
Received June 28, 2021, accepted July 14, 2021, date of publication July 26, 2021, date of current version August 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3099836

3D Trajectory Planning of UAV
Based on DPGA
JIN ZIRONG , ZHANG LIANG , AND ZOU ZHILONG
Department of Mathematics, School of Science, Wuhan University of Technology, Wuhan 430070, China

Corresponding author: Zhang Liang (thanleon@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573012.

ABSTRACT The goal of trajectory planning is to shorten the flight distance as much as possible on the
premise of ensuring the safety of UAV in flight. Therefore, the research of trajectory planning has broad
prospects and great significance. As the key technology of trajectory planning, optimization algorithm
has increasingly become one of the focuses of scholars at home and abroad. The dynamic programming
algorithm is characterized by high computational efficiency and global optimization in trajectory planning.
In 3D trajectory planning, as the spatial search space expands, the number of grid points increases faster,
and time complexity of the dynamic programming algorithm is O(n3). It often leads to a ‘‘Curse of
Dimension’’ phenomenon, which lowers its computational efficiency drastically. To solve this problem, this
paper divides the entire planning space into stages based on Bellman’s optimality principle. A dynamic
programming-genetic algorithm(DPGA) is proposed by using genetic algorithm(GA) in each stage for
optimization, while using dynamic programming algorithm(DP) in global planning. The global optimization
ability of the algorithm is verified through convergence analysis. Moreover, based on a series of simulation
experiments, it shows that the improved algorithm proposed in this paper is more efficient than the dynamic
programming algorithm and genetic algorithm alone in global optimization.

INDEX TERMS Trajectory planning, dynamic programming algorithm, genetic algorithm.

I. INTRODUCTION
Path planning is one of the core issues of UAV control
theory [1]. Its goal is to plan a optimal trajectory from the
starting point to the terminate point according to the current
complex mission environment, meeting the shortest flying
range, successful obstacle avoidance, and various physical
maneuverability constraints of the aircraft conditions. As a
multi-objective optimization problem, trajectory planning
involves multiple conditions such as obstacle terrain and the
performance of the UAV itself, which often leads to difficul-
ties in modeling and computing.

Unitil now many algorithms for trajectory plannying
have been developed, among which two categories may be
divided: exact algorithms and heuristic algorithms. Exact
algorithms include A∗ algorithms [2], sparse A∗ algorithms,
D∗ algorithms, Dijkstra algorithms [3] and dynamic pro-
gramming algorithms [4], etc. This type of trajectory plan-
ning algorithm is suitable for relatively simple models in
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two-dimensional space. While in 3D dimensional space,
when the spatial planning space expands, the time for solution
in tradictional algorithms may grow explosively. It means
that the exact algorithms are difficult for complex 3D envi-
ronment [5]. Heuristic algorithms such as the ant colony
algorithms [6]–[9], genetic algorithms [10], particle swarm
algorithms [11], [12], and simulated annealing algorithms
have been widely used in solving problems of trajectory plan-
ning. The swarm intelligence algorithm avoids the ‘‘Curse
of Dimension’’ phenomenon to a certain extent, but it is
prone to fall into the local optimum. Furthermore, due to its
insufficiency in global optimization and long solution time,
it cannot meet requirements for engineering applications.

In recent years, there are works in literatures combin-
ing exact algorithms with heuristic algorithms. For example,
in [13], the genetic algorithmmechanism was introduced into
the dynamic programming algorithm to obtain remarkable
effects in the application of reservoir optimization schedul-
ing and real-time coordination scheduling of hybrid energy
storage systems. For 3D trajectory planning, a series of
hybrid algorithms based on simulating the annealing-ant
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colony algorithm (SA-ACO) [14], the annealing-neural net-
work algorithm (SA-CHNN) [15] and the annealing particle
swarm algorithm (SA-PSO) [16] have achieved good results
in solution, thereby providing some new methods for com-
plex 3D trajectory planning problems. This paper devel-
ope a new hybrid algorithm, combining an exact algorithm
and a heuristic algorithm, to build a new hybrid algorithm
with high computational efficiency and good global conver-
gence capability [17]. The new hybrid algorithm is called
dynamic programming-genetic algorithm, which integrates
the dynamic programming algorithmwith global search capa-
bility and the genetic algorithm with efficient operation
efficiency.

The essential idea of the new hybrid algorithm is to divide
the spatial planning space into q stages based upon the Bell-
man optimality principle. There are several multi-objective
decision-making subproblems in each stage, and each sub-
problem is solved by a hybrid coding multi-objective genetic
algorithm. In terms of time complexity, the new algorithm not
only achieves dimensionality reduction through the division
of stages, but also uses the mechanism of genetic algorithm
to avoid the ‘‘Curse of Dimension’’ problem caused by the
spatial combination of discrete states. The main body of
the hybrid algorithm is a dynamic programming algorithm,
which has the ability of global optimization.

The paper is arranged as follows. In Section II and III,
the navigational environment model and mathematical opti-
mization model are established, respectively; In Section IV
and V, the DPGA model is built, and a series of simu-
lation experiments are carried out to verify the feasibility
and advantages of the new algorithm in both theoretical and
experimental aspects. In Sectioin VI and VII, the results are
summarized, and the future research direction and work are
prospected.

II. NAVIGATIONAL ENVIRONMENT MODEL
The establishment of a digital map composed of terrain infor-
mation and threat information is a precondition for the path
planning of UAV. Complex terrain and threat areas often show
continuous and irregular characteristics.

A. ORIGINAL DIGITAL TERRAIN SIMULATION
Various digital maps are proposed for simulations. Among
which [18] proposed a mathematical model based on the
function method to simulate the original terrain:

z1(x, y) = sin(x + a)+ b · sin(x)

+ c · cos(d ·
√
x2 + y2)+ e · cos(y)

+ f · sin(f ·
√
x2 + y2)+ g · cos(y). (1)

where x and y represent the horizontal coordinates of the orig-
inal terrain; z is the height of the terrain; a, b, c, d, e, f , g are
topographic and geomorphic parameter. By the original topo-
graphic information, adjusting the value of the corresponding
parameter can simulate a variety of rugged landforms.

TABLE 1. Digital map parameters.

FIGURE 1. Digital terrain simulation map.

B. THREAT AREA SIMULATION
There are threat areas such as mountain peaks, no-fly zone
or buildings in the navigation area. For such threat areas, this
paper uses the mountain peak function, reprented as

z2(x, y) =
n∑
i=1

hie
−

(x − x0(i))2

x1(i)2
−

(y− y0(i))2

y1(i)2 . (2)

In formula (2), x and y represent the coordinates on the
horizontal projection; z is the corresponding terrain height;
n is the number of peaks; i denotes the i-th peak; hi is the
height of the mountain peak; x0(i) and y0(i) are horizontal
coordinates of the apex of the i-th peak; x1(i) and y1(i) are
terrain contour parameter, which corresponds to the slope of
the i-th peak on the X-axis and Y-axis respectively.

C. EQUIVALENT DIGITAL MAP
The digital map information fusion processing technology is
used to superimpose and fuse the mathematical models of
terrain and landforms and threat areas to build an equivalent
digital topographic map covering comprehensive planning
space information [19], which has the form

z(x, y) = max {z1(x, y), z2(x, y)}. (3)

The digital map model consists of formula (1-3). As shown
in Figure 1, we use the digital map model to simulate the
complex 3D terrain environment. The scale of the terrain
environment is 100 × 100 (km2), and there are four threat
areas. In addition, the values of various terrain parameters of
the digital map model are shown in Table 1.
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III. MATHEMATICAL MODEL OF TRAJECTORY PLANNING
The essence of the trajectory planning problem is a
multi-objective optimization problem, mainly composed of
two parts: objective function and constraint conditions.

1. Constraint conditions. By the physical limitations of
the drone itself and the requirements of navigation accuracy,
the continuous route curve often does not meet the flight
requirements, so a set of ordered points C = {Xi|Xi =
(xi, yi, zi), i = 1, 2, . . . , n} is used to represent the trajectory
curve. In addition, during the flight of the drone, It also needs
to meet certain trajectory constraints, such as minimum tra-
jectory segment length, maximum turning angle, maximum
climb/dive angle, maximum trajectory length, minimum
flight altitude, and obstacle avoidance altitude [20]–[22].

2. Objective function. The trajectory cost function is a
concrete manifestation of trajectory evaluation indicator to
measure the pros and cons of the planned trajectory. The
objective function used in this paper mainly considers two
aspects of navigation and flight altitude.

In summary, the optimization model of trjactory planning
is shown as

min f =
n−1∑
i=1

(ω1L2i (Xi)+ ω2Hi(Xi))

s.t.



Li(Xi) > Lmin, i = 1, 2, . . . , n− 1,
θi 6 θ1, i = 1, 2, . . . , n− 2,
αi 6 θ2, i = 1, 2, . . . , n,
zi > z(xi, yi), i = 1, 2, . . . , n,
zi > Hmin, i = 1, 2, . . . , n.

(4)

In formula (4), f is the objective function, Li(Xi) is the
distance between the trajectory node Xi and Xi+1; Hi(Xi) is
the average height of the trajectory section between Xi and
Xi+1;ω1 andω2 are the weight coefficient; θi and αi represent
the steering angle and dive angle at the route node Xi; Lmin,
θ1 and θ2 are minimum trajectory segment length, maximum
turning angle, maximum climb/dive angle, and minimum
flight altitude; zi Is the route node Xi, and the flight height,
z(xi, yi) is the height of the obstacle in the analogue-digital
terrain at that position.

IV. TRAJECTORY PLANNING BASED ON DPGA
A. PRINCIPLES AND DEFECTS OF DYNAMIC
PROGRAMMING ALGORITHM AND GENETIC ALGORITHM
1) DYNAMIC PROGRAMMING ALGORITHM
The classical dynamic programming is to transform a multi-
stage process into a series of single-stage problems, use the
relationships between the stages to solve one by one, and then
find out solution to the optimization problem [23].

In this paper, the trajectory-planning problem is trans-
formed into a mathematical optimization model at first [24].
Assume that the planning process is divided into n stages,
with the first stage state set of the aircraft starting point S,
the final stage state set of the target point T . The grid
nodes in the k-th stage are the set of feasible solution points

in this stage

Sk = {(xk , yi, zj)|i, j = 1, 2, . . . , n} ⊂ �, (5)

where the state variable is denoted as sk ∈ Sk . The set of
allowed decisions on the k-th stage is defined as

Dk = {(hx , i · hy, i · hz)| − λmax ≤ i ≤ λmax}. (6)

The aforementioned hx , hy and hz are the step size of
the grid division along the coordinate axis in the discrete
planning space; λmax represents the maximum perturbation.
The decision variable is recorded as uk , and uk∈Dk . Define
the state transition equation in the k-th stage as Tk (sk , uk ) =
sk + uk . Define the Euclidean distance between the initial
state sk of the k-th stage and the initial state sk−1 of the
(k − 1)-th stage as the stage fitness function of the k-th stage,
that is vk (sk , uk ) = d(sk , sk−1). The Superimposing of the
adaptation values for each stage equals the optimization index
of the whole process, i.e.,

V1,n =
n∑

k=1

vk (sk , uk ). (7)

Obviously, V1,n satisfies the optimality principle. There-
fore, as shown in equation 8, the optimization function of each
stage can be defined as the optimal solution from all feasible
points to the starting point. fk (sk ) = min

uk∈Dk
{vk (sk , uk )+ fk−1(sk−1)},

f1(s1) = 0,
(8)

where fk (sk ) is the optimal function value from the k-th
stage sk to the starting point, and f1(s1) = 0 is the boundary
condition of the dynamic programming algorithm.

The solution of the dynamic programming algorithm needs
to traverse the entire search space, which has the global
optimization capability. However, this algorithm may cause
severe drawbacks, In 3D dimensional cases, the traversed
point set is

∑n
k=1 Sk , which contains n3 points, so the

time complexity of dynamic programming algorithm is
O(n3) [25], [26]. When the number of discrete space grid
points increases, the time loss will explode, which is the
‘‘Curse of Dimension’’ problem.

2) GENETIC ALGORITHM
Genetic algorithm [27], [28] is a search algorithm based on
the mechanism of natural selection and population genet-
ics. It simulates the phenomenon of selection, crossover and
mutation in the process of natural evolution and genetics.
In the genetic algorithm model of trajectory planning, any
route between the starting point S and the end T is a gene
individual, and M individuals constitute a population. At the
beginning of genetic algorithm, a group of initial individu-
als are randomly generated. Then the fitness value of each
individual is calculated by the objective function in for-
mula 4. According to the fitness value, some individuals are
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selected to produce the next generation. The selection opera-
tion reflects the principle of ‘‘survival of the fittest’’. The indi-
viduals with high fitness value produce the next generation,
and the individuals with low fitness value are eliminated. The
selected individuals are recombined by crossover and muta-
tion operators to produce a new generation of individuals. The
new generation of individuals inherited the excellent char-
acteristics of the previous generation, and gradually evolved
to the optimal solution. Therefore, genetic algorithm can be
regarded as the evolution process of a group of initial feasible
solutions.

As a kind of swarm intelligence algorithm, the genetic
algorithm has the following advantages in trajectory plan-
ning: (1) High efficiency: Because genetic algorithm has
probability mechanism, its operation efficiency is less
affected by the size of search area; (2) Wide application: the
crossover and mutation operations of the two positions of
Xi and Xi+1 in the curve C are independent of each other,
so we can split and reconstruct the individual, and combine
with different algorithms; (3) Parallelism: the entire search
process is based on populations, which can compare and
select multiple individuals at the same time, and perform par-
allel calculations to improve efficiency. Due to the iterative
search mechanism of genetic algorithms, there are also many
defects. The most severe shortcomings are that the algorithm
has a specific dependence on the initial population, and it is
easy to fall into the local optimum. In addition, the crossover
operator and mutation operator directly affect the pros and
cons of the results, but the values of these parameters often
rely on the human experience.

B. THE PRINCIPLE OF DYNAMIC
PROGRAMMING-GENETIC ALGORITHM
For the solution of the trajectory planning problem, both
dynamic programming algorithm and genetic algorithm have
their advantages, but there are also shortcomings. There-
fore, this paper proposes a dynamic programming-genetic
algorithm; By dividing the search area into several stages,
the whole trajectory planning problem is divided into a series
of subproblems with nodes on both sides of the plane as
boundary conditions; The new algorithm uses genetic algo-
rithm to solve the optimal solution of each subproblem and
uses dynamic programming algorithm to globally optimize
the optimal solution of each subproblem in order of stages.
Compared with the single use of dynamic programming algo-
rithm and genetic algorithm, the hybrid algorithm changes
the problem scale from a trajectory with n nodes to a series
of trajectory segments with p nodes, which reduces the time
complexity of dynamic programming algorithm and avoids
the ‘‘Curse of Dimension’’ caused by the increase of search
area nodes. Moreover, the complementary mechanism of
dynamic programming algorithm and genetic algorithm also
eliminates the dependence of genetic algorithm on the initial
population and solves the problem of easily falling into local
optimum.

The principle of optimality requires that the optimal tra-
jectory decision has the following properties: no matter how
to choose the initial state and the initial decision, for any
node of the optimal trajectory, the decision route from this
node point to the starting point must constitute the optimal
strategy [29]. Assuming that the trajectory planning problem
is decomposed into q subproblems with the same properties,
the past and the remaining trajectorys are described by the
calculated trajectory cost and the current state respectively.
According to the separability of the objectives of the dynamic
programming problem, the current state and the calculated
trajectory cost must constitute a multi-objective non inferior
solution.

In order to describe the state of trajectory-planning, this
paper proposes the definition of the best trajectory state as
follows.
Definition 1: The grid points that meet the following two

conditions are called the optimal trajectory status of trajectory
planning:

(1) The line between the current node and the target point
should be in the safe area as far as possible.

(2) The distance between the current node and the target is
the shortest.

Thus, the best trajectory state evaluation function is writ-
ten as

Mi,j =

√
(x − xτ )2 + (y− yτ )2 + (z− zτ )2

L(si,j,T )
, (9)

where (xτ , yτ , zτ ) is the coordinate of the aim point T ;
L(si,j,T ) is the length of the trajectory that is not in the
obstacle on the line connecting the current candidate node
and the target point.

Because the terrain data is stored in a matrix form, it is
difficult to specifically reflect the length relationship defined
by L(si,j,T ) in formula (9). To facilitate the calculation,
the formula (9) is improved to the following form:

Mi,j =

√
(x − xτ )2 + (y− yτ )2 + (z− zτ )2

N (si,j,T )
, (10)

where N (si,j,T ) is the number of grid points on the line
between the optional node and the target point that are not
within the obstacle. To simplify the description, a 2D contour
map is taken as an example of the analysis. The explicit cal-
culation principle is shown in Figure 2. As shown in Figure 2,
the intersection point of the dotted line and the straight line l
in the figure is the unreachable state point, and the inter-
section point of the solid line and the straight line l is the
reachable state point. N (si,j,T ) is the number of unreachable
state points on the line segment l between the current node si,j
and the target point T .
If the trajectory planning problem requires planning the

optimal trajectory with n trajectory nodes, this problem is
decomposed into q stages by node division. The number of
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FIGURE 2. Schematic diagram of best trajectory node calculation.

trajectory nodes included in stage i(1 ≤ i ≤ q) is

ni =


[
n
q

]
, i = 1, 2, . . . , q− 1,

N −
[
n
q

]
· (q− 1), i = q.

(11)

In trajectory planning, genetic algorithm is used to plan i-th
stage track segment, and formula (10) is used to evaluate the
fitness of the track segment. The principle of DPGA is shown
in Figure 3.

FIGURE 3. Schematic diagram of dynamic programming-genetic
algorithm.

In Figure 3, the red plane Sk divides the search area into
q stages along the x-direction. Take the k-th stage point set
Sk searching to the (k + 1)-th stage point set Sk+1 as an
example, for ∀sk ∈ Sk , traverse the decision set Dk of sk .
For ∀dk ∈ Dk , sk+1 = sk + dk , we use genetic algorithm
to plan the optimal route lk between sk and sk+1, and the
value of the objective function of the trajectory segment lk
is vk (sk , sk+1), then the function value of sk+1 to the starting
point S through sk is fk+1; in the process of traversing Sk ,
the minimum of fk+1 is the value of the objective function
from sk+1 to the starting point S. In the process of solving the
optimal trajectory between sk and sk+1 by genetic algorithm,
the evaluation function of the planned trajectory segment lk
is (fl,i,

∑p
j=1Mi,j).Mi,j is the state value corresponding to the

j-th trajectory node sij in the i-th stage calculated according
to formula 10. fl,i is the objective function value of each node
in the trajectory L, and its form is show as

fl,i =
i−1∑
j=1

(ω1 · L2j (Xi+1)+ ω2 · Hj(Xi+1)). (12)

where, Lj is the length of the j-th stage, taking the distance
between the two trajectory nodes; Hj is the height of the j-th

FIGURE 4. Dynamic programming-genetic algorithm flowchart.

stage, taking the average height of the trajectory nodes.
Then it follows that fl,i and Mi,j must constitute a set of
non-inferior solutions. Conversely, if a strategy is inferior to
the non-inferior solution, it must not be an optimal strategy.
Therefore, if fl,i and Mi,j corresponding to a grid point are a
set of non-inferior solutions, then this grid point may be the
best trajectory node.

The dynamic programming-genetic algorithm flowchart is
shown in Figure 4. Figure 4 shows the fusion mechanism
of dynamic programming algorithm and genetic algorithm.
In addition, in the table of algorithm 1, we explain the details
of the operation process of the algorithm in the form of
pseudo code.

C. ALGORITHM CONVERGENCE ANALYSIS
The global convergence of genetic algorithm are shown in the
following Theorem 1 and Theorem 2.
Theorem 1: If the genetic algorithm has the operation of

retaining the optimal individual, it must converge to the global
optimal solution.

The proof can be found in the literature [30].
Theorem 2: Suppose that h(i) = {x1, x2, . . . , xN } is

the i-th generation population of genetic algorithm, N is
the total number of individuals in the population, Zh(i) =
max{f (xk )|k = 1, 2, . . . , n} is the maximum fitness of the
current population, f (x) is the fitness function. The global
maximum fitness is expressed as f ∗ = max{f (x)|x ∈ S}, S is
the set of individuals of all populations. Then if and only if

p∗ = lim
N→∞

{Zh(i) = f ∗} = 1,

the genetic algorithm converges to the global optimal
solution.

Proof: If the optimal path with n nodes is planned,
then the number of alternative decisions for each tra-
jectory node is v. Both genetic algorithm and dynamic
programming-genetic algorithm calculate the objective func-
tion N · M times, where N is the maximum number of
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Algorithm 1 Dynamic Programming-Genetic Algorithm
Input:

Digital map model z(x, y), start point S, target point T ,
and constraint parameter.

Output:
The optimal route consisting of a set of n-dimensional
point series.

Initialize:
Set the value of parameter q, and divide the planning
space according to formula 11.

1: function DPGA(z(x, y), S,T )
2: p←

n
q
, f1(s1)← 0

3: for i = 1→ q do
4: According to formula 5, k ← i · p, the node

set of stage i is Pointk = Sk
5: for ∀sk ∈ Sk do
6: for For the decision set, ∀dk ∈ Dk do
7: if dk satisfies the constraints then
8: trajectory point row Li,
9: Objective function value vi
10: sk+1 = sk + dk
11: [Li, vi] = GA(z(x, y), sk , sk+1)
12: fi+1(sk+1)← equation 8
13: end if
14: end for
15: end for
16: end for
17: The optimal value of the objective function

is fq(sn+1)
18: Lq← lq
19: for i = q− 1→ 1 do
20: if The end of li is the beginning of li+1 then
21: Li← li
22: end if
23: end for
24: L =

∑
Li

25: return [L, fq(sn+1)]
26: end function
27: function GA(z(x, y), sk , sk+1)
28: Crossover probability← pc
29: Mutation probability← pm
30: Initialize the first generation population P1
31: Calculate the fitness function of each individual
32: for i = 1→ N do
33: if rank < pc then
34: Cross operation
35: end if
36: if rank < pm then
37: Mutation operation
38: end if
39: Choose operation to retain better individuals
40: end for
41: The optimal individual of the N -th generation

population P∗n and its fitness function value fn
42: return [P∗n, fn]
43: end function

iterations, and M is the number of populations. The con-
vergence rate of genetic algorithm is k (k > 1) times that
of pure random search. Therefore, after N times of iterative
calculation, the probability p∗ [31] of obtaining the global
optimal trajectory by genetic algorithm is

p∗ =
N ·M · k

vn
. (13)

Because theDPGAalgorithm needs to divide the trackwith
n nodes into q track segments and each trajectory segment can
be regarded as a subproblem, the number of nodes of each
individual in the genetic algorithm becomes p =

n
q
. Since

the probability of convergence of the optimal solution to each
sub-problem is independent of each other, the probability
of convergence of the global optimal solution using DPGA
algorithm is

PDPGA =
(N ·M · k)q

vn
. (14)

It is known that

k > 1,N ≥ 1,M ≥ 1, q > 1, lim
T→∞

p∗ = 1,

therefore, (N ·M · k)q > N ·M · k, 1 > PDPGA > p∗,

lim
T→∞

PDPGA = 1. (15)

The operation process of the dynamic programming-
genetic algorithm proposed in this paper can be regarded as
using the dynamic programming algorithm to optimize the
trajectory segment planned by the genetic algorithm. The
dynamic programming algorithm is a global traversal algo-
rithm, which has an excellent global optimization capability.
Therefore, the convergence of dynamic programming-genetic
algorithm mainly depends on the genetic algorithm for tra-
jectory segment planning. The genetic algorithm used in
this paper introduces non-inferior solution (fl,i,

∑p
j=1Mi,j)

to screen the population, and satisfies the condition of
retaining good individuals in theorem 1, so the algorithm
can converge to the optimal global solution; In addition,
according to the proof conclusion of formula 15, the hybrid
algorithm satisfies the convergence condition of theorem 2,
and the convergence efficiency is better than the genetic
algorithm.

D. ALGORITHM PERFORMANCE ANALYSIS
When the number of trajectory nodes is n, the time complex-
ity of DP algorithm and GA algorithm are

TDP(n) = O(P(n)) = O(n3),

TGA(n) = O(M · N · n). (16)

DPGA decomposes the entire trajectory-planning problem
with n nodes into q sub-problem by DP algorithm, therefore,
its time complexity is

TDPGA(n) = TDP(q) · TGA(
n
q
)

= O(q2 · N ·M · n). (17)
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Compared with DP algorithm, DPGA algorithm signifi-
cantly reduces the time complexity, avoids the ‘‘Curse of
Dimension’’ problem caused by the increase in planning
space to some extent, and improves the performance of the
algorithm. Compared with GA algorithm, the time complex-
ity of DPGA algorithm is the same as that of GA algorithm,
but the convergence probability PDPGA and convergence effi-
ciency of DPGA algorithm are greater than that of GA algo-
rithm. In addition, by considering the influence of the number
of stages q on algorithm performance, DPGA algorith educed
to N1 and M1 as shown in formula 18:

N1 ·M1 =
N ·M
q2

. (18)

The performance of the adjusted DPGA is basically the
same as that of the GA. Supposing the convergence expecta-
tion of the DPGA algorithm is expressed as a function f (n, q)
related to n and q, the boundary conditions can be obtained
by comparing and analyzing the time complexity of the three
algorithms. When q → 1, the DPGA algorithm degenerates
to a genetic algorithm; When q → n, the DPGA algorithm
degenerates to a dynamic programming algorithm. Therefore,
the existence of the optimal number of stages q that makes the
algorithm the most efficient can be proved. The proof process
is as formula 19:

proof : ∵ f (n, q) =
1
vn
· (
N ·M · k

q2
)q,

∴ lim
q→1

∂f (n, q)
∂q

> 0,

lim
q→n

∂f (n, q)
∂q

< 0,

∴ ∃qζ ∈ (1, n) satisfies

lim
q→qζ

∂2f (n, q)
∂q2

= 0. (19)

There is an optimal number of stages qζ such that

lim
q→qζ

f (n, q) = max f (n, q), q ∈ (1, n). (20)

In addition, due to the boundary condition lim
q→1

f (n, q) = fGA(n),

lim
q→n

f (n, q) = fDP(n),
(21)

we can verify that: when q ∈ (1, n), the convergence expec-
tation of hybrid algorithm is better than that of genetic algo-
rithm and dynamic programming algorithm.

V. OPTIMIZATION RESULTS AND ANALYSIS
Under the hardware environment of Intel (R) Core (TM)
i7-8700 CPU@3.20 GHz and 8GB of memory. The experi-
ment is divided into three parts: algorithm performance anal-
ysis, the number of optimal stages of the algorithm analysis
and trajectory planning simulation.

A. EXPERIMENT 1: PERFORMANCE ANALYSIS OF DP
ALGORITHM AND GA ALGORITHM UNDER DIFFERENT
TRAJECTORY NODES
By changing the number of trajectory nodes n, we compare
the planning time of DP algorithm and GA algorithm and the
cost function f (coefficient parameters ω1 and ω2 are 0.2 and
0.8) in formula 2 to verify the impact of planning space size
on the optimization performance of the algorithm. The results
are shown in Table 2.

TABLE 2. Performance comparison of DP and GA under different
trajectory node number.

By analyzing the data onto Table 2, the following conclu-
sions can be brought:

1. With the increase in the number of trajectory nodes n,
the time loss of the DP algorithm will increase explosively
and the running time of the GA algorithm increases less,
which verifies the problem that the efficiency of the DP algo-
rithm greatly decreases when the number of discrete space
grid points increases.

2. Comparing the fitness function values of the optimal
trajectory under n = 10 and n = 20, the fitness function
value of DP algorithm is constant, which is generally better
than genetic algorithm; The adaptive function value of GA
algorithm will have extreme results. It is proved that GA
algorithm is easy to fall into local optimum and its global
optimization ability is weaker than DP algorithm.

B. EXPERIMENT 2: ANALYSIS OF THE OPTIMAL NUMBER
OF STAGES
The dynamic planning-genetic algorithm for trajectory plan-
ning divides the entire optimization problem into several
stages at first, then use the GA algorithm to solve them
in stages, and finally obtain the solution to the entire
trajectory-planning problem. In order to select the optimal
number of stages, we take the stages separately with numbers
of 1, 2, 3, 4 and 5 to perform 100 trajectory simulation
experiments. The optimal solutions and the average running
time of the algorithm are presented in Figure 5 and Figure 6,
where Figure 5 is the probability of the optimal flight path
with the number of stages, and Figure 6 is the algorithm
running time.

By Figure 5 and Figure 6, the following conclusions can
be drawn:

1. As the number of stages increases, the probability of
the dynamic programming-genetic algorithm obtaining the
optimal solution is increasing.
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FIGURE 5. Optimal trajectory probability.

FIGURE 6. Algorithm time loss.

When the meshing step size and trajectory planning area
are constant, the number of trajectory nodes is also invariant.
As the number of stages increases, the number of nodes con-
tained in each stage decreases. At this time, the probability
of using the GA algorithm to calculate the optimal trajectory
at each stage is increasing. The convergence probability of
the GA algorithm is independent of each other. Therefore,
the probability of the dynamic programming-genetic algo-
rithm proposed for this paper converging on a global optimum
is increasing.

2. As the number of phases increases, the time loss of the
dynamic programming-genetic algorithm decreases first and
then increases.

DPGA decomposes the planning problem into multiple
stages and uses the relationship between two adjacent stages
to solve the optimal trajectory of the next stage, and then
finds the solution to the trajectory-planning problem. In this
process, the hybrid algorithm can ‘‘remember’’ the best tra-
jectory of the stage, so as to avoid repeated calculations and
improve the speed of the algorithm. However, as the num-
ber of stages increases, the algorithm gradually degenerates
into the DP algorithm, resulting in a significant reduction in
the efficiency of the algorithm, and the running time will
increase due to the iteration of the GA algorithm. Hence,
as the number of stages increases, the running time of the
dynamic programming-genetic algorithm decreases first and
then increases.

In order to enable the dynamic planning-genetic algorithm
proposed for this paper to obtain the optimal trajectory in a
short time, the number of stages is taken to be 4.

C. EXPERIMENT 3: PERFORMANCE ANALYSIS OF DPGA
ALGORITHM
In order to verify the performance of DPGA, dynamic plan-
ning algorithm, genetic algorithm and dynamic planning-
genetic algorithm were used to conduct the trajectory
planning simulation experiments. The parameters such as the
starting point S, the target point T , and the maneuverability
constraints are shown in Table 3. (units of length km.) The val-
ues of meshing step size hx , hy, hz depend on the constraints
of the minimum trajectory segment and the size of the threat
zone. The value of maximum disturbance ymax, zmax deter-
mines the size of the current node’s backward search area,
which needs to be considered in conjunction with various
constraints and algorithm performance.

TABLE 3. 3D trajectory planning parameters.

The simulation results are shown in Figure 7. As shown
in the first line is the DP algorithm, the second line is
the GA algorithm, and the third line is the DPGA algo-
rithm. The first column is a stereoscopic view of the
three-dimensional trajectory. The second column is a pro-
jection of the three-dimensional trajectory of the xoy plane,
and the third column is a projection of the three-dimensional
trajectory of the xoz plane. The specific data of objective func-
tion value and time loss of simulation results in Figure 7 are
shown in Table 4.

TABLE 4. Comparison of three algorithms’ planned trajectory and
running time.

The DPGA algorithm is a combination of the DP algo-
rithm and the GA algorithm. It inherits the advantages of
the two algorithms and reduces the dimensionality of the
trajectory-planning problem in terms of time by dividing
the stages of DP algorithm. Natural selection and genetic
mechanism of the GA algorithm are used to reduce spatial
dimension. The experimental results in Figure 7 and the
experimental data in Table 4 are analyzed to verify the fol-
lowing questions:
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FIGURE 7. Simulation chart of each algorithm.

1. Combining Figure 7 and Table 4 shows that: the planned
trajectory shown in Figure (d) of the GA algorithm (the value
of the cost function is 30.89) is not an optimal trajectory
compared with the planned trajectory of the DP algorithm
(the value of the cost function is 37.51) shown in Figure (a).
Because of the dependence of the initial population of genetic
algorithm and the blindness of searching by probability, it is
easy to fall into a local optimum. However, by observing
Figure (e), Figure(f) and Table 4, although the genetic algo-
rithm for trajectory-planning has the risk of falling into a
local optimum, it can quickly plan a feasible trajectory, and
the planning speed is almost 1/3 of the DP algorithm. The
main reason is that DP algorithm has a ‘‘Curse of Dimen-
sion’’ problem. When the number of spatial points increases,
the algorithm running time increases exponentially. How-
ever, GA algorithm can improve the algorithm’s convergence
speed to a certain extent by natural selection and genetic
mechanisms.

2. Compared with the trajectory planned by DP algorithm,
the trajectory planned by DPGA algorithm has more inflec-
tion points. The reason is that the trajectory is divided into
stages, and the GA algorithm is used to calculate the stage
trajectory, which leads totrail nodes have a certain random-
ness. By Table 4, compared with the DP algorithm, the value
of the trajectory cost function obtained by the DPGA algo-
rithm is 37.64, which is extremely close to the optimal value
of 37.51 obtained by the DP algorithm. Therefore, the algo-
rithm can converge to a global optimal solution.

3. By comparing and analyzing Table 4, it can be seen that
the cost function of the GA algorithm is 39.89, which takes
3.94s. The cost function value of the trajectory planned by
the DPGA algorithm proposed for this paper is 37.64 and
the time-consuming is 3.73s. This is because the number of
nodes in the trajectory segment is reduced, which leads to
the improvement of the efficiency of the genetic algorithm
and the increase of the probability of convergence to the
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global optimum. DPGA algorithm is used in the trajectory
planning process, it can ‘‘remember’’ the best trajectory of
the sought stage, thereby avoiding double counting. There-
fore, compared with the GA algorithm, the DPGA algorithm
converges faster and the resulting trajectory is shorter.

Through simulation experiments, several conclusions
can be drawn. Compared with the other two algorithms,
the DPGA algorithm can plan the optimal trajectory in a
shorter time on the premise that all constraints are satisfied.
Therefore, the DPGA algorithm proposed for this paper is
more suitable for 3D trajectory planning.

VI. CONCLUSION
In this paper, a digital simulation of complex terrain envi-
ronment is carried out by using mathematical functions, and
the search area is discretized. Then, aiming at the ‘‘Curse
of Dimension’’ problem of DP algorithm in 3D search area,
the dynamic programming-genetic algorithm is proposed,
and its feasibility is verified by theoretical derivation. In addi-
tion, this paper analyzes the optimality of the GA algorithm
and DPGA from the perspective of probability, and verifies
that the improved algorithm has better convergence; then
the time complexity of the three algorithms is compared.
Combined with the expected convergence time, the existence
of the optimal number of stages is derived. Finally, this
paper conducts three experiments on algorithm performance
analysis, the number of optimal stages of the algorithm anal-
ysis and trajectory planning simulation, which confirmed the
above relevant theories and conclusions, and also verified the
advantages of the DPGA algorithm in solving complex 3D
trajectory planning problems.

VII. FUTURE WORK
This paper propose a dynamic programming-genetic algo-
rithm based on dynamic programming algorithm and genetic
algorithm. Although this paper has achieved specific stage
achievements, there are problems worthy of continuing to
explore and improve. The future research work can be
improved from the following two aspects:

1. Add a parallel computing system to the hybrid algo-
rithm. It is mentioned in this paper that genetic algorithms
have the advantage of parallelism. Parallel computing mech-
anisms can be introduced into the algorithm to improve the
efficiency of the algorithm;

2. Establish a mathematical model of trajectory planning
with variable step length. Most of the documents, including
this article, use fixed-step sizes to divide the three coordinate
axes. This division method is more conducive to establishing
the model and the realization of the planning procedure.
However, under certain conditions, the step size of trajectory
planning is required to be adaptive or variable.
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