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ABSTRACT Controlling blood glucose levels in diabetic patients is important for managing their health
and quality of life. Several algorithms based on model predictive control and reinforcement learning (RL)
have been proposed so far, most of which use prior knowledge of physiological systems, the mathematical
structure of blood glucose dynamics, and many episodes including failures for training the policy network
in RL. To be smoothly adopted in clinical settings, we propose a fast online learning method underlining
safety and interpretability. A random forest regressor and a dual attention network were exploited for
glucose prediction and extension of state variables. The soft actor-critic network to determine insulin
dosing was guided by proportional-integral-derivative (PID) control in the early phase, and an adaptive
safe actor with suspension and additional insulin dosing was incorporated. The performance of the models
was validated using an FDA-approved type 1 diabetes simulator. The results showed comparable outcomes
with PID control. Using this system, glucose dynamics could be captured despite minimal prior knowledge.
The extended state variables were correlated with basic states such as glucose, insulin, and meal intake,
their derivatives, and their integrals, which can be fundamental elements of mathematical modeling of
physiological responses. Attention scores and attribution scores in the prediction and control models
represented the focused features and the internal operation of the models with interpretability. We expect
this study to provide some insights on how RL can be practically adopted in clinical environments and how
interpretability can provide hints of machines’ thoughts for clinical applications.

INDEX TERMS Blood glucose control, reinforcement learning, safe and interpretable control, in silico
validation, simulation for clinical application.

I. INTRODUCTION
Regulation of blood glucose levels in diabetic patients
is critical for managing their health. Diabetes mellitus is
a chronic disorder of improper glucose metabolism that
induces complications such as cardiovascular disease [1], and
neuropathy [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino .

It is estimated that 463 million people worldwide suffer
from diabetes [3] and the number of patients is going to
increase. Therefore, prevention [4] and care are important.
Technology for uncovering the characteristics of individuals
with diabetes and suggesting interventions to prevent exacer-
bation of clinical stages would improve the quality of life and
health of patients.

The interaction between glucose and insulin is complex.
Several physiological andmathematical models [5]– [8]. have
been proposed. The operations of numerous organs related
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to glucose homeostasis have been depicted by compartment
modeling [9] and estimated by measurements through blood
sampling, oral tracers [10], [11], and glucose clamp tech-
niques [12], [13]. Clinical indexes including insulin sensitiv-
ity [14], [15] and glucose responsivity [16], [17] differentiate
groups of diabetic patients to consider treatment plans. The
model parameters are related to clinical indexes; therefore,
incorrect assumptions regarding the structure of models may
lead to biases and inaccurate clinical descriptions.

Patients suffering from type 1 diabetes cannot produce
insulin; thus, external injections are required to regulate
blood glucose levels. The calculation of insulin dosing [18]
should be carefully considered because hypoglycemia and
hyperglycemia are common complications in the treatment.
In particular, insulin on board (IOB), that is the previous
bolus delivered and still active [19], may induce excessive
action of insulin to lower blood glucose levels toward hypo-
glycemia. Continuous glucose monitoring (CGM) [20]–[23]
and artificial pancreas [24], [25] have been widely tested in
clinical trials and have been adopted in daily life. In com-
parison to manual calculation and delivery of insulin doses,
automated insulin pumps with sensors for measuring blood
glucose levels can provide convenience and efficiency upon
proper responses to time-varying human conditions. Safety
is the most important value [24], [26], [27] for adopting a
technology in clinical applications, and all algorithms should
be carefully considered and tested.

Simulator-based approaches [28]–[30] cannot provide a
perfect validation for clinical studies, but the characteris-
tics, extent of applications, and potential weaknesses of
algorithms can be evaluated as preparation for experiments
in vivo. Physiological models have been adopted to simu-
late glucose dynamics, and several control algorithms based
on proportional–integral–derivative (PID) control [31], [32],
model predictive control (MPC) [33]– [35], and reinforce-
ment learning (RL) [36]–[39] have been tested for validation
before clinical trials. Insulin is the main control action in
type 1 diabetes, whereas glucagon has been recently used to
compensate for the action of insulin in the artificial pancreas,
and oral anti-diabetic medications can alternatively be used
in type 2 diabetes.

Many simulators use mathematical models to capture
dynamics. If the prediction and control models adopt this
knowledge to design the internal structure of the models,
information on a series of simplified equations is shared,
both in the controller and testing platforms. This may induce
an over-fitting problem with seemingly high performance
in simulation compared with the actual trials of hidden and
unobserved dynamics in the body. For example, if a controller
and a simulator use the same mathematical equations for
physiological descriptions, then the controller will show a
good performance in simulations, even though the actual
natural functionality may be different from the simplified
equations in the controller and the simulator. In this study,
we considered clinically applicable approaches without dis-
tinguishing between simulation and reality. We attempted to

construct prediction and control models with as little prior
knowledge of physiology as possible to reduce bias in simu-
lation testing due to shared knowledge of the information of
prior models.

RL has successfully achieved goals in numerous problems
with complex tasks, from playing games [40] to manipulating
robots [41]. The RL framework based on deep learning is
flexible for estimating parameters and structures in policy,
value function, and Q-function neural networks, model-free
and model-based approaches, and application from simula-
tion to the real world. It does not require full knowledge of
the model and the dynamics in advance, and trial-and-error
testing should be conducted during exploration and exploita-
tion [42]. Moreover, if the RL agent can learn time-varying
models online, then RL can respond to the changes and trends
of dynamics in glucose regulation in the short and long term.
Thus, RL approaches can be expanded to numerous clini-
cal problems with unclear or partial knowledge of internal
dynamics and interactions in vivo to generate actions for
regulating some biological variables or conditions.

However, some limitations exist for applying RL based
on neural networks to clinical trials for diabetes manage-
ment. First, RL usually requires many episodes for training
models. RL agents have to experience successes and failures
to shape the information from trial-and-error episodes to
determine a good policy for actions. However, patients should
not be subjected to health failures such as hypoglycemia or
hyperglycemia. Second, clinicians should be able to intervene
with controllers and patients when the situation is predicted
incorrectly and be providedwith some clues about the internal
states of patients and controllers. Third, many RL studies also
focus on the reduction of dimensions to construct latent states
dealing with raw image pixels and/or spatio-temporal data.
In contrast, glucose dynamics have unobserved hidden states
and interactions with relatively simple observed variables
such as glucose levels, insulin levels, and amount of meal
intake.

To resolve these difficulties, the present study has the
following three major contributions:

1) First, the adoption of PID control as a guiding pol-
icy in the early phase and the introduction of a safe
actor make training periods shorter than those of other
RL methods for glucose regulation. Similar to clinical
environments, an adaptive actor for safety to allow
patients to escape harmful conditions adjusts the insulin
dosing based on soft actor-critic (SAC) control in one
continuous episode.

2) Second, the dual attention network (DAN) for forecast-
ing glucose levels can extend the basic states reflecting
temporal contexts in dynamics through encoding and
decoding processes. The extended states contain inter-
pretable physiological information that can be derived
from the transformation of the basic states. It does not
require prior knowledge of mathematical equations to
describe glucose dynamics.
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3) Third, the prediction and control models were inves-
tigated from the perspective of interpretability. The
internal operations can be explained based on the inher-
ent structure of the models and the ad hoc methods
used to analyze neural network-based models. Patients,
clinicians, and control designers can understand the
behavior of the models by observing how the models
act under various conditions and prevent malfunction-
ing events.

Validation from simulations is not a perfect solution for
testing algorithms. However, it can provide insights for
further applications in clinical environments. With fewer
assumptions, the framework can be flexibly adapted for
hidden complex dynamics and is not limited to glucose
regulation but can be adapted for several dynamics with bio-
logical, physiological, and clinical variables in a time-varying
fashion.

II. RELATED WORKS
A. DESCRIPTION OF GLUCOSE DYNAMICS
To describe glucose dynamics in the human body, a series of
ordinary or partial equations based on compartment model-
ing [6]– [9] has been proposed. Several parameter estimation
techniques, such as deconvolution [43], [44] and Bayesian
inference [45], have been exploited for acquiring accurate
coefficients for models. Measurements of various biological
variables, including glucose, insulin, C-peptide, and glucagon
[46], have been used to expand the structure of the models.
In addition to blood sampling, radioactive agents [10], [11]
were used to validate the assumption of internal interac-
tions. Glucose clamp techniques [12], [13] have been used
to observe the dynamics based on the equilibrium of the
phenomena.

Themajor variables used formodeling are the glucose level
of blood or subcutaneous tissues [47], insulin injected or con-
centrated in blood, and information on meal intake. In addi-
tion, glucagon, which has the opposite actions toward insulin,
C-peptide, which is the precursor of insulin, and incretin [48],
which stimulates insulin secretion, can be included in the
modeling of glucose dynamics in the body.

Model identification [49], [50] is a common issue for
properly capturing patient characteristics. Infeasible ranges
in states may lead to unstable or unreal conditions; thus,
accurate measurements and modeling based on physiolog-
ical knowledge are important. Individuals have the ability
to stabilize blood glucose levels, and clinical indexes for
differentiating status as normal, pre-diabetes, and diabetes
can be derived.

According to a population-based study, mathematical
models can support clustering of subjects’ groups and
organization of virtual clinical trials from the distributions
of parameters calculated from actual clinical trials. The
UVA/Padova type 1 diabetes simulator [29], [30] is such an
effort in which many control algorithms have been tested.
Insulin sensitivity, the extent to which the body reacts to

given insulin to regulate blood glucose levels, and glucose
responsivity, the proxy for how glucose affects the production
levels of insulin secretion, can be derived from the obser-
vation of the body’s responses and mathematical models.
For instance, the HOMA [51] and Matsuda [52] indices are
widely used in the clinical field and can be obtained using
simple calculations. A more complex model cannot ensure
accurate evaluation of disease status. However, it can pro-
vide more minute differentiation of patient characteristics
based on parameters of the model and an opportunity to
predict time-varying sequences of related variables in glucose
dynamics.

B. FORECASTING OF GLUCOSE LEVELS
Forecasting the state is useful for clinicians and dia-
betic patients because it can provide opportunities to pre-
pare interventions to cope with undesirable events such
as hypoglycemia, which may induce unconsciousness in
patients. If the responses to the oral intake of carbohy-
drates are predicted, dietary plans can be made to reduce
hyperglycemia.

Many prediction models use several variables to construct
states based on the sequences of data. This process depends
on how the states are defined or input into the models.
If the model is established based on state-space models,
Kalman filtering [53], [54] or other correction methods are
usually incorporated to estimate the precise states repeatedly.
Machine learning-based regression algorithms [55] using ran-
dom forests, support vector machines, and gradient boost-
ing can also be adopted for forecasting. Nowadays, neural
network-based approaches [56], [57] have received attention
based on recurrent neural networks and auto-encoders to rep-
resent sequential data. Hybridization methods [58] connect
mathematical models of differential equations and variational
autoencoders to describe the glucose dynamics of diabetic
patients. Some studies [54], [57], [58] have used physiolog-
ical knowledge such as the glucose appearance rate for data
efficiency.

Deep learning-based forecastingmethods aremore flexible
for time-series data. Neural networks can represent non-linear
functions according to the universal approximation theorem.
Causal and dilated convolution layers to capture temporal
changes in glucose levels were adopted in [57]. Recurrent
neural networks take sequences as inputs with relatively
fewer assumptions than other machine learning-based meth-
ods. A model consisting of encoders and decoders with
multiple outputs was proposed in [56]. Recently, the atten-
tion mechanism [59] has been broadly adopted in several
algorithms for processing sequential data to improve perfor-
mance and to provide explainability. It can also highlight
the rationale of the machine’s internal calculations. In this
study, a dual-attention network [60] was adopted. It uses two
attention modules to focus on the importance of variables and
temporal sequences, which can provide attention scores for
variables and times.
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FIGURE 1. The pipeline of our framework for regulating glucose levels is presented in this figure. Prediction models to forecast
blood glucose levels and control models to regulate blood glucose levels are connected to interact with a type 1 diabetes
mellitus simulator in feedback cycles. The dual attention network generates extended states from basic states. Attention scores
for the dual attention network and attribution scores for the soft actor-critic provide interpretable metrics.

C. CLASSICAL CONTROL FOR GLUCOSE REGULATION
State-space models can be used to establish controls using
classical control theories. Insulin is a variable that is inherent
in many mathematical models for describing glucose dynam-
ics and can be used as an external control.

Several approaches to maintain proper glucose levels in the
body, including the linear quadratic regulator [61], dynamic
programming, and closed-loop control [62], [63], have been
proposed in many studies. These control methods use math-
ematical models of glucose dynamics, and a small number
of samples is required for data efficiency. PID control is
also comparable [64] to model-based control in terms of
performance, and PID with adaptive weights [65] has been
proposed recently. In [66], linear parameter-varying control
was incorporated with insulin, food intake, and metabolism
subsystems. In addition, the controller’s learning was empha-
sized in control systems [67] to improve control performance
by considering the variation in glucose dynamics.

The strength of classical control approaches is data effi-
ciency and ease of deriving closed-form solutions to enhance
stability analysis. Control actions can be designed and
implemented explicitly with low computation time. Tradi-
tional tools for control systems and characteristics, including
observability and controllability, can be considered. How-
ever, because of the rigid structure of mathematical models,
accurate modeling to differentiate hidden dynamics and noise
is required.

D. REINFORCEMENT LEARNING FOR DIVERSE FIELDS
Reinforcement learning (RL) has been widely applied to
diverse tasks, from solving video games [40] to robotic
actions, in constrained environments, and for the optimization
of the structure of the neural network. Most RL studies have

models for representation learning [68] to extract state rep-
resentations from raw inputs and pursue end-to-end learning.
Fully connected layers, convolutional layers, hidden Markov
models, and encoders from autoencoders are examples of
feature construction to establish states for RL.

For continuous actions in RL, deep deterministic policy
gradient (DDPG) [69] and SAC [70] are efficient solutions.
Experience replay [71] and the world model [68] can reduce
bias in training policy functions and the number of episodes
to be experienced.

RL with safe constraints [72] has emerged to consider
applications in the real world. Some studies have refined the
constraints or rewards for safe ranges in states, which can
help in avoidance of unstable areas. Otherwise, the methods
in which policies are trained separately can be applied under
normal conditions for conducting tasks and escaping condi-
tions for safety. If the states are classified as unsafe, the policy
is switched to ensure safety.

In this study, an adaptive actor for safety was adopted to
modulate the insulin dose calculated from the SAC controller.
It provides an alternative policy when the glucose level is
predicted to be in an unsafe range.

E. REINFORCEMENT LEARNING FOR REGULATION OF
GLUCOSE
Numerous studies [73] have adoptedRL for the determination
of insulin dosing for continuous and discrete values. Physio-
logical models with prior knowledge of glucose dynamics are
typically used to design rewards and responses.

Features of hypoglycemia and hyperglycemia events [36],
[74] have been used to adapt a bolus based on actor-
critic methods. Some rule-based conditions need to be com-
bined, and even explainability can be imposed on the trained
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controller. RL-based controllers have the advantage of flexi-
bility if model-free assumptions are pursued; thus, the forms
of functions on policy and value are important, which can be
from linear combination [75] to deep learning. Some studies
have implemented neural networks for deep reinforcement
learning to reduce the number of episodes to be trained [37],
[39]. For example, transfer learning from a generalized con-
troller with fine-tuning has been proposed to accelerate adap-
tation to the characteristics of individuals glucose dynamics.

In this study, actor-critic methods consisting of deep
learning with a safe actor using features of hypo and
hyperglycemia were adopted from the perspectives of
reinforcement learning and switching controllers for safety.
Actor-critic methods have been widely implemented [39],
[70], [72]–[74] in many RL applications.

F. INTERPRETABILITY OF NEURAL NETWORKS
Interpretable models and methods can provide some hints
to explain the models. Models can inherently have modules
and structures for interpretation or can be analyzed via ad
hoc approaches. A model itself can be explained by internal
parameters and weights of neural networks, or the features
that can affect the outcome of the models can be explored
by gradient-based or perturbation-based methods. To date,
there is no gold standard for calculating the contribution
scores of input features to outputs in a model. It depends
on the characteristics of learning and inference, such as back
and forward propagation, gradient and integral, perturbation,
and boosting. However, although metrics for interpretability
sometimes require additional interpretation by humans, atten-
tion and attribution scores can provide some hints for the
internal operation of the model.

Interpretability has recently been emphasized in the clin-
ical field. Both improvements in accuracy and explanations
of why false-positive and false-negative outputs occur are
invaluable for improving models for classification problems
common in disease detection.

Deep learning important features (DeepLIFT) [76] is a
gradient method for calculating attributions from the inputs.
Layer-wise relevance propagation (LRP) [77], [78] and the
integrated gradients (IG) [79] are alternative approaches
for understanding contribution features of neural networks,
which can be unified by means of composition and setting
reference values.

III. METHODS OF PREDICTION, CONTROL, AND
INTERPRETABILITY
This study includes the following three major parts:

1) First, prediction models forecast future glucose levels
and generate extended states from basic states to reflect
context information. Prediction models are based on
random forest regression (RFR) and a dual attention
network (DAN). Attention scores showwhich variables
and sequences the DAN is focusing on.

2) Second, insulin dosing is obtained from the soft actor-
critic (SAC) policy network. The policy of SAC is
guided by a PID controller in the early phase of the
simulations and modulated by an adaptive safe actor.

3) Third, extended states are investigated based on corre-
lations with simple forms of basic states. In this study,
simple forms of a variable are defined as the variable
itself, the first and second derivatives of the variable,
and the integrated value of the variable, which can
be interpretable and meaningful from the perspective
of physiological responses described by mathemati-
cal equations. In addition, the attribution scores of
extended states in SAC provide a partial explanation
of the behavior of SAC.

Prior knowledge and static information regarding the com-
plex physiological structure of virtual patients are minimally
assumed for model construction. Learning and actions are
concurrently conducted online to reflect the variability of the
patient’s status by updating the parameters repeatedly. The
conditions and responses (e.g., insulin sensitivity and glucose
responsivity) of dynamics in patients vary from moment to
moment; thus, models should be updated frequently.

PID control was fully introduced to the action in the begin-
ning, and the portion of the action from PID control was
gradually replaced by an SAC policy over time. PID control
is a type of model agnostic control method; thus, it coincides
with the assumption of minimal knowledge of physiology.
Fig. 1. and Fig. 2. show the overall scheme of the proposed
framework.

Algorithm 1 Simultaneous Prediction and Control
initialize parameters of all models
while (scenario is valid) do
receive basic states
update parameters of all models
predict the next states
generate extended states from basic states
calculate actions from PID, SAC, or a mixed policy of
PID and SAC
if (hypoglycemia is predicted to occur) then

conduct suspension by the safe actor
else

conduct actions from PID, SAC, or a mixed policy of
PID and SAC
if (hyperglycemia is predicted to occur) then

conduct additional dosing by the safe actor
end if

end if
end while

A. PREDICTION MODELS
For glucose and insulin prediction in the future states, two
predictive models were adopted, which are based on ran-
dom forest regression (RFR) and DAN. Blood glucose level,
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FIGURE 2. A detailed structure of prediction and control models for blood glucose forecasting and regulation were proposed. Attention scores for
variables and temporal relationships were obtained through the encoder and decoder. States were extended with hidden variables and context
vectors from the dual-attention network to predict changes in the states. The SAC with adaptive safe actors in calculating insulin doses uses the
extended states for learning and actions.

insulin dosing for the virtual pump, and the amount of meal
intake are the basic states for prediction. Notably, insulin
calculated by the control models, which corresponds to the
insulin dose from the pump, is used, whereas the IOB inside
the patient’s body is not explicitly structured in prediction
models to intentionally reduce the bias on internal complex
dynamics of physiologic variables. In addition, the DAN is
used not only for prediction but also for the encoder and
decoder to generate extended states from basic states (glu-
cose, insulin, and meal intake). The extended states are inputs
for the RL algorithms in this study.

We use a DAN for forecasting and extending the states.
Basic states x t = (x t1, . . . , x

t
m) ∈ Rm at the current time

t are supposed to partially reflect the current state because
of the lack of context. A sequence of basic states X t =
(x t−Tw , . . . , x t ) with time window Tw is input to the predic-
tion models. X̃ t is the modified sequence weighted by the
attention coefficient, αt .

X̃ t =
m∑
i=1

αti x
t
i (1)

outputenc, ht = fenc(ht−1, X̃ t )

outputdec, d t = fdec(d t−1, X̃ t ) (2)

Encoder fenc and decoder fdec have the normal forms of
long short-term memory (LSTM), and the hidden states of
the encoder and decoder, respectively, and ht and d t are con-

catenated to construct attention coefficients αti , β
t
i in atten-

tion modules. In this encoder-decoder connection based on
LSTM, outputdec is expected to be1x t = x t+1−x t in training
and prediction.

et = vTe tanh(We[ht−1; x t−1])

gt = vTd tanh(Wd [dt−1; ht−1])

αtk =
exp(etk )∑m
i=1 exp(e

t
i )
, β tk =

exp(gtk )∑Tw
j=1 exp(g

t
j )

(3)

With the attention coefficients obtained from attention
modules for variables and temporal sequences, the context
vector C t is the weighted sum of the encoder hidden states ht

in the time window Tw.

C t
=

Tw∑
j=1

β tj h
j (4)

The objective of forecasting is the change in the basic states
1x t = x t+1 − x t , and the mean squared error between the
predicted and actual changes in basic states is used as the loss
function to be minimized during training.

losspred =
1
N

N∑
n=1

(outputdec −1x t )2 (5)

Extended states for control models are made up at the
current time t by concatenating the basic state, context vector,
and decoder hidden state, X text = (X t ,C t , d t ).
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Two forecasting models, RFR and DAN, conduct predic-
tions in the timewindow Tsafe. If the glucose level after Tsafe is
predicted to be lower than Gsusp, then a suspension of insulin
dosing and/or additional oral carbohydrate is considered.
If the glucose level after Tsafe is higher than Gint , then an
additional insulin dose from the action of the SAC and/or PID
controller is administered to the patients.

B. CONTROL MODELS
SAC networks and adaptive actions for safety are combined
for blood glucose regulation. As explained above, insulin in
the basic states at the current time is also an action from the
control models including PID and/or RLwith an adaptive safe
actuator at the previous time. Thus, three distinct points exist
in this study.

First, some states and actions are explicitly connected via
insulin, in contrast to many RL problems. The history of
actions directly defines the portion of states, whichmeans that
the prediction for states should directly consider the current
policy of control because states are affected by how actions
would be delivered to the patient. Second, actions including
insulin and oral carbohydrates cannot have negative values,
so exploration in RL should be effectively conducted because
the range of actions is limited. Owing to delayed responses in
the dynamics, prediction models and controllers should take
time to observe the delayed effects of the action at the current
time and the equilibrium states to be restored. Third, the RL
control and actuator for safety compensate for each other.
Predefined actions and rules to rescue the patient from hypo
and hyperglycemia are adopted, and the thresholds of glucose
levels to invoke the actor for safety are tuned according to the
portion of hyper/hypoglycemic events that occurred.

In the normal range of glucose levels, the SAC determines
the dosage of insulin by the virtual pump. For policy learning,
st = X text ∈ S is the state (i.e., extended state), at ∈ A
is the action (i.e., insulin dosing), the state transition prob-
ability from the current state to the next state with action a
is p (i.e., transition probability from prediction models), and
the reward is r . Following the general presentation of RL,
the state value function Vψ (st ), soft Q-functionQθ (st , at ) and
policy πφ(at |st ) are parameterized by neural networks with
parameters ψ , θ , and φ. In the training process, ψ̄ , the expo-
nentially moving average of ψ is used for stabilization.

To update ψ and θ by using gradients, the squared residual
errors JQ, JV to be minimized are introduced as in the original
research of SAC. In replay buffer D, the tuple of (st , at , st+1)
is extracted for sampling. The squared residual error of the
soft value function, JV (ψ), is expressed as follows:

JV (ψ)

= Est∼D[(Vψ (st )− Eat∼πφ [Qπ (st , at )−logπφ(at |st )])
2]

(6)

and, the soft Bellman residual for Q-function, JQ(θ ) is,

JQ(θ ) = E(st ,at )∼D[
1
2
(Qθ (st , at )− Q̂θ (st , at ))2] (7)

To obtain Q̂θ (st , at ), we consider not only the next state but
also the time window TQ with decay coefficient γ , because
the insulin action has delayed effects on the states including
glucose level, and future states of long time horizon should
be considered.

Q̂θ (st , at )

=

TQ∑
i=0

γ ir(st+i, at+i)+ γ TQ+1Est+TQ∼D̂[Vψ̄ (st+TQ )] (8)

In the above equation, instead of the actual bufferD, tuples
generated from the connection between the prediction and
control models are included in the augmented buffer D̂, which
is the imagination of the RL agent for virtual experiences in
the prediction horizon from t to t+TQ. From the current state
st and action at , ŝt+1 is predicted. Then, the next action ât+1
is given by policy πφ(ât+1|ŝt+1). This imagination process is
repeated until reaching time t + TQ.
To train the policy network, the expectation of Kullback-

Leibler (KL) divergence with Qθ (st , ·) and partition function
Zθ (st ) for normalizing the distribution are given as follows:

Jπ (φ) = Est∼D[DKL(π (·|st ) ‖
exp(Qθ (st , ·))

Zθ (st )
)] (9)

Algorithm 2 Soft Actor-Critic With Imagination

initialize parameters ψ, ψ̄, θ, φ
for each iteration do
for each environment step do
at ∼ πφ(at |st )
st+1 ∼ penv(st+1|st , at )
D← D ∪ (st , at , r(st , at ), st+1)
D̂← D
ŝt+1← st+1
for each imagination step, i = 1 . . . TQ do
ât+i ∼ πφ(ât+i|ŝt+i)
ŝt+i+1 ∼ ppred (ŝt+i+1|ŝt+i, ât+i)
D̂← D̂ ∪ (ŝt+i, ât+i, r(ŝt+i, ât+i), ŝt+i+1)

end for
end for
for each parameter update step do
update ψ by gradient of JV (ψ)
update θ by gradient of JQ(θ )
update φ by gradient of Jπ (φ)
ψ̄ ← τψ + (1− τ )ψ̄

end for
end for

If the condition satisfies the safe actor being recalled as
indicated in the forecasting model section, then the action
from the policy from RL and/or PID controls is suspended or
modified. To determine the condition, future glucose levels
from the two forecasting models are averaged or considered
to elevate the sensitivity to detect future events.

The threshold for suspension, Gsusp ∈ [Gminsusp,G
max
susp], and

the threshold for additional insulin dose, Gint ∈ [Gminint ,G
max
int ]
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Algorithm 3 Adaptive Safe Actor for Safety
initialize parameters Gsusp, Gint
for each environment step do
at the current time t
prediction of the glucose level at the time t + Tsafe
if G

t+Tsafe
pred < Gsusp then

suspension of insulin dose
if G

t+Tsafe
pred < Goralsusp then

oral carbohydrate intake
end if

else
get action I from PID or/and soft actor-critic
if G

t+Tsafe
pred > Gint then

action I ← I + Isafety
end if

end if
update Gsusp, Gint , Isafety at each day

end for

are updated based on the portions of hypoglycemia and hyper-
glycemia in a day. To cope with very low glucose levels,Goralsusp
can also be set to elevate glucose levels.

Let ρsusp, ρint be portions of hypoglycemia and hyper-
glycemia in a day, which have baselines ρthrsusp, ρ

thr
int for

adjusting Gsusp and Gint . Adjusting rates λsusp, λint can be
constants or can be proportional to ρsusp and ρint . For addi-
tional insulin dose Isafety ∈ [Iminsafety, I

max
safety] for intervention

to prevent hyperglycemia, 1Isafety is the unit insulin for
adjusting Isafety. The trade-off between hypoglycemia and
hyperglycemia is reflected in a series of adaptations in a safe
actor.

Gsusp =


(1− λsusp)Gsusp, if ρsusp > ρthrsusp .

(1+ λsusp)Gsusp, if ρint > ρthrint .

Gsusp otherwise.

(10)

Gint =


(1− λint )Gint , if ρint > ρthrint .

(1+ λint )Gint , if ρsusp > ρthrsusp.

Gint otherwise.

(11)

Isafety =


Isafety −1Isafety, if ρsupp > ρthrsupp .

Isafety +1Isafety, if ρint > ρthrint .

Isafety otherwise.

(12)

The adaptive actor for safety dominates the action from
SAC or PID to maintain glucose levels in proper ranges
and to prevent the patient’s status from hypoglycemia and
hyperglycemia based on the predicted glucose level at the
time t + Tsafe after the current time t .

C. FOR INTERPRETABILITY
Attention scores in the DAN originate from the structure of
prediction models, and αt and β t can be interpreted as the
extent to which the model focuses on the specific state in

forecasting. This is because of the inherent structure of the
model.

For the policy network from the SAC based on the neural
network, ad-hoc techniques for post-training can be applied.
DeepLIFT is a gradient-based attribution method for inter-
pretability, and attribution scores are compared with basic
states, first and second derivatives of basic states, and inte-
grated values of basic states. Most mathematical models for
glucose dynamics are based on a series of first or secondary
ordinary equations. Changes, levels, and cumulative values
of variables are easily understood from the perspectives of
simplicity and approximation

To calculate the attribution scores, let 1ytarget = ytarget −
yreftarget and x

i
neuron be the difference from the reference of the

target value, and let neurons (i = 1. . . n) be in layers to com-
pute ytarget . Then, the attribution scores of C1xineuron1y satisfy
the summation-to-delta property. If zineuron exists in interme-
diate layers, then the chain rule for multipliersm1xineuron1ytarget
also holds.

1ytarget =
n∑
i=1

C1xineuron1ytarget

m1xineuron1ytarget =
C1xineuron1ytarget
1x ineuron

m1xineuron1ytarget =
∑
j=1

m1xineuron1zineuronm1zineuron1ytarget (13)

By separating the positive and negative components of
1ytarget and1x ineuron, the attribution scores and target output
are also decomposed as 1ytarget = 1y

+
target +1y

−
target

C1xineuron1ytarget = C
1xi+neuron1ytarget

+ C
1xi−neuron1ytarget

where x i− < 0, x i+ > 0, y− < 0 and y+ > 0.
In the linear calculation of the neural network, y = b +∑
i wixi, the positive and negative parts are decomposed as

follows:

C
1xi+neuron1y

+
target
= 1(wi1x ineuron > 0)wi1x i+neuron

C
1xi−neuron1y

+
target
= 1(wi1x ineuron > 0)wi1x i−neuron

C
1xi+neuron1y

−
target
= 1(wi1x ineuron < 0)wi1x i+neuron

C
1xi−neuron1y

−
target
= 1(wi1x ineuron < 0)wi1x i−neuron (14)

1y+target =
∑
i

C
1xi+neuron1y

+
target
+ C

1xi−neuron1y
+
target

1y−target =
∑
i

C
1xi+neuron1y

−
target
+ C

1xi−neuron1y
−
target

(15)

Multipliers are considered based on the chain rule and
attribution propagation, derived from the above equations.

m
1xi+neuron1y

+
target
= m

1xi+neuron1y
−
target

= 1(wi1x ineuron > 0)wi
m
1xi+neuron1y

−
target
= m

1xi−neuron1y
−
target
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= 1(wi1x ineuron < 0)wi (16)

For non-linear transformations in perceptions of the neural
network, multipliers become the first derivative of ytarget with
regard to xneuron in small ranges.

1y+target =
1ytarget
1xneuron

1x+neuron

1y−target =
1ytarget
1xneuron

1x−neuron

m1x+neuron1y+target = m1x−neuron1y−target (17)

Attribution scores are calculated via the forward propaga-
tion of multipliers, and end-to-end scores C can be compared
with the explainable forms of variables in the basic states.
There are global and local attribution scores in a unified
view of gradient-based interpretable methods [80], and local
attribution considers only the gradient and not the value itself,
whereas global attribution considers both. The DeepLIFT
adopted in this study belongs to the category of global attri-
bution methods.

To identify information in the attention scores of the
prediction model DAN and the attribution scores of SAC,
correlations with basic states and their derivative and inte-
gral forms can be observed. Basic states themselves, their
derivatives and their integrals are relatively simple forms of
variables that humans can easily recognize because many
controllers and mathematical models contain these forms in
structures.

To evaluate attention and attribution scores in groups with
correlation with extended states from DAN, the absolute
values of correlations should be analyzed. Hidden states in
LSTMhave no limitation of having positive or negative signs,
and they depend on the initialization of the weight in the
neural network and local optima during training. In forward
propagation in neural networks, (element-wise) production
of negative weights and negative values of hidden states
lead to the identical output of (element-wise) production of
positive weights and positive values of hidden states because
different signs are compensated for in production. Therefore,
in the case of comparison of correlations for all individuals,
extended states can have positive or negative signs, and abso-
lute values of correlations can be the proper measure of how
much the variable in extended states affects the prediction and
control outputs from the perspective of interpretability with
simple forms of basic states.

IV. EXPERIMENTS AND RESULTS
In this section, we describe the experimental setting and
the results obtained. First, we describe scenarios for virtual
patients in simulations and guiding methods for the fast train-
ing of the soft actor-critic with safety. Second, two prediction
models, RFR and DAN, were compared. Third, the perfor-
mance of SAC combined with a safe actor to regulate blood
glucose levels was evaluated for each individual and each
group. Fourth, the extended states, simple forms of basic

FIGURE 3. (a) Control variability grid analysis for the last two days (RL) is
shown. (Gray: adolescents, Black: adults) Most patients are positioned in
the safe zone B, whereas some patients are in the relatively dangerous
zones D and E. (b) Averaged glucose and insulin curves in 20 days of each
group are shown. Hypoglycemia and hyperglycemia were defined as
events in which blood glucose levels were lower than 70 mg/dL and
higher than 180 mg/dL in this study, respectively. Proportions of
hypoglycemia and hyperglycemia over time are shown. (Lines: mean
values, shaded regions: standard deviation values).

states, and attribution scores were investigated from the per-
spective of interpretability.

A. PREPARATION
Simulation platforms for type 1 diabetes have been proposed
in several studies. In this study, the FDA-approved type
1 diabetes simulator, T1DMS (version 3.2), known as the
UVA/Padova T1D simulator, which is the original version
based on MATLAB (version R2019b), interacted with the
PYTHON (version 3.6.10) platform containing prediction
and control models through a TCP/IP connection. It was
assumed that every 5 min in the simulation, sensor informa-
tion was received and controller action information was sent
to the simulator. Thus, the unit time of the simulations was set
as 5min. For the deep learning framework, the Pytorch library
(version 1.4.0) was adopted. R (version 4.0.5) was used for
the statistical analysis.

Information on glucose levels, insulin levels infused from
the pump, and meal intake were measured. These were pro-
vided by the simulator and transmitted to the PYTHON
environment. Insulin dosing was calculated based on PID
and/or SAC with the adaptive safe actor, and this information
on the actions of insulin from the calculation from models
was delivered to the virtual pump. However, the informa-
tion of insulin from the pumps in the simulator was also
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TABLE 1. Statistics of glucose and parameters for adaptive safe actor for patients in the simulation.

TABLE 2. Portions of activation events from safe actor in control.

gathered because actual delivery amounts from the virtual
pump should be considered in state estimation. In short,
glucose levels and amount of meal intake at a certain time

were the only variables from the patients, and insulin dosing
was measured from the pump, not from the patient.

As provided in the simulator, the glucose dynamics
of 10 adults and 10 adolescents were tested over 20 days.
In the first two days, only PID control with the adaptive actor
for safety determined the entire insulin dose. The portion of
insulin dose from the SAC for the virtual pump increased by
20% in all insulin actions every two days until only RL with a
safe actor considered the dose of insulin. In short, the insulin
dose was determined only by the RL policy after day 10 of
the simulation.

Every virtual patient took four or five meals in the pre-
defined scenario, which included 40 g, 50 g, 20 g, 50 g, and
20 g of carbohydrates at 7 am, 12 pm, 16 pm, 20 pm, and
23 pm, respectively. The randomness of uniform distribution
for mealtime (−30 min to +30 min) and intake amounts
(−12.5% to +12.5%) was additionally imposed on meal
intakes.

The analysis was conducted on groups of adolescents and
adults to investigate the overall outcomes of prediction and
control models and individuals to study how the prediction
and control models work. Group-based statistics are mean-
ingful, as T1DMS has virtual patients representing the popu-
lation of real diabetic patients according to FDA approval.

B. FORECASTING
The experiments in this study were designed to mimic the
environments of the clinical setting, which do not allow
severe dangerous conditions in patients. The parameters
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FIGURE 4. Trajectories, states, attention scores, and attribution scores based on prediction models and the controller for
adolescent 10 are shown. The simulation started on day 0, and curves for the last two days (i.e. the start of day 18 to the end of
day 19) are depicted in the figures. The x-axis is the time axis. In the graph of the first row, the blue, green, and black lines are the
trajectories of glucose, insulin administered by the pump, and occurrences of meal intakes, respectively. Dashed lines indicate the
curves predicted by the DAN (red) and RFR (orange). Horizontal dashed lines are adaptive threshold values for predictive glucose
levels after 45 min in the safe actor to induce actions including additional insulin dosing (sky blue), suspension (purple), and oral
carbohydrate rescue (gray). Activation of the safe actor is indicated in shaded regions: suspension (purple) and additional insulin
dosing (lime). Variable attention scores with a weighted summation of temporal attention scores on basic states are shown in the
graph in the second row. The summation of the attention scores was set to 1. A higher attention score of a variable means that
DAN focuses more on that variable to predict future responses. In the third and fourth row graphs, the values of the extended
states from the context (encoder) vector C t (third row) and hidden states d t (fourth row) are shown. The area of a variable is
proportional to the values of that variable, and whether the positions of areas are in positive/negative domains indicates the
positive/negative signs of values at a specific time. Attribution scores for SAC based on DeepLIFT are shown at the graph in the
last row. The area and the position of a domain for each variable indicate the value and sign of that variable, as in the graphs in
the 3rd and 4th rows. In short, a positive area of a variable means that the variable positively affects (i.e., promotes) the action
from SAC, whereas a negative area of a variable means that the variable negatively affects (i.e., reduces) the action from SAC. The
measured insulin from the pump (green curve) and the output from SAC (gray curve) are shown.

of the models must be updated under online settings to
reflect time-varying characteristics. The basic state x t is
the three-dimensional variable of glucose, insulin, and the
amount of meal intake. The context (encoder) vector C t

and hidden states d t were set as three-dimensional vari-
ables. Thus, the extended states (x t ,C t , d t ) belong to the
nine-dimensional
state space.

The time window for training Tw, prediction window Tpred ,
and the time window for determination of unsafe states in
the future Tsafe were set as 60, 30, and 45 min, respectively.
The time window for the imagination TQ was set as 150 min.
To consider recent changes in glucose dynamics in simula-
tions and computational burdens in the case of training data
of whole sequences, data in the last 250 min from the current

time t were exploited for the training of DAN and RFR in
each batch.

The metric of the mean absolute error for glucose predic-
tion based on RFR and DAN was used. As shown in Table 1,
the values of MAE for forecasting glucose levels (mg/dL)
in 30 min were 28.1 ± 19.1(mg/dL) (DAN) and 13.3 ±
13.9(mg/dL) (RFR) in the adolescent group, and 21.8 ±
15.4(mg/dL) (DAN) and 12.4 ± 11.7(mg/dL) (RFR) in the
adult group, respectively. The MAE of DAN was higher than
that of RFR because DAN tended to overestimate the glucose
compared with RFR.

As shown in Fig. 4, which depicts the prediction and
control of the virtual patient adolescent 10, not only glucose
levels but also future insulin actions from the policy network
were predicted. The two prediction models demonstrated
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different characteristics. Overall, RFR showed fluctuating
values, and DAN’s prediction overestimated values. Thus,
DAN and RFR were concurrently used to complement each
other.

When meal intakes occurred, attention scores of meal
intakes also increased, as shown in the second-row graph
in Fig. 4. This means that DAN focused on the meal intake
events to predict future glucose levels. Glucose levels were
more steadily focused on insulin dosing.

The extended states produced by the DAN reflected basic
states. T-stochastic neighbor embedding (t-SNE) [81] was
implemented for visual description in Fig. 5. (a), and showed
that the clustered trajectories evolved as basic states. The
closer the two basic states were, the closer the two extended
states were expected to be. However, these were not com-
pletely matched because additional information on the con-
text of the basic states also existed. A detailed explanation is
provided in section IV. (D).

C. ACTIONS FOR CONTROL
PID control acted dominantly in the simulation and was
gradually replaced by a SAC with every 20% increase every
two days. Policy combinations of PID and SAC existed from
the third to the tenth day. The SAC only determined the
continuous action of insulin dosing after day 10.

r = exp(−ε|G− Gtarget |), ε > 0 (18)

The reward for reinforcement learning for this study is
shown above, and Gtarget was set to 127 (mg/dL) according
to the median value of the border between hypoglycemia and
hyperglycemia.

The control action was stochastically generated from the
output in the case of SAC,which generated values of themean
and logarithm of the standard deviation for the insulin action
of the policy network. The insulin dose cannot be negative;
thus, the output of the SACwas constrained to be greater than
zero.

No significant difference was observed in the median glu-
cose levels between the control algorithms for each group.
In the adolescent group, medians of glucose levels were
155.5±14.6(mg/dL) in PID and 154.2±29.4(mg/dL) in RL.
In the adult group, medians of glucose levels were 153.7 ±
19.2(mg/dL) in PID and 160.5± 15.4(mg/dL) in RL.
Each patient belonged to either one of zones A to E,

where A and B were relatively safe, and zone E was dan-
gerous, as shown in Fig. 2. Most virtual patients belonged
to zone B, whereas three were in zone D and one in zone
E. Table 1 shows a summary of the prediction and control
outcomes in individuals of all groups. Median glucose levels
were higher than the objective glucose level of 127 mg/dL
in most cases. To train the parameters of the SAC network,
a phase transition scheme of combination in actions of insulin
dose was adopted for 10 days. Hyperglycemia trends were
observed during this period, as shown in Fig. 3. (b).

A comparison of portions of safe actor activation was
conducted. For the portion of suspension, 40.2 ± 10.4% in

PID duration was significantly higher than 23.7 ± 11.6%
in RL duration with statistical significance. For the portion
of additional insulin dosing, 21.2 ± 19.0% in PID duration
was significantly lower than 31.9 ± 18.7% in RL duration
with statistical significance, as indicated in Table 2. In short,
PID required more suspensions and SAC required additional
insulin dosing events.

D. INTERPRETABILITY FOR PREDICTION AND CONTROL
Extended states constructed from the DAN had character-
istics of physiological responses in each patient. As shown
in Fig. 5. (b), extended states were analyzed based on corre-
lations between values, first derivatives, second derivatives,
and integrals of basic states such as glucose levels, insulin,
and meal intake.

An example of adolescent 10 is shown in Fig. 4 and
Fig. 5 (b). First, we can investigate the extended states inter-
nally from the DAN prediction model. A positive or negative
correlation between simple forms of basic states occurred
in some cases, where simple forms are variables of basic
states and their first and second derivatives, and integrals.
In this case, correlations between two variables of the context
vector (enc1 and enc2) and the integral of insulin (intI) can be
emphasized because they can be interpreted as surrogates of
IOB. The first derivative of glucose levels (D1G), integral of
glucose levels (intG), and integral of meal intake (intM) were
also correlated with the variables in the extended states. In the
third and fourth row graphs of Fig. 4, the context vector and
hidden states evolved over time and corresponded to the basic
states.

Second, we can investigate the control model, SAC,
to understand its behavior from the perspective of inter-
pretability. For example, as shown in the fifth-row graph of
Fig. 4, attribution scores around 12 pm can be explainable
by the SAC policy. At the start of a meal intake, the infor-
mation on food ingestion (positive gray area) promotes pos-
itive action, whereas information on proper glucose levels
(negative blue area) was inclined to reduce the action. The
Decoder2 (dec2) variable had a positive correlation with the
first derivative of the glucose level and the integrals of meal
intake. This means that dec2 played a role in considering the
change in glucose levels and cumulative meal intake over
time. During meal intake, dec2 (positive yellow area) had
positive attribute scores, which means that the first derivative
of glucose levels contributed positively to the action of SAC.

After meal time, information on high levels of glucose
(positive blue area) supports positive action; variables of
Encoder1 (enc1) and Encoder2 (enc2), which were correlated
to the integral of the insulin dosing (intI), negatively affected
the action of SAC. intI can be a proxy for IOB; thus, SAC
learned responses to IOB from some extended states without
prior knowledge of physiology.

To investigate the extended states in SAC, correlations
between attribution scores and simple forms of basic states
were analyzed, as shown in Fig. 5. (c). Basic states, such as
glucose levels, insulin dosing, and meal intake, were strongly
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FIGURE 5. (a) T-SNE visualization of extended states without basic states. The concatenated vectors of C t and d t are represented in the reduced
dimensional space. (b) Correlations between derivatives/integrals of basic states and extended states of adolescent 10 are shown. (c) Correlation
between extended states and attribution scores for the SAC network of adolescent 10 are shown. In both figures (b) and (c), enc or E represents
the context vector, and dec or D denotes the hidden vector from the decoder in the DAN. For example, dec2 denotes the second hidden state
variable. D1 and D2 represent the first and second derivatives, respectively, and int denotes the integral. G, I, and M are glucose levels, insulin,
with min-max normalized as N. Attribution scores are denoted as att. In the correlation plots, as the shape becomes a line from a circle,
the correlation becomes stronger. For example, enc2 had strong negative correlations with intG and intI, whereas enc3 had a strong negative
correlation with intM.

FIGURE 6. (a) Absolute values of correlations between the context vector C t and hidden states d t of the decoder, and basic states and their
derivatives/integrals (i.e. simple forms) are shown. In short, the relations between the extended states and simple forms of basic states are
investigated. The simple forms derived from the basic states provide hints of explainable information on extended states, which are constructed
from DAN. (b) Absolute values of correlations of attribution scores from the context vector C t and hidden states d t of the decoder, with basic
states and their derivatives/integrals shown. In short, the relations between the attribution scores of SAC and simple forms of basic states are
investigated. This shows how the policy network considers the explainable components of basic states, including derivatives and integrals of
biological variables. In both figures, the two bar plots are combined. The left bar (orange) indicates the absolute value of the correlation with the
context encoder variables C t , and the right bar (blue) indicates the absolute value of correlation with the hidden states d t from the decoder. The
mean (thick bars) and standard deviation (thin lines) are shown.

correlated with attribution scores. The integrals of the basic
states and the first derivatives of glucose levels showed mod-
erate correlations with attribution scores.

Notably, the interpretation of models and behaviors of con-
trollers with extended states and attribution scores is subject-
specific. The variables of context vectors and hidden states
from the decoder can have different roles owing to initializa-
tion and training in neural networks for each individual.

To obtain generalized interpretations of all subjects from
subject-specific results, we investigated the absolute values
of correlations between extended states, simple forms of basic
states, and attribution scores. Asmentioned in section III. (C),

both positive and negative correlations can exist and can
be used to describe the phenomena without distinction; the
absolute values of correlations were used for comparison.

The context vector C t had relatively high absolute values
of correlations with integrals of glucose (intG), integrals of
insulin (intI), integrals of meal intakes (intM), and glucose
levels (G), whereas the hidden states d t of the decoder
were more focused on meal intake (M), integral of meal
intake (intM), and the first derivative of glucose level (D1G),
as shown in Fig. 6. (a). Based on these results, we believe
that DAN can generate extended states that reflect highly
understandable features. For attribution scores related to SAC
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control, basic states, integrals of basic states, and the first
derivative of glucose level are relatively more important to
determine actions, as shown in Fig. 6. (b). Meal intake was
the most important factor affecting the SAC.

V. DISCUSSION
Because of the minimal assumptions on the mathematical
structures in physiological responses in this research, this
framework can be applied to various clinical conditions
with time-series data, including some cases that have no
explicit mathematical models for physiological phenomena
for patients and diseases. The prediction and control models
conduct trial-and-error testing for safety with interpretable
components. This approach can reduce the bias from the
explicit structure of structured models; however, it requires
more data sampling and accurate training of the models.
Reduction of participation time and ensuring safety are
important in clinical trials; thus, essential guides for training
in the early phase and adaptive additional insulin dosing can
resolve these issues. In this study, PID control for policy train-
ing and a safe actor with suspension and additional insulin
dosing were introduced for these objectives.

Recently, methods and applications of interpretability have
attracted attention from several studies. However, most stud-
ies have focused on classification problems, not neural
network-based controllers. In contrast to prediction tasks,
the controller affects the external environment, especially
in the case of the human body, during the regulation of
blood glucose levels. The clues of the machine’s thoughts and
actions should be provided for manipulation and intervention
for controllers and patients in advance, and we hope the
approaches in this framework can provide some insights into
the behaviors of neural network-based controllers in clinical
applications.

We investigated the internal operations of neural network-
based models, DAN and SAC, from the perspective of inter-
pretability. The safe actor had explicit rules to modulate the
actions of insulin dosing, and it was quite explainable. How-
ever, the models’ policies were partially separate for safe and
unsafe conditions. The policy from SAC could be explained
with regard to extended states and simple forms of basic states
bymeans of DeepLIFT, whereas the explanations of the entire
policy were not smoothly integrated. To resolve this limita-
tion, we consider the adoption of a neural network-based safe
actor connected to the SAC instead of an adaptive rule-based
actor in future research. Training and investigating models in
an end-to-end fashion can provide integrated perspectives for
interpretation.

We can use this framework as an alarm system to deal with
hyperglycemia and hypoglycemia. Conditions to activate the
safe actor can be regarded as alarms for clinicians and patients
to prepare for unexpected events. The activation of early
alarms can be determined by the length of time window,
extended states as the context of glucose dynamics, future
policies of controllers which are elements of prediction and
control models. Clinical decisions including interventions

and treatment plans by human experts can be supported and
improved by interpretable operations of generating alarms.
We expect that an alarm system can be significantly helpful in
clinical trials and diabetes management, alarm systems with
interpretability should be further studied for real patients.

A. PERFORMANCE OF PREDICTION AND CONTROL
MODELS
As the horizontal time window increases, the forecasting
performance generally decreases. If meal intake suddenly
occurs, the prediction becomes inaccurate because meal
intake has a strong influence on glucose dynamics. Time can
be a potential feature related to meal intake, but the subject
should follow a regular meal time schedule to train the model
regarding the temporal patterns of food ingestion. If the meal
schedule becomes irregular, then the forecasting performance
of the prediction model that has a time variable as a feature
deteriorates. Taking this into account, we did not consider
time itself as a variable for the prediction model, even though
the randomness of amounts and schedules for meal intakewas
considered.

Although the DAN was used for establishing extended
states, the performance of prediction of future glucose lev-
els based on MAE was not better than that of RFR. Mod-
els were trained in an online fashion with a limited length
of sequences, not whole sequences at each training epoch,
because of computational burden and to ensure reflection
of recent variability in dynamics. In addition, DAN was
designed to focus on specific temporal sequences by adopting
weights dynamically, whereas RFR had many decision trees,
and unexpected disturbances could impact only some trees
because of ensembles in RFR. Thus, we suppose that this
locality in the prediction processes and the unexpected meal
intake in the prediction horizon may have a greater impact on
the attention-based methods than the boosting methods.

We adopted online learning processes to mimic the clinical
environment, and the time complexity of the models should
be considered. Training neural networks requires many calcu-
lations in automatic differentiation steps via backpropagation
processes. The training step of a DAN is a bottleneck, through
which extended states must be constructed to compensate for
minimal knowledge of glucose dynamics. Thus, a trade-off
exists between the prediction performance and computational
burdens. A balanced solution would be practical. RFR and
DAN are feasible solutions for prediction because RFR has a
light computational burden, and DAN has an encoder and a
decoder to construct extended states.

The SAC control with a safe actor showed comparable per-
formance to that of the PID control. PID control is known to
be comparable [64] with model-based control; thus, we think
that it is a feasible solution with decent performance, even
though RL in this study did not exhibit better performance.
In addition, many episodes were not required for RL train-
ing in this study because of the guided PID control at the
beginning of the simulations and the existence of the adaptive
soft actor. However, it would be better if the performance
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of RL could be improved. Though SAC can be a feasible
backbone to regulate blood glucose levels from the perspec-
tive of RL, an additional investigation to improve the control
performance should be explored in future research.

B. BALANCE BETWEEN REINFORCEMENT LEARNING
AND INTERVENTION BASED ON PRIOR KNOWLEDGE
In this study, forecasting models and controllers use as lit-
tle prior knowledge of physiology as possible because we
assume that mathematical models with rigid structures may
have biases that stem from the assumptions of structures or
information lost by simplifying the dynamics, despite the
sample efficiency. However, flexible models usually require
more data. Guiding policies such as PID control in the early
phase and a safe actor were introduced to resolve this issue.
In addition, this framework can be adopted not only in the
regulation of glucose dynamics, but also in various clinical
applications including administration of medication to the
heart in terms of cardiac physiology represented by electro-
cardiogram signals, and long-term interventions for chronic
disease at various time scales.

We attempted to avoid the common knowledge of math-
ematical models that affect the performance of forecasting
models and controllers in evaluations. For example, if a spe-
cific mathematical model is shared by the simulator, the pre-
diction models and/or controllers, then the performance of
models tested in simulation may be easily higher than in
actual environments because even efficient closed-form solu-
tions without observation may exist. However, the actual
physiology may differ from the approximated equations of
the models. In this research, we did not use explicit mathe-
matical models based on physiology in the simulator as prior
knowledge. We expect that the performance of the models in
practical conditions would not be significantly different from
that in the simulation. We plan to apply this framework to a
real clinical environment for validation in the future.

However, prior knowledge of physiology, including math-
ematical equations based on physiology, is essential to apply
control algorithms and to train models and controllers in real
clinical environments. This knowledge can reduce trials and
errors during training and delivering interventions. Biological
and physical laws in nature described by mathematical equa-
tions can be effective guidelines for modeling and training.
Thus, we plan to study the hybridization of mathematical
model-based approaches andmodel-free RL controllers in the
future.

C. EXTENDING STATES FROM LOW TO HIGH DIMENSIONS
In this study, low-dimensional data had to be extended to
construct features containing physiological information in
temporal contexts. Extended states contain information on
basic forms derived from basic states, and derivatives and
integrals are fundamental elements for some mathematical
equations. For example, linear state-space equations can be
represented as a series of ordinary differential equations
with first derivatives. However, the remaining information on

more complex relationships should be clarified. Correlation
analysis provided meaningful insights into the information
contained in the extended states and attribution scores. How-
ever, there may be more interpretable variables with hidden
information. Extracting knowledge from extended states is
required and should be further studied.

Approaches related to mutual information and disentangle-
ment [82], [83] can be alternatives for constructing extended
states. It would be better for each variable to have a clear
meaning and be orthogonal to the others. To be implemented
in clinical environments, it would be helpful to easily under-
stand the features exploited in models without any redun-
dancy to provide clear explanations.

VI. CONCLUSION
We proposed a framework for forecasting and controlling
blood glucose, which can be safely adopted in clinical envi-
ronments, and provide an interpretation of the behaviors of
models for intervention in advance. An FDA-approved simu-
lator was used to validate the algorithms, and the performance
of SAC algorithms for regulation of blood glucose levels was
comparable to that of PID control.

The models exploited prior knowledge of internal physio-
logical dynamics as little as possible because of the flexibility
of reflecting time-varying dynamics and minimizing the per-
formance gap between simulations and actual environments
during testing. To compensate for minimal prior knowledge,
PID control guided the training of SAC, and adaptive safe
actors modulated the insulin dosing.

The extension of states is an effective approach for cap-
turing physiological relations between variables based on
data, and correlations with simple forms of basic states pro-
vide internal dynamics information. Attention and attribu-
tion scores for prediction and control models clarify the
intentions and behaviors of models from the perspective of
interpretability.

We hope that this study can provide novel and practical
insights into aspects that must be considered when adopting
RL for clinical applications.

APPENDIX A
STRUCTURES OF MODELS AND HYPERPARAMETERS
In the prediction models, the RFR had a maximum depth of 2.
LSTM had one layer in the DAN. The encoder of the DAN
used one linear layer as the attention module, and the decoder
used sequential linear, Tanh, and linear layers for the attention
module. Weights and biases were initialized in a uniform
distribution in [-1e-6,1e-6].

The basic states were transformed using min-max normal-
ization. Minimal values were set as zero in all basic states
such as glucose, insulin, and meal intake, and maximal values
were set as 500 (mg/dL), 20 (U/h), and 100 (g), respectively.
With these normalized basic states, the extended states were
estimated using DAN.

For PID control, the coefficients of the proportional, inte-
gral, and derivative components were considered as 2.0, 0,
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FIGURE 7. A comparison of prediction models to forecast blood glucose levels for the subject of adolescent10 in last two days.
Each model was modified to be trained in online learning without prior knowledge of glucose dynamics. The measured values of
glucose, insulin, and meal intake are represented in blue, green, and black curves. Dashed lines represent the predictive values of
glucose levels after 30 min, which are compared to the measured values.

TABLE 3. Comparison of the predictive performance of prediction models.

and 2.0, respectively, with regard to the normalized glucose
levels. Derivatives were obtained by the difference of values
of unit time (5 min), and integration was conducted through
the 60 min horizon.

For the controller models of SAC, policy, value, and two
Q-function networks exist. In the policy network, two mod-
ules with linear layers, batch normalization, and LeakyReLU
with a negative slope of 0.5, a linear layer, and a layer for
absolute value ReLU (x) + ReLU (−x) were connected to
obtain the outputs of the mean and logarithm of the standard
deviation for the action values. The value network consisted
of three modules: one linear layer, batch normalization, and
one ReLU activation layer. The structures of the Q-function
networks were identical to those of the value network. For
the reward r , the coefficient ε = 1, and the decay coefficient
γ = 0.99.

For the additional insulin dose of the safe actor, Imaxint ,
Iminint , 1Iint were set as 0, 1.5 and 0.125 (U/hr), respectively.
The thresholds for updating parameters ρthrsusp and ρ

thr
int of the

safe actor were determined as 0.05 and 0.1, respectively. For
rescue to escape from severe hypoglycemia, Goralsusp was set

as 50 (mg/dL) to deliver 10 g of oral carbohydrate at the
early stage. The initial values of Gsusp and Gint were 110 and
225 (mg/dL), respectively.

APPENDIX B
TIME COMPLEXITY OF MODELS
In clinical settings, online learning is required to predict and
control blood glucose levels. This means that not only the
accuracy but also the computational burden in training should
be considered. Asymptotic sketches for the time complexity
can be derived.

Let ndata be the number of instances for training in one
batch, ddata be the dimensionality of the training data, and k
be the number of decision trees. Random forest and XGboost
have a complexity of O(kddatandata log ndata). In this study,
ddata = nfeatureTw, the features of which are basic states, and
Tw is the time window for training in the prediction models.
Thus, the time complexity is O(Twknfeaturendata log ndata).
For a neural network, the number of parameters W deter-

mines the time complexity, O(W ). Let mi be the number of
input units, mh be the number of hidden units, and mo be the
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TABLE 4. Comparison between PID and SAC in blood glucose control.

number of output units. A feedforward neural network (FNN)
has W = mimh + mhmo, a recurrent neural network has
W = mimh + mh2 + mhmo, and a long short-term memory
has W = 4mimh + 4mh2 + 3 mh + mhmo, respectively.
The dual attention network (DAN) used in this study had

an encoder and a decoder based on LSTM to predict future
glucose levels and construct extended states. Let nepoch be
the number of epoch for training one batch of data. In this
study, mh ∼ mi and mo ∼ mi. For the input to the
DAN, mi = nfeature. The time complexity for LSTM in
DAN is O(nepochndataTwnfeature2). In addition, DAN used
attention mechanisms, which have a time complexity of
O(Tw2 nfeature) in training one instance according to [59].
The time complexity for the attention mechanisms in DAN
is O(nepochndataTw2 nfeature). Thus, the total time complexity
of DAN is O(nepochndata(Tw + nfeature)Twnfeature).
The SAC model used in this study has value, Q, and policy

networks which consisted of feedforward neural networks.
Extended states were used as inputs, and sequential informa-
tion was contained in the extended states. In these networks,
mh ∼ mi and mo = 1. The time complexity of each network
in the SAC is O(nepochndatanfeature2).

APPENDIX C
COMPARISON OF PREDICTION MODELS
We compared the performance of several prediction models
which have been recently proposed and were adopted in
this study, as shown in table 3. A model based on causal
convolution [57] showed the best performance, which does
not have an encoder and a decoder in structure. Random

forest regressor (RFR) showed a slightly better performance
than that of the XGBoost based model [85]. In a compar-
ison of encoder-decoder based models, the dual attention
network (DAN) showed a better performance than that of a
sequential multi-output model (SeqMO) [56].
In consideration of the time complexity of prediction mod-

els, RFR can be a feasible model for online forecasting.
In addition, an encoder and a decoder are needed to construct
extended states to capture glucose dynamics from the per-
spective of interpretability, DAN can be a feasible model for
interpretability.

APPENDIX D
COMPARISON BETWEEN PID AND SAC
We conducted additional analyses to compare the perfor-
mance of PID and SAC. Time per day within target glu-
cose range (TIR), time below target glucose range (TBR),
and time above target glucose range (TAR) are useful
metrics [86] in blood glucose control. TIR, TBR, and
TAR are shown in table 4. The performance from TIR,
TBR, and TAR did not show statistical differences between
PID and SAC.
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