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ABSTRACT The penetration of PVs into the power grid is increasing day by day, as they are more
economical and environment-friendly. However, due to the intrinsic intermittency in solar radiation and
other meteorological factors, the generated power from PVs is uncertain and unstable. Therefore, accurate
forecasting of power generation is considered one of the fundamental challenges in power system. In this
paper, a deep-learning model based on two-stage attention mechanism over LSTM is proposed to forecast
a day-ahead PV power. In addition, the Bayesian optimization algorithm is applied to obtain the optimal
combination of hyper-parameters for the proposed deep-learningmodel. Various input features that can affect
the PV power generation such as solar radiation, temperature, humidity, snowfall, albedo etc. are considered
and their impact with respect to the attention mechanisms on the forecasted PV power is analyzed. The input
consists of data from 21 PVs installed at different geographical locations in Germany. The proposed model
is compared with state-of-the-art models such as LSTM-Attention, CNN-LSTM, and Ensemble model for
day-ahead forecasting. The model is also compared with various single attention mechanisms such as Input-
attention, SNAIL, Raffel, and Hierarchical attention etc. The proposed model outperforms the traditional
methods in terms of accuracy, hence proving its efficiency. Forecasting Skill (FS) score of the proposed
model is 0.4813 whereas 0.4427 is for the Ensemble model, which is the best among other state-of-the-art
models. Root Mean Square (RMSE) and Mean Absolute Error (MAE) of the proposed model is 0.0638 and
0.0324 respectively, whereas those of the Ensemble model are 0.0685 and 0.0369 respectively.

INDEX TERMS Attention, Bayesian optimization, day-ahead forecasting, deep-learning, LSTM, solar
power forecasting, two-stage-attention.

I. INTRODUCTION
Due to increasing concerns about global environmental and
economic challenges, the demand for clean energy such as
photovoltaic and wind power is increasing [1]. According
to International Energy Agency (IEA), photovoltaics (PV) is
one of the fastest-growing and economical renewable energy
resources [2]. PV power generation is mainly dependent on
meteorological factors such as solar radiation, clouds, humid-
ity, pressure, temperature etc. Due to the intrinsic intermit-
tent nature of these factors, the nature of PV power is also
variable and uncertain, resulting in unstable fluctuations [3].
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Consequently, the inclusion of a large proportion of PV will
cause grid oscillations [4]. Therefore, to reduce these uncer-
tainties and fluctuations, accurate forecasting of PV output
power is essential.

Numerous benefits can be obtained by hours to day-ahead
solar power forecasting. Accurate forecasting can help com-
panies to avoid penalties [5]. Forecasting helps in optimiz-
ing the scheduling of supply offers to the market, hence,
increases revenues [6]. Operators can avoid problems in bal-
ancing generation and demand [7], which resultantly can
improve the system stability, and reduce the costs of ancillary
services [8], [9]. Furthermore, decisions on unit commit-
ment, reserve requirement, and maintenance scheduling to
obtain optimal operating cost can be performed with accurate
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forecasting. Considering these reasons, accurate PV forecast-
ing has been recognized as one of the fundamental challenges
in power systems [10], [11].

Forecasting of solar power can be mainly categorized into
physical, statistical and machine-learning models [12]–[14].
Physical models have well-established methods that rely on
Numerical Weather Prediction (NWP) data [15] and satellite
images [16]. Although these methods have good accuracies,
they require extra information of images and cloud maps
from satellites, resulting in a higher cost for operation and
computation. In addition, these models should be designed
for particular locations [12]. Statistical models are based on
traditional regressive mathematical models such as linear
regression and Automatic Regressive Integrated Moving
Average (ARIMA) models. Since linear regression mod-
els build a linear mapping between inputs and the target
power [17], they cannot efficiently capture the non-linear
relationship between input features and outputs of solar
power. Furthermore, as the forecasting horizon increases,
the accuracy of these models decreases [12].

To overcome these issues, various machine-learning
models have been proposed [18]–[20]. Support vector regres-
sors are the machine-learning model that can generate non-
linear relationship. Support Vector Regression (SVR), based
on various weather information such as cloud, sun duration
etc., has been used to forecast solar power in [18]. A hybrid
model based on the genetic algorithm with Support Vector
Machine (SVM) has been proposed for solar power fore-
casting in [19], which improved results as compared to sim-
ple SVM. An ensemble model is a hybrid machine-learning
model based on the combination of various non-linear regres-
sion models. The ensemble model has been proposed as the
best machine-learning model in [20]. However, these mod-
els depend on predefined parameters and predefined non-
linear mapping. Therefore, it is difficult to capture the true
underlying non-linear relationship between inputs and target
values [13], [21], [22].

Recently, deep-learningmodels, which are advanced forms
of traditional machine-learning techniques, are becoming
very popular in various fields such as image processing [23],
text translation [24] and time-series problems [25]. Solar
power forecasting is a time-series problem where next time
steps are sequentially dependent on past time steps in a non-
linear relationship. Recurrent Neural Networks (RNNs) are
deep-learning models specifically designed for time-series
data [26]. Non-linear Autoregressive Recurrent Neural Net-
work (NARX) has been successfully applied to solar power
forecasting [27], [28]. However, conventional RNNs suffer
from exploding and vanishing gradients [29]. Thus, they
cannot capture long-term dependencies. The extension of
RNN, Long Short-Term Memory (LSTM) [30], has been
proposed to overcome these limitations of RNN. LSTM and
combination of LSTM with Convolutional Neural Network
(CNN) have been used with good accuracies in solar power
forecasting [31]–[33].

Encoder-decoder networks based on LSTM are becom-
ing popular deep-learning models in time-series forecasting,
specifically in sequence-to-sequence mappings [34]–[38].
Therefore, these combinations of encoder-decoder with
LSTM can be regarded as state-of-the-art. Although these
models work well with small sequences, their performance
degrades with the increasing length of sequences [37].
In time-series forecasting this is a big concern, as predictions
usually require longer temporal sequences as well as many
input features such as day-ahead solar power forecasting.

Attention mechanism is an extension of the encoder-
decoder model specifically designed to improve the perfor-
mance of longer sequences [39]. In [39], solar power has
been forecasted using single self-attention over LSTM to
capture important temporal states. However, single tempo-
ral attention mechanisms still lack in handling data con-
taining many input features and long temporal sequences.
Addressing these time-series forecasting challenges, a two-
stage attention mechanism has been used for stock price
forecasting in [40].

In this paper inspired by [40], a two-stage atten-
tion mechanism-based deep-learning model is applied to
day-ahead solar power forecasting using multiple input fea-
tures. The model is optimized by using the Bayesian opti-
mization algorithm to obtain the optimal combination of
hyper-parameters. Following are the major contributions of
this paper:
1. Two-stage attention-based encoder-decoder over LSTM

is applied to day-ahead solar power forecasting. First,
an attention layer is applied to the input, focusing on
more relevant features at a particular time, which is fol-
lowed by a temporal attention layer to focus on relevant
temporal hidden states of LSTM units. Both attentions
are applied over LSTM. 41 different input features from
21 different PV panels installed at different geographical
locations in Germany are used as input data. The paper
analyzes the performance of the attention mechanism
with respect to some important input features such as
solar radiation, temperature, snowfall, etc. The paper
also analyzes the performance of the attention mecha-
nism with respect to temporal values.

2. Deep-learning models have different hyper-parameters,
which control their performance. On a particular prob-
lem, different combinations of these parameters produce
optimal results. Therefore, the Bayesian optimization
algorithm has been applied to the two-stage attention-
based deep-learning model to obtain the optimal combi-
nation of hyper-parameters.

3. A comparative study of the proposed method with
the persistence model [13], and the state-of-the-art
methods such as LSTM [31], [32], CNN-LSTM [33],
LSTM-Attention [39] and Ensemble model [20], has
been carried out to show the effectiveness of the pro-
posed method. Furthermore, single attention mecha-
nisms can be carried out via different techniques such
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FIGURE 1. Complete illustration of two-stage attention-based encoder-decoder model for day-ahead solar power forecasting.

as Input-Attention, Raffel, Hierarchical, SNAIL atten-
tion, etc. [41]–[43]. Comparison of these single attention
techniques over LSTM has also been performed with
the proposed method to show the effectiveness of the
two-stage attention mechanism.

The paper is organized as follows: in Section II, the two-
stage attention mechanism over LSTM for day-ahead solar
power forecasting is explained. Section III consists of the
experiments. Results are given in Section IV. Section V gives
the qualitative discussions and conclusion.

II. TWO-STAGE ATTENTION MODEL FOR SOLAR POWER
FORECASTING
A. MODEL SUMMARY
Solar power is highly dependent on meteorological features
like solar radiation, temperature, humidity, snowfall, etc. Dur-
ing normal conditions, it almost follows the trend of fea-
tures like solar radiation. However, during extreme conditions
like snowfall and albedo, the power production is almost
zero. Therefore, an attention mechanism is required at the
input to focus on the features that are more relevant at a
particular time. Similarly, solar power forecasting is a time-
series problem. The next time-step is correlated to past time-
step outputs. Therefore, relevant time sequences must also
be focused on with the attention mechanism. Considering
the aforementioned objectives, in this paper the two-stage
attention-based encoder-decoder model over LSTM has been
applied to day-ahead solar power forecasting. First, encoder-
based attention is applied to the input features to focus on
important features at a particular time. Then, decoder-based
temporal attention is applied to the hidden states of the
encoder’s LSTM to extract important temporal states. Finally,

a linear layer is added to the output to predict a day-ahead
solar power. Thewholemodel is trained based on the standard
backpropagation algorithm. The complete model is shown in
Fig. 1.

B. INPUT FEATURES AND TARGET
41 different features have been used as input. Pearson cor-
relation of these inputs with the target solar power is shown
in Fig. 2. Although these features have different correlations
with the output power, all of them have impacts on output
power at particular instances. For the ease of mathematical
representation, let xt = (x1t , x

2
t , . . . , x

n
t ) ∈ Rn be a series of n

input data features at time t . And let xk = (xk1 , x
k
2 , . . . x

k
L)
>
∈

RL be a series of k th input feature data over L time-steps win-
dow. Then, a series of n input data over L time-steps window
can be expressed as (x1, x2, . . . ,xn)> = (x1, x2, . . . , xL) ∈
RnxL.

Input data consists of historical solar power data and
weather data. The target of the proposed paper is a
day-ahead solar power. Given the past values of output as
(y1, y2, . . . , yL) together with the input (x1, x2, . . . , xL),
the complete model to predict a day-ahead solar power can
be expressed by the following function F :(
yL+1,yL+2,. . . ,yL+l

)
=F(y1, y2, . . . , yL, x1, x2, . . . , xL)

(1)

where yL+1,yL+2,. . . ,yL+l are l-time steps ahead solar power
to be predicted. Using the proposed method, any horizon
ahead forecasting can be carried out. In this paper eight-time
steps ahead forecasting with a resolution of three hours is
performed to obtain a day-ahead solar power.
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FIGURE 2. Pearson correlation between input features and target solar power.

FIGURE 3. An illustration of an LSTM unit.

C. LSTM UNIT
Both input and temporal attention-based encoder-decoder are
applied over LSTM units. An LSTM unit is shown in Fig. 3.
LSTM unit consists of a hidden state ht which is the output
of an LSTM unit, and an internal state or cell state ct which
remembers the cell states. It also contains three gates: input it ,
forget ft , and output gate ot . An input gate controls the amount
of current information to be passed. A forget gate controls the
information to be processed or to be forgotten, and an output
gate defines the internal state information that needs to be
passed.

Provided that xt is the input at t and ht−1 is the previous
hidden state of LSTM, the following chain of equations can
be used to obtain the current hidden state of LSTM unit ht :

ft = sigmoid(Wf [ht−1; xt ]+ bf ) (2a)

it = sigmoid(Wi [ht−1; xt ]+ bi) (2b)

ot = sigmoid(Wo [ht−1; xt ]+ bo) (2c)

ct = ft⊗ct−1 ⊕ it⊗ tanh(Wc [ht−1; xt ]+ bc) (2d)

ht = ot⊗ tanh(ct ) (2e)

where Wf ,Wi,Wo,Wc, bf , bi, bo, bc are the weights and
biases to be trained. Combining equations (2), an LSTM unit
can be expressed by the following non-linear function f :

ht = f (ht−1, xt ) (3)

D. INPUT ATTENTION BASED ENCODER
To extract relevant input features from the input series xk,
an input attention is applied with the encoder as shown
in Fig. 1. The input attention can be applied using xk, and
the previous hidden and cell states of the encoder’s LSTM by
using (4) and (5) as follows:

εkt = zεtanh(Wε [ht−1; ct−1]+ Uεxk ) (4)

αkt =
exp

(
εkt
)∑n

i=1 exp
(
εit
) (5)

where zε,Wε and Uε are the parameters to be trained. αkt is
an attention weight that shows the importance of the k th input
feature at time t . To keep the sum of all the attention weights
to 1, a softmax activation is applied to εkt . This attention
mechanism gives important features more weights rather than
treating all the inputs equally. A new input series can be
extracted with these attention weights using (6). This new
input is fed to update the encoder’s LSTM hidden state of (3)
as shown by (7):

x̃t = (α1t x
1
t , α

2
t x

2
t , . . . , α

n
t x

n
t )
> (6)

ht = f (ht−1, x̃t ) (7)

E. TEMPORAL ATTENTION BASED DECODER
The decoder model is designed to extract important tempo-
ral hidden states and to make the final output prediction.
With the increasing length of input series, the results of the
traditional encoder-decoder deteriorate. Therefore, after the
attention encoder, a temporal attention-based decoder has
been applied to select relevant hidden states of the encoder
from all time-steps as shown in Fig. 1. The attention weights
of each encoder’s hidden state can be calculated by using the
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previous hidden state of the decoder’s LSTM dt−1 and its cell
state ćt−1 as in (8) and (9):

ρit = zd tanh(Wd
[
dt−1; ćt−1

]
+ Udhi) (8)

β it =
exp

(
ρit
)

∑L
j=1 exp

(
ρ
j
t

) (9)

where zd,Wd and Ud are the weights to be trained. β it repre-
sents the importance of the ith encoder hidden state at time
t. Since each encoder’s hidden state hi has been mapped to a
temporal component of the input, the attention mechanism
calculates the context vector vt as a weighted sum of all
the hidden states of the encoder (h1, h2, .., hL) using (10).
This vector is different at each time-step. The vector is then
concatenated with the target values using (11). Then, using
the decoder’s hidden state dt−1 and the newly concatenated
value ỹt−1, the decoder’s new hidden state dt can be obtained
using the decoder’s LSTM non-linear function f based on (3)
as shown in (12):

vt =
∑L

i=1
β ithi (10)

ỹt−1 = w̃ [yt−1; vt−1]+ b̃ (11)

dt = f (dt−1, ỹt−1) (12)

where w̃ and b̃ are weights and biases that are mapping the
concatenation.

F. OUTPUT AND TRAINING MECHANISM
The final output follows the decoder, which consists of a
linear layer to predict a day-ahead solar power. The final layer
will predict l-time steps ahead. The complete model can be
expressed by the following expression:

Ŷ t =
(
yL+1,yL+2,. . . ,yL+l

)
= F(y1, y2, . . . , yL, x1, x2, . . . , xL)

= z>y (W y [dL; vL]) (13)

where Ŷt is the solar power to be predicted; Wy and zy are
the weights to be trained. In this paper, l is taken as eight
to predict a day-ahead solar power with a resolution of three
hours. The whole model has been trained using the stan-
dard backpropagation algorithm with the objective function
defined by Mean Square Error (MSE):

O
(
Ŷt ,Yt

)
=

1
N

∑N

1

(
Ŷ it ,Y

i
t

)2
(14)

where N is the number of training samples and Yt is the actual
values.

III. EXPERIMENTS
A. DATA
The model is trained and tested on 21 different PV facilities
installed at different geographical locations in Germany [44].
These facilities are installed on different spots ranging from
rooftop to fully-fledged solar farms. Each dataset consists
of NWP data and the historical power data in a resolution

TABLE 1. Parameters of the proposed model optimized by bayesian
optimization algorithm.

of three hours for 990 days. The nominal power of the PVs
ranges between 100kW and 8500kW. Out of the 990 days,
490 days are used for training, 250 days are used for vali-
dation, and 250 days are used for testing. After splitting the
data, the data has been normalized. Except the output power,
all input data are normalized between 0 and 1. The output
power or the target value is normalized according to the power
capacity of the respective PV facility.

B. BAYESIAN OPTIMIZATION
Hyper-parameter optimization is essential for the model’s
optimal performance. Traditionally, manual, or grid and
random search techniques were used for tuning hyper-
parameters [45]. Manual methods are time-consuming and
depend on human expertise, while in grid search the effi-
ciency decreases as the number of hyper-parameters increase.
In random search, a combination of random parameters is
sampled based on a statistical distribution given by the user,
which may not spot optimal points in the search.

Bayesian optimization [45] considers past evaluations to
select hyper-parameters to evaluate next. By selecting its
parameters in an informed manner, it can more focus on
areas of the parameter space that can validate more promising
parameters. It has three main parts: search space from which
parameters can be sampled out; objective function; and sur-
rogate. It builds a probability model of the objective function
and uses it to select the most promising hyper-parameters to
evaluate the true objective function.

Table 1 shows the ranges of hyper-parameters to be
optimized in the proposed model. Seven parameters of the
proposedmodel have been optimized using the Bayesian opti-
mization algorithm. The table also shows the optimal set of
values after applying the Bayesian optimization. Fig. 4 shows
the convergence points of the optimization algorithm where
the optimal combination of the hyper-parameters is con-
verged. These points show the optimal values of the loss
functions.

C. MODELS FOR COMPARISON
The persistence model has been used as the benchmark
model [13]. In this model, the forecasted PV power output
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TABLE 2. Optimized parameters of models for comparison.

is assumed to remain the same at the same time of the pre-
vious or following day [13]. Various state-of-the-art models
like LSTM, LSTM-Attention [39], CNN-LSTM [33], and
Ensemble method [20] have been implemented on the dataset
to compare with the proposed model for day-ahead fore-
casting. All the comparative models have been optimized
to obtain their optimal set of parameters. Table 2 shows
the optimized parameters of different models. The atten-
tion mechanism can be carried out via different techniques

such as Raffel [41], Hierarchical [42], and SNAIL [43]
attention. These single temporal attention techniques have
been applied over LSTM hidden states and are compared
with the proposed method to check the performance of
the two-stage attention mechanism. The Input-Attention
model with attention only on the input features has also
been compared with the proposed method to emphasize
the importance of the combined effects of two stages of
attention.
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TABLE 3. RMSE of different models.

D. EVALUATION
In this paper, Root Mean Square Error (RMSE), Mean Abso-
lute Error (MAE), R2 score, and correlation coefficient are
used to evaluate the performances of models. Furthermore,
Forecast Skill (FS) score has been used to compare themodels
with the benchmark, i.e. the persistence model. Definition of
FS score differs depending on literatures. This paper adopted
the FS score from [46].

RMSE(y′, y) =

√
1
N
.
∑N

n=1

(
x ′n − xn

)2 (15)

MAE(y′, y) =
1
N
.
∑N

n=1
|x ′n − xn| (16)

R2 score(y′, y) = 1

∑N
n=1

(
x ′n − xn

)2∑N
n=1 (xn − x̄)

2
(17)

FS score = 1−
RMSE(Model)

RMSE(Persistence)
(18)

where y’ and y are predicted and the actual val-
ues respectively. Correlation-coefficient is the Pear-
son correlation-coefficient of the predicted and actual
values.

IV. RESULTS
Table 3 and Table 4 show the comparison of the proposed
model with different state-of-the-art models for day-ahead
solar power forecasting. Table 3 shows the RMSE of all the
models for each PV panel. From this table, it can be seen that
the proposed model considerably outperforms all other mod-
els. Similarly, Table 4 shows the average values of RMSE,
MAE, correlation coefficient, and R2 score of all models.
RMSE and MAE errors indicate the losses. From Table 4 it
can be seen that RMSE and MAE of the proposed model are
the lowest among all the models. Similarly, R2 score and cor-
relation coefficient refer to the accuracies. The R2 score and
correlation coefficient of the proposed model is the highest as
shown in Table 4.

In order to show the effectiveness of the proposed two-
stage attentionmechanism, themodel has also been compared
with various single attention mechanisms. SNAIL, Raffel,
and Hierarchical attention are applied over LSTM hidden
states to focus only on temporal sequences. An attention layer
is applied to the input features in an Input-Attention model
to focus only on important features. The comparison of the
proposed model with various single attention mechanisms is
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TABLE 4. Average values of RMSE, MAE, R2 Score, and correlation Co-efficient.

TABLE 5. Average values Of RMSE, MAE, R2 score, and correlation Co-efficient of various attention models.

FIGURE 4. Convergence points of objective function of Bayesian
optimization showing optimal combination of hyper-parameters.

given in Table 5. The combination of two-stage attention is
highly efficient as compared to single attention mechanisms
for day-ahead solar power forecasting, which can be seen
from Table 5.

FS score is the criteria to check the performance of differ-
ent forecasting models with respect to the persistence model.
A higher value of FS score indicates the better performance
of a model. The FS scores of all models are shown in Fig 5.
The figure shows that the FS score of the proposed model is
the highest among all the models. Among the other models,
the ensemble model has the better FS score than the others.

FIGURE 5. Forecasting Skill (FS) score of different models with respect to
the persistence model.

The proposed paper considers 41 features. The perfor-
mance of the model with respect to some important features
such as hour of the day sine, month of the year sine, solar
radiation direct, temperature, snowfall, and albedo is shown
in Fig. 6. This figure shows that the input attention gives
more weight to the input features which are more influencing
on the target. It is obvious that the hour of the day has a
very good correlation with the target power, which can be
seen from Fig.6 (a). Similarly, Fig. 6 (b) shows the impact
of the month of the year. Months in summer have a high
impact on the output power, whereas winter months have
the least impact. The temperature in summer is higher than
that of winter, which also influences the power production as
shown in Fig.6 (d). Solar radiation is the most correlated data
among all inputs. The output power almost follows the trend
of solar radiation as shown in Fig. 6 (c), unless some harsh
weather conditions like snow or albedo are encountered,
as shown in Fig. 6 (e) and (f). The model shows that the PV
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FIGURE 6. Model behavior with respect to some important input features and temporal lookbacks i.e. (a) Hour of the day sine, (b) month of
the year sine. (c) Solar radiation direct (d) Temperature, (e) Snowfall, (f) Albedo.
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FIGURE 6. (Continued.) Model behavior with respect to some important input features and temporal lookbacks i.e. (a) Hour of the day sine,
(b) month of the year sine. (c) Solar radiation direct (d) Temperature, (e) Snowfall, (f) Albedo.

TABLE 6. Time taken by each model for 200 epochs.

performance decreases with the increase in the snow falling.
Albedo, which accounts for the reflection from the panel,
has also an effect on the output power. Fig.6 also shows the
performance of the model with respect to temporal values.
The model has given more weights when lookback is 2 as
compared to when lookback is 1, which means the model is
learning better when lookback is 2.

V. DISCUSSIONS AND CONCLUSION
Solar power forecasting is a time-series problem with non-
linear relationship between inputs and targets. Traditional

methods either carry out linear mapping or lacks in handling
long-term temporal dependencies. Although extensions of
RNN such as LSTMwith auto-encoders can handle long-term
dependencies, the increase in the number of input features and
long-sequences deteriorates their performance

In this paper, addressing aforementioned issues, day-ahead
solar power forecasting has been carried out using a two-stage
attention-based encoder-decoder model. The model applies
two stages of attention over LSTM. At first, an encoder-
based attention is applied to the input, which focuses on the
important features at a particular time. At the second stage,
a decoder-based temporal attention is applied to focus on
important hidden states of the encoder. This combination of
two stages of the attention mechanism with encoder-decoder
model solves the time-series forecasting problems signifi-
cantly, which can be seen from the results.

FS score shows the effectiveness of a forecasting model
with respect to the persistence model. The FS score of the
proposed model is better as compared to other models as
shown in Fig. 5. Table 3 shows the comparison of RMSE
of the proposed model with the state-of-the-art models for
each PV panel. It can be seen from this table that the
proposed model outperforms the traditional methods consid-
erably. In this result, the ensemble method, which is the com-
bination of various machine-learning techniques, has shown
some better results than the others, due to the combined effect
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of various models together. However, the accuracy of the
proposed method is much better due to its consideration of
all challenges related to the time-series. This effectiveness of
the proposed method can further be seen from Table 4, where
the average values of RMSE, MAE, R2 score and correlation
coefficient of the proposed method are considerably better
than the traditional methods.

Different techniques can be used to apply attention mecha-
nisms (such as Raffel, SNAIL, and Hierarchical techniques).
These attention mechanisms have been applied over LSTM
hidden states to emphasize temporal attention mechanism
only. In addition, Input-Attention model with attention only
on the input features has also been considered, emphasiz-
ing only input feature selection. All these attention mecha-
nisms are compared with the proposed method in Table 5
to show the effectiveness of the two-stage attention mecha-
nism. From this table, it can be seen that the combination of
input attention and temporal attention has high accuracy as
compared to considering temporal attention or input attention
only.

The two-stage attention mechanism focuses on more rele-
vant input features as well as temporal hidden states, which
can be seen from Fig. 6. This figure shows that during normal
weather conditions, the output power is following the trend of
features like hour of the day, solar radiation, etc., and these
features are obtaining more attention weights accordingly.
However, under extreme weather conditions like snowfall or
albedo, the power production is almost zero and these features
are getting weights accordingly. Similarly, it can also be seen
from Fig.6 that the model is giving more weights depending
on more relevant temporal values. For instance, the model
has given more temporal weights when the lookback is taken
as 2, as compared to when the lookback is taken as 1. This
means the model is learning better considering 2 lookbacks
as compared to 1 lookback.

The paper has some limitations to be addressed as future
work. The proposed model consists of two layers of atten-
tion with encoder-decoder layers over LSTM. The proposed
model requires more layers and parameters to be trained as
compared to other models. Therefore, the performance of the
proposed model in terms of speed is lower as compared to
the other models, which can be seen in Table 6. Furthermore,
similar to all day-ahead forecasting models, this model also
relies on forecasted weather data. Therefore, the accuracy is
dependent on the accuracy of weather forecasters. The aim
of the paper is to show that under given same conditions,
the proposed model performs better as compared to other
state-of-the-art models.

Since the proposed model is very efficient in forecast-
ing, this model can be applied in different multi-horizon
forecasting applications such as microgrid demand response
forecasting considering market participations, and in electric
vehicles load and charge or discharge forecasting. Consider-
ing the ability of the model to focus onmore relevant features,
it can also be applied to various applications like event man-
agement, fault identification, faulty equipment identification,

intrusion detection, and power disturbance classification, and
so forth.
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