time.

V. CONCLUSION
This study evaluated three real-time ASSR detectors: the
classical NP detector, the BF detector and the modified
SPRT method, by simulations and by detecting higher-order
ASSRs in the EEG, generated by AM sound stimuli.
Compared with traditional off-line detectors, the NP and
BF (real-time) detectors showed improved performance and
can potentially save measurement time. The detection results
show that the second order ASSRs can be detected already
within five trials for both NP and BF detectors. In general,
higher-order ASSRs takemore trials to detect, with the excep-
tion of those near 40 Hz and 80 Hz. To guide the implementa-
tion of the real-time detectors, we evaluated the influence of
commonly-used parameters to reach an acceptable trade-off
for detection performance against false positives.

APPENDIX A
RELATIONSHIP BETWEEN SNR AND F SCORE
The following formulas show the relationship between the
expected F score (by the spectral F test) and SNR.

SNR =
p(s)
p(n)
=

E(A2)

E(R2k + I
2
k )
=

A2

2σ 2 (A1)

E(F) =
p(s+ n)
p(n)

=
E((A+ Rk )2 + I2k )

E(R2k + I
2
k )

=
A2 + 2σ 2

2σ 2 (A2)

Hence, E(F) = SNR + 1. See (1) in the main text for an
explanation of each symbol.

APPENDIX B
ILLUSTRATION OF F DISTRIBUTIONS
Figure 11 illustrates how the PDFs of the null hypothesis
(H0) and the alternative hypothesis (H1, with different SNR
values) affect the thresholds of F for the NP and BF detectors.
The F threshold for the NP detector is known as critical

FIGURE 12. Performance of the NP detector as a function of SNR for
different numbers of neighboring frequency bins (M = 4, 6, 12, and 24).
Top panel shows the values of the expected F and its 95% confidence
intervals (solid lines) and the corresponding critical values (dashed lines)
of the NP detector (α = 0.05). For each M, the expected F values
completely overlap, but their confidence intervals (and corresponding
critical values) differ. The bottom panel shows that the detection
probability, PD, computed by theory (solid lines) and simulation
(symbols) overlap (n = 1e5 in the Monte Carlo simulations). The PD
for the lowest SNRs converges at 0.05 (i.e., the preset value of α).

FIGURE 13. The expected stop time, i.e., trial number K (in (14)) for
each SNR using SPRT with specified PD values of 0.9, 0.8 and 0.5
(with α = 0.05).

values (NPcrit ), which is independent of the SNR. The
F threshold for the BF detector is denoted by θ , which is
affected by the SNR.

APPENDIX C
INFLUENCE OF FREQUENCY BINS
Figure 12 illustrates that PD slightly increases with the num-
ber of neighboring frequency bins,M .

APPENDIX D
EXPECTED STOPPING TIME OF SPRT
The expected stopping time (E0(K ) and E1(K )) of SPRT can
be estimated when either H0 or H1 is true, respectively [51]:

E0(K ) =
(1− α) ln( 1−α

β
)− α ln( 1−β

α
)

D(p0||p1)
(A3)

E1(K ) =
(1− β) ln( 1−β

α
)− β ln( 1−α

β
)

D(p1||p0)
(A4)

VOLUME 9, 2021 108989



L. Wang et al.: Towards Real-Time Detection of ASSRs

FIGURE 14. A comparison of ASSR detection at integer frequencies with the NP detector for α = 0.05 (top) and
0.01 (bottom) for all subjects. Positive detections are denoted by stars (red), and negative detections by circles. The
theoretical ASSR frequencies (n = 12) are denoted by vertical bars; the other frequencies are non-ASSR controls (n = 88).

whereD(p0||p1) andD(p1||p0) are the Kullback-Leibler (KL)
divergences between p1(Fi) and p0(Fi), and D(pi||pj) =
∞∫
0
pi(F) log(

pi(F)
pj(F)

)dF . Figure 13 illustrates the expected

stopping time (as trial numbers) for different detection
probabilities PD.

APPENDIX E
INFLUENCE OF α VALUE
Figure 14 illustrates how α value affects the detection of
ASSRs for the NP detector.
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