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ABSTRACT Wind power has contributed significantly to the increase in electricity generation, but a
decision-making tool capable of dealing with its variability and limited predictability is necessary. For
this purpose, a novel self-adaptive approach for kernel recursive least-squares machines named multiple
challengers is introduced in this work, which is successfully used to produce very short-term wind power
forecasts at eight wind farms in Australia. The proposed method is based on a competitive tracking method,
and the algorithm deals with some common difficulties of kernel methods, e.g., the increasing kernel matrix
size associated with time and memory complexities and the overfitting problem. The proposed method
always considers the new information received by the model, thus identifying changes in the time series,
avoiding abrupt loss of information and maintaining a controlled number of examples since there is an
adaptive selection of the active kernel. It works with the smallest dictionary possible, reducing the probability
of overfitting. Five minute-ahead wind power forecasts are produced and evaluated in terms of point forecast
skill scores and calibration. The results of the proposed method are compared with those provided by other
kernel-based versions of the recursive least-squares algorithm, an online version of the extreme learning
machine method, and the persistence time series model. An increase in the number of kernels used in the
ensemble system can lead to better results when compared with those of single-kernel models.

INDEX TERMS Multiple kernel learning, online training, renewable energy, wind power forecasting.

I. INTRODUCTION
Wind power continues to receive significant attention
throughout the world [1]. In this context, the variability of
power production and the restricted control of wind tur-
bines justify the development of wind power forecasting
models [2]. This is a key factor in ensuring the successful
integration of wind farms into the AC power grid [3]. Thus,
the reliable and economical operation of power systems with
high wind power penetration demands the utilization of accu-
rate models for this purpose [4].

Wind power forecasting has different time horizons
according to its application [5]. The time-scale classifica-
tion is not strictly defined, but it can be classified into very
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short-term (few seconds to 30 minutes ahead), short-term
(30 minutes to 24 hours ahead), medium-term (24 hours
to one week ahead), and long-term (one week to years
ahead) [5]–[8].

Wind speed and/or power forecasting methods are broadly
classified into three categories: (i) physical models use
descriptions of the lower atmosphere, geographical features,
and obstacles to predict the flow of wind. Physical models
are usually based on numerical weather prediction (NWP)
models which predict meteorological variables like wind
speed, wind direction, pressure, and other variables, using
3-D spatial and temporal information based on computational
fluid dynamic (CFD) models. Wind power forecasts can be
obtained based on the performance of a wind turbine or a
wind farm using NWP results [9], [10] but require extensive
calculations and considerable time [11]. Physical models are
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of limited practical use in very short-term forecasting due
to latency issues, and need accurate initial conditions of
wind farms that cannot be always guaranteed [12]. How-
ever, physical models can represent weather phenomena, such
as forward edge of an advancing mass of air (front) and
thunderstorm. (ii) Statistical and machine learning models
represent the behavior of wind speed and/or power time
series based on the wind or power historical data. NWP
input is optional for these models. They are faster during
the development period and processing results than physi-
cal models, and many have been studied for this purpose,
such as autoregressive moving average with exogenous input
(ARMAX) [13], autoregressive integrated moving average
(ARIMA) [14], neural networks (NNs) [15], support vector
machines (SVMs) [16], fuzzy logic [17], [18], and extreme
learning machines (ELM) [19], [20]. (iii) Hybrid models,
in order to improve forecasting performance, combine dif-
ferent methodologies to take advantage of each method [21],
such as weighting-based models, hybrid models with data
preprocessing techniques, hybrid models with parameter
selection, and optimization techniques and hybrid models
with error processing techniques [22]–[26]. Among them,
decomposition-based approaches taking advantage of time
series decomposition methods have been frequently reported,
and the original time series can be decomposed into different
subseries and modeled more effectively than the original time
series [27].

Reviews related to wind power forecasting are available
in [21], [28]–[30]. Giebel et al. [28] concluded that for fore-
cast horizons of less than approximately six hours, statistical
methods using local information are superior to physical
models.

Statistical methods used for wind speed and power pre-
diction are usually linear despite the nonlinear nature of the
wind and are typically employed in single sites. Consider-
ing this key aspect, the present study aims to investigate a
class of learning algorithms named kernel methods, which
can provide linear processing of nonlinear features for one
and multiple sites. This technique retains the properties of
linear processing, such as fast learning algorithms and a
unique optimal solution, while making it possible to cap-
ture some nonlinearities. Kernel machines combine statistical
learning theory to optimize generalization [31], with mathe-
matical programming to find solutions efficiently as well as
to improve the similarity measure between points to handle
nonlinearity issues [32]. This work addresses a regression
problem, where kernel machines consider the fact that obser-
vational data can be represented by a linear combination of
kernel functions [33]. Kernel methods have been successfully
applied in time series prediction [34], wind speed forecast-
ing [35], [36], wind power forecasting [37], electric load
forecasting [38], [39], and many other applications.

The main goal of this study is to present a multikernel
learning machine model that can deal with regression prob-
lems with a smaller and nonstatic dictionary, and achieve
better or similar results when compared with their respective

single-kernel counterparts. The model fitting procedure is
fully data driven, making it ideal for smart grid applications
where many generators share a highly interconnected power
system and the use of spatial dependence is desirable. The
results obtained with different kernel machines are compared
in two scenarios, first considering only the temporal aspect
of the dataset, while the spatial dependence is analyzed later.
The contributions of the proposed study can be regarded as
follows: (i) the proposal of a novel multiple kernel learning
scheme based on multiple challengers (MC) with adaptive
control of the number of kernels used by the predictor;
(ii) evaluation of the lifespan controller proposed in [40] is
adapted and applied to the proposed multiple kernel learning
scheme; and (iii) investigation of the search behavior of
the proposed algorithm as a method for solving regression
problems.

The remainder of this work is organized as follows.
Section II describes the problem followed by a theoretical
background. Section III provides a detailed description of the
proposed technique. Section IV presents some case studies to
validate the proposedmodel in terms of a thorough discussion
of the results and analysis of the MC-based kernel recursive
least-squares algorithms. Finally, conclusions are presented
in Section V.

II. KERNEL MACHINES AND NONLINEAR REGRESSION
High-dimensional feature spaces have drawn significant
attention to the estimation of nonlinear functions. A direct
application of this approach lies in regression, where some
nonlinear mapping is followed by linear processing in a
high-dimensional feature space.

A. PROBLEM DESCRIPTION
This is a problem regarding online multiple kernel-based
learning that deals with nonlinear regression. By considering
awind farm, let (xi, yi) be an input-output stream of data pairs,
where xi is the historical data of wind power at time t , and
yi is the target power value at time t+horizon (1). The task
consists of estimating a nonlinear function f (·) that describes
the relationship between the input and output, denoted as
f̂ (·). It computes the prediction of a wind farm (ŷ), or even a
vector with the prediction of n wind farms (Ŷ ). The unknown
function f (·) may change over time, as opposed to standard
regression settings that assume static models. The aim is to
find an estimate f̂ (·) of f (·) in a prediction context tominimize
the mean squared error (MSE) given by:

MSE =
1
N

N∑
i=1

e2i , (1)

where ei = yi − ŷi and N is the number of observed
data. The linear approximation of this problem is given by
f̂ (xi) = Axi, where A ∈ �n×m is a coefficient matrix
whose entries are to be determined.Many estimation schemes
based on this approximation have been studied, as reported
in [41]–[43].
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An approximation can be obtained in terms of the mapping
φ(·) to place it in a nonlinear setting simply writing f̂ (xi) =
Aφ(xi) with A ∈ �n×d . Based on the properties of the Mercer
kernel [32], it is possible to derive estimation schemes for
f (·) in a high d-dimensional feature space without performing
calculations in such space. This combines the simple imple-
mentation of linear methods with the advantageous properties
of working with nonlinear mapping.

Kernel methods are based on a nonlinear transformation
(kernel trick) of the input data into a high-dimensional Hilbert
space (H). Inner products can then be calculated by using a
positive-definite kernel function satisfying Mercer’s condi-
tion [32] to produce nonlinear versions of conventional linear
learning algorithms.

The Mercer kernel is a continuous, symmetric, and
positive-definite function k(xi, xj) : X ×X → �, X ∈ �n or
�n, where X is a nonempty set. Mercer’s theorem states that
anyMercer kernel k(·, ·) can be expressed as the inner product
of some fixed nonlinear function φ(x) : X → H1, x ∈ X ,

k(xi, xj) =
〈
φ(xi), φ(xj)

〉
H1
, (2)

whereH1 is a real- or complex-valued reproducing kernel in
Hilbert space, for which k(·, ·) is a reproducing kernel and
〈·, ·〉H1 is the corresponding inner product inH1.
Equation (2) represents a Mercer kernel and states that if xi

and xj are mapped onto H1 by φ(xi) and φ(xj), respectively,
then the inner product of these functions can be calculated
by evaluating the kernel k(xi, xj) even if the mapping φ(·) is
unknown. This result is known as the kernel trick.

Many kernel functions exist, but the most common func-
tion is the Gaussian kernel. It is frequently used in real-world
applications with particular success in time series predic-
tion problems. It consists of the expansion function for an
infinite-dimensional feature space given by

k(xi, xj) = exp(−||xi − xj||2/2σ 2) (3)

This kernel has been adopted in this study. Even though
there are other possible options, the Gaussian kernel has a
physical interpretation as a measure of similarity that per-
fectly fits this particular application. It is also worth men-
tioning that it has outperformed other kernel candidates,
e.g., triangular and polynomial, as reported in other similar
works [44], [45]. In addition, the choice or construction of
kernels is very much an open problem, being the subject of
ongoing research.

Three kernel recursive least-squares (KRLS) machines
are used as benchmarks: the approximate linear depen-
dency KRLS (ALD-KRLS), the sliding-window KRLS (SW-
KRLS), and the KRLS tracker (KRLS-T). They were chosen
because the ALD-KRLS machine was the first proposed and
most popular kernel machine. Even though ALD-KRLS has
no tracking system, the remaining algorithm aggregates such
characteristics, albeit with different degrees of complexity.
The complete derivation of such benchmark machines can be
found in [44], [46], [47].

Kernel methods have proven to be successful in appli-
cations where data are entirely considered in an instance,
i.e., batch applications. However, the extension of kernel
methods to online settings where data arrive sequentially
provides some minimized but unsolved challenges. The first
is the overfitting risk when using a Hilbert space method
because of the high dimension of the weight vectors. This has
been handled by the use of regularization. Another problem is
that the increasing complexity of the estimator representation
becomes higher as the number of observations increases.

KRLS algorithms compute coefficients αi, which consist
of a minimizer used to compute the optimal weight vector,
by solving a least-squares problem involving the inversion of
a kernel matrix (K ) whose dimension depends on the number
of stored examples (M ). The second challenge is that the
amount of processed data M increases over time in online
scenarios. Thus, practical algorithmsmust restrict the amount
of data that will be stored. As a result, the third challenge is
the training time of batch and/or the incremental update of
algorithms, which typically increase linearly with the number
of observations.

B. BACKGROUND REVIEW
Reviews of multiple kernel learning (MKL) algorithms are
available in [48], [49]. Gonen and Alpaydın [48] concluded
that overall, using multiple kernels instead of a single ker-
nel achieves better results. MKL combines a set of ker-
nels (basis kernels) in a linear, nonlinear or data-dependent
way into a composite kernel, where the basis kernels can
use different kernel functions or different values for the
hyperparameters of a single kernel function [48]. Numer-
ous studies have continuously improved the development
of MKL applied in many subjects: classification of hyper-
spectral images [49], binary classification problems [50],
air quality prediction [51], anomaly detection [52], object
categorization [53], Alzheimer’s disease diagnosis [54], oil
painter recognition [55], multiclass classification [56], dis-
criminating early- and late-stage cancers [57], subspace clus-
tering [58], and many others.

In recent years, several methods combining multiple ker-
nels have been proposed. Kannao and Guba [50] identified
and modeled distinct local regions of input space, as each
kernel has varying discriminative capabilities in distinct
regions, naming them as ‘regions of success’, through a set of
instance-dependent success prediction functions having high
values in ‘regions of success’ and low ones otherwise. The use
of these success prediction functions as instance-dependent
weighing functions promotes locally discriminative base ker-
nels while suppressing others. Zheng et al. [51] introduced
the multiple kernel support vector classifier, an MKL model,
which embodies the characteristics of ensemble learning,
kernel learning, and representative learning. The centered
alignment approach is used to obtain the weight of each
kernel, and a boosting approach is used to determine the
proper number of kernels. The kernels are combined by the
weighted sum (conic sum restriction). The support vector
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classifier is used as the base learner and optimized with a
general optimizing algorithm.

An MKL approach for one-class classification was pro-
posed by Gautam et al. [52]. The classifier used is
Scholkopf’s one-class SVM. The weight for each kernel
is defined by a gating function. The weight for each kernel
is assigned locally. The parameters of the gating function and
one-class classifier are optimized simultaneously through a
two-step optimization process. First, the optimization prob-
lem is solved to find the parameters; later, with the gating
function parameters updated, the new weight is computed.
Wang et al. [53] proposed a data-dependent MKL algo-
rithm based on soft grouping. There are two steps in the
training stage: (i) the samples are divided into groups with
a soft-grouping algorithm to accommodate the correlation
and diversity of the samples; (ii) an alternative optimization
method is used to learn the kernel weights and support vector
coefficient (classifier). The composite kernel is determined
by the kernel weights of groups and the probability of this
sample falling to the groups.

A novel structured sparsity, defined by l1,p-norm (p > 1),
regularized MKL method was designed by Peng et al. [54].
It represents each feature with a distinct kernel as a basis
and captures featurewise importance by learning the weight
for each kernel, followed by grouping the kernels according
to task-specific criteria (feature modalities). Then, an opti-
mally combined kernel presentation of multimodal features is
learned in a data-driven approach. The proposed regularizer
enforced on kernel weights is to sparsely (l1) select a concise
feature set within each homogeneous group and fuse the
heterogeneous feature groups by taking advantage of dense
norms (lp). Liao et al. [55] proposed an MKL algorithm
divided into three phases: first, before MKL is carried out,
a prelearning process (K-medoids) is used to cluster similar
candidate subkernels and select some subkernels with better
classification ability in each category, which decreases the
size of candidate subkernels; the second step computes the
classification ability of each kernel, in each category, to select
the subkernel with the best classification performance; the
final phase uses the selected subkernel to carry out MKL
under lp-norm (p > 1) constraints.
A collaborative and geometric MKL algorithm presented

by Wang et al. [56], directly classifies multiclass data into
corresponding classes. It usesmultiple empirical kernel learn-
ing to map the sample into multiple kernel spaces and then
trains the softmax function in each kernel space. The softmax
function can utilize the explicit features in the kernel space
efficiently. To improve the collaboration between different
kernel spaces, one regularization term (RU ) was designed to
require the consistent outputs of samples in different kernel
spaces. Moreover, to make the outputs of samples have geo-
metric classification features, a geometric projection regular-
ization term (RGl ) was designed to reduce the within-class
distance of the outputs of samples in each kernel space.
The two regularization terms were introduced to improve
the classification ability further. Rahimi and Gönen [57]

formulated a multitask MKL method with a coclustering
model on gene sets to identify biological processes and learn
task-specific classification models simultaneously. Multitask
learning, where different tasks are learned simultaneously,
allows cohorts (i.e., tasks) with limited data to benefit from
other tasks. Coclustering builds a predefined number of clus-
ters of cohorts and pathways (i.e., tasks and kernels).

Ren et al. [58] proposed a novel MKL method that jointly
learns an optimal affinity graph and a suitable consen-
sus kernel for clustering purposes. The nonlinear data are
mapped into a high-dimensional reproducing kernel Hilbert
space where a linear pattern analysis is performed. The
kernel matrix H (kernel Gram matrix) is symmetric posi-
tive semidefinite and is decomposed via an auxiliary square
matrix B. This matrix is used to compose the matrix H
with a sparse noise component (E) to deal with noisy data.
A weighting strategy is used as the multiple kernel learn-
ing process. Note that the proposed algorithm integrates the
MKL with local and global structure learning and the Hilbert
space self-expressiveness property in a unified optimiza-
tion problem. A denoising MKL method was presented by
Zhou et al. [59]. It considers two kinds of noise: local noise,
which appears in a small number of elements of the kernel
matrix and is often induced by outliers or corrupted instances,
and global noise, which appears in most of the elements of the
kernel matrix and is often induced by inappropriate kernels.
Noise matrices and noise tensors are introduced to capture
local and global noise. The cleaned kernels are obtained by
subtracting the noise from the candidate kernels. To learn the
consensus kernel, the disagreement between the consensus
kernel and all the cleaned kernels is minimized.

These different kernels may correspond to using different
concepts of similarity or involve information coming from
multiple sources, i.e., different representations or feature sub-
sets. The reasoning is similar to combining different classi-
fiers. Different kernels correspond to different concepts of
similarity, and instead of attempting to find which kernel
works best manually, a learning algorithm is responsible
for selecting it, or a combination of both features can be
employed. Using a specific kernel may be a source of bias,
and by allowing a learner to choose among a set of kernels,
an improved solution can be found. The combination function
of multiple kernels and its corresponding parameters can be
represented as:

kη(xi, xj) = fη({km(xmi , x
m
j )}

P
m=1|η), (4)

where the combination function fη : �P→ � can be a linear
or a nonlinear function. Kernel functions {km : �Dm×�Dm →
�}Pm=1 adopt (not necessarily different) P feature representa-
tions of data instances xi = {xmi }

P
m=1 where x

m
i ∈ �

Dm , and
Dm is the dimensionality of the corresponding feature repre-
sentation. η parameterizes the combination function [48].

One of the simplest methods for determining the kernel
combination function is the fixed rule. This strategy uses
functions without any parameters, e.g., summation or mul-
tiplication of the kernels, and does not require any training.
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Pavlidis et al. [60] reported that, on a gene functional classi-
fication task, training a support vector machine (SVM) [61]
with an unweighted sum of heterogeneous kernels achieves
better results than the combination of multiple SVMs, each
trained with one kernel. The heuristic approach uses a param-
eterized combination function and finds the parameters of
this function usually by looking at some measure separately
obtained from each kernel function. These measures can be
calculated from the kernel matrices or taken as the perfor-
mance values of the single-kernel-based learners that are
trained separately using each kernel. Moguerza et al. [62]
and de Diego et al. [63] proposed a matrix functional form
of combined kernels:

kη(xi, xj) =
P∑

m=1

ηm(xi, xj)km(xmi , x
m
j ), (5)

where ηm(·, ·) assigns a weight to km(·, ·) according to xi and
xj. The aforementioned works propose different heuristics to
estimate theweighting function values using conditional class
probabilities Pr(yi = yj|xi) and Pr(yj = yi|xj) calculated with
a nearest-neighbor approach. However, each kernel function
corresponds to a different neighborhood, and ηm(·, ·) is cal-
culated on the neighborhood induced by km(·, ·).
It is also possible to use a linear combination instead of

a data-dependent combination to formulate the combined
kernel function as follows:

kη(xi, xj) =
P∑

m=1

ηmkm(xmi , x
m
j ), (6)

where the kernel weights are selected by looking at the
performance values obtained by each kernel separately. For
instance, Qiu and Lane [64] proposed two simple rules for
selecting the kernel weights for regression problems:

ηm =
Rm∑P
h=1 Rh

(7)

and

ηm =

∑P
h=1Mh −Mm

(P− 1)
∑P

h=1Mh
, (8)

where Rm is the Pearson’s correlation coefficient between
the true outputs and the predicted labels generated by the
regressor using the kernel matrix Km, and Mm is the mean
squared error generated by the regressor using the kernel
matrix Km. These heuristics find a convex combination of the
input kernels as the combined kernel.

Pearson’s correlation coefficient is a common measure of
association between two continuous variables. It is defined as
the ratio of the covariance of the two variables to the product
of their standard deviations, commonly denoted by the Greek
letter ρ:

ρ =
Cov(X ,Y )
σXσY

(9)

The sample correlation coefficient, R, can be obtained
by plugging the sample covariance and the sample standard
deviations into the previous formula, i.e,.

R =

∑n
i=1((xi − x)(yi − y))√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(10)

The Pearson’s correlation coefficient ranges from −1 to
+1. When ρ > 0, two variables tend to increase or decrease
simultaneously; for ρ < 0, one variable tends to increase
when the other decreases; finally, in ρ = 0 corresponds to
the absence of association [65].

There are two main differences between the models
described previously and the one introduced in this work.
First, the base learner of the previous models majority is
an SVM, while the proposed one uses KRLS algorithms,
which produce much sparser solutions with higher robust-
ness to noise. Moreover, KRLS machines are fully online
algorithms designed to operate in real-time environments
where data become available one sample at a time. Second,
almost all of the previous models use a linear combination,
which is themost popular approachwith two basic categories:
unweighted sum, i.e., using the sum or mean of the kernels
as the combined kernel; and weighted sum. In the weighted
sum case, the following combination function can be linearly
parameterized:

kη(xi, xj) = fη({km(xmi , x
m
j )}

P
m=1|η) =

P∑
m=1

ηmkm(xmi , x
m
j ),

(11)

where η denotes the kernel weights. Other versions of this
approach differ in the constraints: the linear sum, i.e., η ∈ �P;
the conic sum, i.e., η ∈ �P+; or the convex sum, i.e., η ∈ �P+
and

∑P
m=1 ηm = 1. The author in [63] applied a nonlinear

combination that uses nonlinear functions of kernels, e.g.,
multiplication, power, and exponentiation. The introduced
model uses data-dependent combination methods that assign
specific kernel weights for each data instance. By doing so,
it is possible to identify local distributions in the data and
learn proper kernel combination rules for each region.

III. MULTIPLE CHALLENGERS KERNEL RECURSIVE
LEAST-SQUARES (MC-KRLS)
The ALD-KRLS can address both difficulties presented in
kernel machines, the growing kernel matrix, and the over-
fitting problem. By applying a sparsification procedure to
the kernel matrix, it can limit the size of the dictionary and
avoid overfitting, but eventually, the dictionary will reach its
maximum size and will not learn from the new information
received by the model.

The proposed method, named MC-KRLS, is a method
for using multiple ALD-KRLS algorithms or other kernel
machines by adopting the same input but with different dic-
tionaries that are related to each other through their size.
Thus, it is always possible to learn as new information is
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received and to control the size of the dictionaries in the
kernel machines. To reach this result, research efforts have
been focused on when to create a new kernel matrix, how to
compute the combined forecast, and when to delete the kernel
matrix.

A. WHEN TO CREATE A NEW KERNEL MATRIX
The adopted method establishes a dependency between the
kernel matrices, allowing a new matrix to be created when
the previous one reaches a predetermined dictionary size
as defined by the user. For instance, let us consider an
MC-KRLS with three kernels (M3C-KRLS).

The first kernel is created as in the ALD-KRLS algorithm,
but the second kernel is created only after the first kernel
reaches 25% of its dictionary size. The third kernel is created
when the second kernel reaches 15% or any other proportions
set by the user.

B. HOW TO COMPUTE THE COMBINED FORECAST (Ŷ)
The first method used is the arithmetic mean of each kernel
matrix output. This is considered a standard method, and no
acronym is assigned to it. The second method is a weighted
mean of each kernel matrix output as described in (12). The
weighted version is denoted by MC-KRLSW.

Ŷ =
wk1 Ŷk1 + wk2 Ŷk2 + . . .+ wkn Ŷkn

wk1 + wk2 + . . .+ wkn
, (12)

where wkn is the weight associated with the n output kernel,
which is computed as follows:

wki =
1
Ei
/

n∑
j=1

1
Ej
, (13)

where Ei is the absolute error (AE) of the previous forecast
of the kernel matrix i.

Ei = |Y − Ŷki |. (14)

C. WHEN TO DELETE THE KERNEL MATRIX
An adaptive method for dealing with the kernel machines and
choosing the ‘best ones’ is described in this section. The first
approach assumes that when all kernel matrices reach their
maximum size, a counter will start, and when the counter
stops, theMSE is computed. The kernel matrix with the worst
MSE is then deleted. This is the standard method, and no
acronym is given to it.

The second method is similar to the first method, but
instead of computing the MSE when the counter ends, AE is
computed for every iteration. Then, the best kernel matrix,
i.e., with the kernel with the smallest AE, will not suffer any
changes, whereas the other matrices will have their ‘ages’
increased. The matrix that reaches its predefined maximum
age first is deleted.

Life expectancy (LE) is a statistical measure of how long
an organism may live, and at a given age, life is expected to
cease. LE is based on many features, such as the year of birth,

current age, and other demographic factors. A simplified
version of this concept is used here based on two constants
called the aging factor (AF) and weakening factor (WF) [40].

In nature, colony leaders are constantly challenged by
new individuals. Aging facilitates a leader to be replaced
by a younger individual, whereby it is likely to create more
opportunities for diversity and improvements. Inspired by this
phenomenon, this work adapts the aforementioned idea from
nature to the kernel machines and proposes the MC-KRLS
aggregating both AF and WF, resulting in the MC-KRLSA
algorithm.

Aging is not the only feature that composes the LE of an
individual. In this study, WF represents the other features
associated with LE. WF plays a role whenever the kernel (Ki)
cannot find a new result (ŷki (t)) better than the previous result
(ŷki (t − 1)). Thus, even kernels of the same age will have
different LEs and will cease to exist at different moments.
First, the kernel age KAi of Ki is set to zero, and then the
kernel machines follow the rules defined as:

if ŷki (t) is worse than ŷki (t − 1) then (15)

KAi(t) = KAi(t − 1)+ AF +WF else (16)

KAi(t) = KAi(t − 1)+ AF (17)

end if (18)

The proposed algorithm aims to overcome the main lim-
itations of similar approaches in tracking changes in the
underlying stochastic process, as discussed in Section II.
In addition to the number of used kernels (ηK ), its remaining
parameters are as follows: the maximum value reached by the
counter (counter .max), which in this work is set to the same
value as the maximum dictionary size; and when to create a
new matrix, which is investigated for 25%, 50%, 75%, and
100% of the maximum dictionary size (M ). For the sake of
reproducibility of this paper the source codes are available for
download at [66].

Table 1 shows the used acronyms, which comprise a com-
position of MC-KRLS, the number of used kernels, how the
forecast is combined, and the delete method.

TABLE 1. Multiple kernel learning methods used in the study.

IV. CASE STUDY AND APPLICATIONS RESULTS
In this section, the search behavior of MC-KRLS machines
in solving regression problems is evaluated. The case study
is applied to a wind power database and used to predict
(t + 5) minutes ahead. In particular, answers to the following
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two questions are sought: (i) how do multiple challenger
kernel machines work on regression problems, and (ii) how
do the parameters of the multiple challenger model lead to the
best set? All of the algorithms were developed in MATLAB
and executed at the Danmarks Tekniske Universitet (DTU)
High-Performance Computing (HPC) clusters: Central and
Compute.

A. THE DATASET
The dataset is composed of measurements of wind power
generation for every 5 minutes, from 01/01/2011 04:05 to
01/01/2013 04:00, of 23 onshore wind farms [67], resulting
in 210,518 measurements for each farm as provided by the
Australian Energy Market Operator (AEMO). In this particu-
lar study, eight wind farms are chosen. All negative values
are set to zero, and data are normalized within the range
]0,1[. The complete dataset used in this work is available for
download at [68].

B. BENCHMARKS
To perform a comparative study and check the performance
of the proposed method, five models are used as bench-
marks. In addition to the three kernel machines mentioned
in Section II-A, the persistence and the online sequential
extreme learning machine (OS-ELM) are briefly described.

The persistence forecast assumes that the future wind
speed is the same as themost recent measurement. The persis-
tence forecast for a time interval1 ahead is given by Ŷi+1 =
Yi. Sequential implementation of the least-squares solution of
the output weight vector results in the OS-ELM [69], which
uses the recursive least-squares algorithm [70].

C. DEFINITION OF PARAMETERS USED IN THE WIND
POWER FORECAST
The best parameter values are found by using a k-fold
cross-validation procedure with five blocks of 8,421 points,
where four (33,684 points) are used as training sets and one of
them (8,421 points) is always left out to serve as the validation
set, while the remaining data (168,413 points) are used as a
test set to obtain the final evaluation [71]. To make it fair,
the same partitions of the training, validation and testing data
are used when different comparison algorithms are trained on
the dataset. It is observed that there is no rule on data splitting,
just common practices. The minimum percent average root-
mean-square error (RMSE %) is used as the performance
index.

The parameter that controls the dictionary size for each
algorithm determines the computational and memory com-
plexities. For each experiment, this parameter is varied over
a wide range so that the RMSE can be measured. Perfor-
mance curves are used for comparison purposes. Section IV-
D2 presents the curves of the benchmark provided by
ALD-KRLS and their respective MC-KRLS as part of the
analysis of parameters ALD threshold (ν) and the optimal
LAG length X = {X1,X2 . . . ,Xk}.

It is observed that the optimal selection of parameters is
an important open problem in the kernel machine literature,
but it falls outside the scope of this work. The remaining
parameters are chosen by an exhaustive search to optimize
the position of the performance curve, while the results are
listed in Table 2.

TABLE 2. Parameters used in the wind power forecast.

According to Table 2, M is the dictionary size, σ is the
kernel width, c is a regularization parameter, λ is the forget-
ting factor, jitter is noise used to avoid round-off error, sn2
is a noise-to-signal ratio, and NOHN is the number of hidden
nodes assigned.

D. TEST RESULTS
Fig. 1 represents the two experiments in terms of time
series, namely, test case 1 (TC1), which is composed of
single-input and single-output (SISO) and multiple-input and
multiple-output (MIMO) techniques, and test case 2 (TC2),
represented by the MC-KRLS, where the proposed algorithm
with n MIMO kernel machines tracks the results to provide
forecasts for w wind power plants, while an ‘operator’ (OP)
is responsible for combining all of them.

FIGURE 1. Block diagram of all the arrangements to which KRLS
machines are applied during the experiment.

1) TEST CASE 1
Table 3 presents the RMSE (%) of each wind farm. The
last row contains their respective averages. The differences
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between SISO kernel machines are small. However, the ker-
nel machine that uses the SISO ALD threshold as a sparsity
tool is the best kernel machine.

The use of MIMO layouts improves the RMSE (%) when
compared with their SISO counterparts, except for the SW-
KRLS. The MIMO ALD-KRLS proves to be the best kernel
machine again. The use of MIMO for the SW-KRLS presents
slightly higher RMSE(%) when compared with the respective
SISO versions. The KRLS-T shows equal results due to the
round-off error, but the MIMO version presents better perfor-
mances in seven of the eight sites. The exception is wind farm
LKBONNY3, which causes the average to be slightly higher
than that of the SISO version.

The Pearson correlation coefficient (R) is used to show
why some MIMO models achieve better results than those
obtained with SISO models. If R is greater than 0.8, then
the system is described as strongly correlated, whereas it
is described as weakly correlated when R is less than 0.5.
Table 4 presents the results for each coefficient. The last
three rows present a summary of the parameters classified as
strongly, correlated, and weakly correlated. Five of the eight
farms are strongly correlated or correlated with four or more
wind farms.

For all cases in which ν and c > 0.001, there is a sig-
nificant increase in the RMSE (%). Furthermore, in every
case, the smaller the dictionary size and the greater the LAG,
the higher the RMSE (%). Finally, when using the ALD-
KRLS, two time series are strongly affected by the dictionary
size, i.e., HALLWF1 and NBHWF1. The authors of KRLS-T
state that λ is usually sensitive within the range [0.95, 1] [47].
The best RMSE (%) is often obtained for λ = 0.9, as the error
increases with λ.

2) TEST CASE 2
The differences between the ALD-KRLS benchmarks (SISO
and MIMO) and the proposed MC-KRLS models are small.
However, the results achievedwith the introducedmodels are,
in general, better than those obtained with the MIMO ALD-
KRLS, as shown in Table 5. The SW-KRLS and KRLS-T
models now present the same previous behavior observed in
the SISO and MIMO models.

Analogous to what is observed with the ALD-KRLS SISO
and MIMO machines, there is a significant increase in the
RMSE (%) in all cases in which ν > 0.001, but different
behaviors are verified. First, the dictionary size or the number
of LAGs used does not significantly influence the RMSE (%),
thus allowing the use of the smallest dictionary size and the
shorter LAG length. Second, when using the ALD-KRLS,
two time series are significantly affected by the dictionary
size, i.e., HALLWF1 and NBHWF. However, this is not
observed in the case of multiple KRLS. Third, the use of any
of the multiple challenger models shows more stable results
compared with the ALD-KRLS.

Fig. 2 shows the results of MIMO and M3C-KRLSW
ALD-KRLS, which are the best results presented in
Tables 3 and 5. It is observed that the use of multiple kernels

FIGURE 2. Comparison between the MIMO and M3C-KRLSW ALD-KRLS
forecasts for ν = 1.00E-05 and varying the number of LAGs.

minimizes the importance of the number of LAGs for any
ν value.
The SW-KRLS MC-KRLS presents a significant increase

in the RMSE (%) in all cases in which c > 0.001. For all
conditions, the smaller the dictionary size and the greater the
LAG, the higher the RMSE (%). For the KRLS-T, the best
RMSE (%) is usually reached using λ = 0.9, while the error
increases with λ.

The first question raised in Section III can be answered
with the help of Fig. 3, which is used to analyze the behavior
of the RMSE(%) and the need to eventually start a new kernel
machine. The best results of the multiple kernel machines
using different dictionary sizes and triggers to start a new
kernel machine are presented in terms of distinct color scales
for each graph. It is a matrix plot that produces a filled net of
shaded rectangles, where each matrix position corresponds
to one rectangle. The ‘Dictionary size’ axis represents the
maximum number of examples (20, 30, 40, 50, 60, 70) saved
in each kernel dictionary. The ‘Start new kernel’ axis shows
the percentage of the maximum number of examples reached
by a kernel dictionary (25%, 50%, 75%, 100%) before a new
dictionary is created. Finally, the (RMSE(%)) column relates
the color scale with the error value.

The best results for the ALD-KRLSM2C-KRLS are found
to be 75% for dictionary sizes of 20, 30, and 40 as a trigger
to start the new kernel machine and 25% for 50, 60, and 70.
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TABLE 3. Forecast of the benchmark models - RMSE (%).

TABLE 4. Pearson product-moment correlation coefficients.

TABLE 5. Forecast of the models - RMSE (%).

The same behavior is observed in all the other models pre-
sented in this work, as denoted in Table 1. Themultiple kernel
machines that use the SW-KRLS and KRLS-T always create
a new kernel machine when the previous dictionary reaches
25% of its size, independent of the dictionary size.

To answer the second question raised in Section III, two
solutions are presented: the arithmetic and weighted mean.
The weighted version is the best one in 10 of the 12 proposed
models, as observed in Table 5. The only exceptions are
SW-KRLS M3C-KRLS compared with M3C-KRLSW and
SW-KRLS M3C-KRLSAW compared with M3C-KRLSA.

For the third question in Section III, two options are also
presented: one using the MSE and the other the AE. Table 5
shows that there is no difference between the results for the
ALD-KRLS using two kernel machines. When three ker-
nel machines are adopted, the use of MSE provides better
results. For the SW-KRLS using the arithmetic mean, the AE
also presents improved performance. Finally, the KRLS-T
presents better results using the MSE in all proposed models.

Fig. 4 shows the behavior of the RMSE(%) versus the
dictionary size used by the kernel machines. It shows the
best result of the multiple kernel machines using different

dictionary sizes and triggers to start a new kernel machine.
The color scales are different for each graph. Fig. 4 has
the same description as Fig.3. The best results for the
ALD-KRLS M2C-KRLS are found with smaller dictionary
sizes. According to values in the third column, the multiple
kernel machines that use the KRLS-T present similar behav-
ior to those obtained with ALD-KRLS. However, the best
results are always obtained with a larger dictionary size when
using SW-KRLS.

In Fig. 3 and 4, it can be noted that the ALD-KRLS
M2C-KRLS obtains the lowest RMSE (%), mainly when
75% of the dictionary size is set to start a new kernel and it
uses dictionaries with 20 examples, the smallest one in the
range analyzed by this study (20, 30, 40, 50, 60, 70). For
SW-KRLSM2C-KRLSmachines, the best results are usually
25% of the dictionary size with the largest dictionary size
(70). For the KRLS-T M2C-KRLS, the best results are usu-
ally 25% of the dictionary size with the smallest dictionary
size (20). Similar behavior is found when using any machine
listed in Table 1.

To compare computational time was required to run all the
methods in a single machine. The results presented before

VOLUME 9, 2021 104769



E. C. Bezerra et al.: Self-Adaptive Multikernel Machine Based on Recursive Least-Squares

FIGURE 3. Behavior of the RMSE(%) versus when to start a new kernel machine.

FIGURE 4. Behavior of the RMSE(%) versus dictionary size.

TABLE 6. Computation time (s).

were from a HPC consisting of different hardware. Then,
it was defined: (i) The goal of tracking and analyzing the
software metric is to determine the computational time of
each method; (ii) Each benchmark was from the same com-
puter, and how long it took (in seconds) across 10 different
runs; (iii) Table 6 shows the worst times found for each
method using different kernel machines (M = 70, LAG = 8)
for one entire process (33,684 training, 8,421 validation, and
168,413 test points).

The increase of the number of kernel machines directly
affects the time presented between theM2C andM3C groups.
Independent of the method used, the kind of kernel machine
(ALD-KRLS, SW-KRLS, KRLS-T) has a great impact on
the running time. Using the arithmetic means (MC-KRLS)
as reference in all cases the use of the weighted mean (MC-
KRLSW) brought a time increase, the use of the age factor
(MC-KRLSA) increased the execution time but not as much
as the weighted version, actually M3C-KRLSA (SW-KRLS)
had an reduce of 1.33% at execution time. The combina-
tion of both (MC-KRLSAW) shows the highest execution
time as expected, since the increase of lines of codes and
computations.

V. CONCLUSION
A novel and competitive adaptive method that can be used
in any kernel machine for short-term forecasting of wind
power is introduced in this work. This method uses multiple
kernel machines related to each other through the sizes of
the respective dictionaries. A competitive adaptive factor is
aggregated to the problem when all machines reach the max-
imum dictionary size and then the worst kernel is deleted.

Multiple kernel machines have been applied to a dataset of
wind power plants in Australia over a period of two years.

The proposed algorithm creates new kernel matrices as
long as the process continues running, thus identifying
changes in the time series, avoiding the abrupt loss of infor-
mation that typically occurs in tracking methods, and main-
taining a controlled number of examples since there is an
adaptive selection of active kernels. The kernel size is then
fixed rather than limited. The use of the MC-KRLS machine
makes the use of smaller dictionary sizes possible, resulting
in better results and reducing the probability of overfitting.
The susceptibility of the model to the number of LAGs used
is also reduced. The kernel machine chosen impacts greatly
in the computation time. The computation time could be a
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matter during training, validation and test period, however
during regular operation, in the worst result to predictor t+5
minutes was computed in 1, 47 milliseconds.
As expected, there is not a single best performing algo-

rithm for all scenarios. The optimal choice of an algorithm
depends on the range for the target RMSE (%), the available
computational resources, and the particular dataset.

This work was motivated by the need to produce accurate
very-short-term forecasts for one or multiple wind farms.
Future work will focus on extending this approach to other
variables, e.g., temperature, wind speed, wind direction,
among others; additional forecast horizons; investigation of
other kernel machines; and consideration of the development
of other adaptive models, possibly taking into account the
similarity results in addition to the AE or MSE.
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