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ABSTRACT A smartphone contains many critical components that are produced in highly automated
and precisely monitored facilities throughout the complex manufacturing process. Even with the rapid
development in the smartphone manufacturing industry today, the physical buttons are still existing on
the smartphone because of the crucial importance of both in terms of their functionality and role. The
smartphone’s physical buttons are small in size and have non-planar and shiny surfaces that lead to difficulty
in detecting defects not only with human eyes but also with most AOI systems. Besides, most defects are tiny,
with low contrast which is a huge challenge for deep learning models-based defect detection. To overcome
these challenges, we propose a novel framework based on machine vision named highlight defect region
by using higher-order singular value decomposition of wavelet subband-based tensor (HHoWST) for real-
time smartphone’s physical buttons quality inspection. First, a modern image acquisition system is designed
to obtain a high-quality smartphone’s physical button image dataset with a total of 500 images containing
13,472 samples of six defect types. Next, a wavelet subband-based third-order tensor of the smartphone’s
physical button color image is constructed. Finally, higher-order singular value decomposition is proposed to
estimate the components that contain the global illumination information and highlight the defective regions
of the image. The experiments performed on HHoWST images reveal that our proposed method significantly
improves the defect detection efficiency of deep learningmodels, such as SSD, Faster R-CNN, andYOLOv5,
especially the performance in detecting the tiny defect types.

INDEX TERMS Automatic optical inspection, defect detection, higher-order singular value decomposition,
tensor, wavelet transform, deep learning model.

I. INTRODUCTION
In recent years, the smartphone manufacturing industry has
grown rapidly. A smartphone company not only depends on
its own manufacturing alone but also has a lot of suppliers
that it relies on for procuring components for assembly. Each
component of a smartphone has a crucial role in ensuring its
quality. Even though smartphone manufacturers have been
clear that smartphone is being developed with the trend
of all on-screen buttons. However, manufacturers continue
putting physical buttons (hardware keys) in their devices,
such as volume up/down button, side button, ring/silent
switch, etc. These physical buttons have some disadvantages,
such as taking more effort to utilize, be used frequently,
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can’t be changed, moved, or updated. Therefore, the most
important factor of a physical button is durability, which
leads to rigorous requirements in controlling the quality of
the product with the components. Due to the small size
and the non-planar surfaces of the smartphone’s physical
button, the defects existing on the surface of the physical
button cannot be detected simply. Unfortunately, in most
smartphone manufacturers, the visual inspection task is being
conducted by human inspectors. The authors in [1] have
shown that the human visual system declines with dull and
endlessly routine jobs and cannot perform inspection in
unfavorable environments. In order to improve the visual
inspection efficiency, Automatic Optical Inspection (AOI)
systems [2] are widely studied and used in different industrial
fields, such as printed circuit board (PCB) [3]–[6], fabric
[7]–[10], steel [11]–[14], glasses [15], [16], liquid crystal
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displays (LCDs) [17]–[19], and many others. By using AOI,
the inspection time can be reduced, while the accuracy during
the inspection process is increased.

The AOI basic system contains three primary parts:
image acquisition part, image preprocessing part, and defect
inspection part. The image acquisition part includes cameras
and illuminating lights to capture the product images.
Then, the collected images are preprocessed to enhance the
characterizing of defects, such as removing the noise and
non-uniform backgrounds contained in the product images.
Finally, the preprocessed images are used as input of the
defect inspection part to detect and classify defects. In an
AOI system, the image preprocessing part is vital to enhance
the accuracy rate in detection and classification. Since a raw
image acquired from the image acquisition system contains
all kinds of information, some are favorable for the inspection
process, and some are redundant. The favorable information
is the feature of the defect used effectively to improve the
judgment rate in the defect inspection step. On the other
hand, redundant information is the leading cause in reducing
the recognition rate of an AOI system. By using image
processing algorithms embedded in the image preprocessing
part of the AOI system, this favorable information (the defect
feature) can be enhanced, whereas the redundant information
is eliminated. It results in the improvement of the defect
recognition performance of the AOI system. Various methods
have been developed for image preprocessing, which can be
categorized based on the domain in which the raw image is
processed. In this paper, we group these methods into two
primary categories: spatial domain methods and frequency
domain methods.

The spatial domain methods involve many operations such
as spatial filtering and geometric transformations used to
enhance the raw image. By using geometric transformation,
the raw image can be restored and corrected in case of any
presence of geometric distortion by projecting each pixel in
the raw image onto another space. Wang et al. [6] developed
a complete AOI system for drilling investigation in the PCB
industry. Before comparing or matching standard and testing
images, they utilized geometric transformation, including the
calculations of scaling, rotating, and translation to correct the
direction and angle of the testing image. The results indicated
that the proposed AOI system could achieve an accuracy
of tiny size defects in drilling inspection. Besides, image
denoising and filtering methods are frequently applied for the
image containing the ambiguous background, which mainly
causes the false positive rate in the recognition process. Using
image filtering and denoising can reduce noise and enhance
the image for highlighting the important features. Then,
the inspection algorithm can perform more effectively by
using these highlighted features. Huang et al. [20] proposed
a defect identification algorithm using a median filter and
a clustering approach to identify the clustered defect on
the wafer surface. The isolated defective dies on the wafer
samples appear as salt-and-pepper noise, they employed a
median filter to separate the wafer defect clusters from its

isolated defective dies. Then, the nearest-neighbor method
is adopted to identify defective dies associated with various
defect clusters. The results showed that the algorithm can
effectively detect the clustered defects. Besides, since a
cluster is too small, it is treated as noise and removed by
the median filter. Therefore, the algorithm does not mistake
isolated defective dies for defect clusters. Park and Kweon
in [21] proposed a novel filtering method named neighboring
difference filter (NDF) to represent ambiguous defects under
diverse surface illumination conditions of AMOLED sample
images. In the NDF method, the intensity of neighbor-
ing regions is compared with a strategically placed gap
space to accentuate the differences and remove similarities.
Spatial domain methods directly deal with pixel values
that have low computation complexity. However, these
methods do not provide adequate robustness for defect image
enhancement.

The frequency-domain methods used transformations,
such as discrete cosine transform (DCT) [22], discrete
Fourier transform (DFT) [23], and discrete wavelet transform
(DWT) [24], to transform images from the spatial domain to
the frequency domain. In the frequency domain, the image
is separated into different subbands which contain more
detailed components of an image. After processing the image
in the frequency domain, the enhanced image is obtained
by using invert transform to convert the image from the
frequency domain to the spatial domain. Since the solder
joint on a PCB image is highly variant with illumination
variation, the appearance of the same solder joint can be
greatly different. Mar et al. [25] overcame this challenge by
using DCT to normalize the solder joint images to keep them
stable under variant illumination conditions. Meanwhile,
Lin and Ho [26] enhanced the pinhole defects on chips and
wafers to effectively eliminate the global random texture
pattern and emphasize tiny pinhole defects in the enhanced
images. The frequency matrix of an image in the DCT
domain is decomposed to select the best radius of the
sector filter before applying high-pass filtering operations.
The results demonstrated that this method is invariant to
the orientation of the target chip and obtains high accuracy
in pinhole defect detection. To detect visual blemishes of
the curved LED lenses, Chiu and Lin [27] firstly divide
the input image into non-overlapping blocks of the same
sizes and then transform these blocks into the DCT domain
to extract the DCT block’s representative energy features.
Finally, a complex method by combining statistic methods,
grey clustering technique, thresholding methods, is used
on energy features to distinguish real blemished areas and
uniform regions. Wu et al. in [19] used DFT firstly to remove
background textures and eliminate the influence of uneven
illumination of the TF-LCD images. Then, the tiny defect
features of TFT-LCD are highlighted before using the support
vector machine (SVM) algorithm for defect inspection.
Similarly, Tsai and Hung [28] used one-dimensional DFT
to transform the TFT-LCD image to the frequency domain
and then eliminate the frequency components that represent
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FIGURE 1. The complete AOI system architecture for the smartphone’s
physical button inspection.

the periodic pattern to remove the patterned background of
the TFT-LCD image, whereas local anomalies are preserved
for defect inspection on the TFT-LCD panels. Compared to
DCT and DFT, DWT is advantageous in providing a simple
way for multi-resolution analysis. Lin [29] used Haar wavelet
to enhance water-drop defects on the surface of the LED
chip. The LED chip image is decomposed by Haar wavelet
at the first level to extract wavelet characteristics. Then, they
applied the wavelet-based neural network and multivariate
statistical techniques to inspect the defect. These methods
can clarify the features of the defect on the product image.
However, they only focus on different frequency subbands
separately, lead to an unsatisfactory inspection recognition
rate.

In this paper, we propose a complete AOI system, as shown
in Fig. 1, which includes three primary parts for the
smartphone’s physical button inspection. In the first part,
the image acquisition system, we design an effective image
acquisition system to take the smartphone’s physical button
images. By using the designed image acquisition system,
we can capture high-resolution images to make defects
clearer. However, the defect detection and classification
results still do not satisfy our requirements. In the second
part, image preprocessing, based on the combination of
the wavelet transform and tensor theory, we propose a
defect enhancement method called the highlight defect
region by using higher-order singular value decomposition
of wavelet subband-based tensor (HHoWST) to highlight
the defect region on the smartphone’s physical button
image. In the last part, defect inspection, we adopt state-
of-art deep learning models in the defect inspection step
to evaluate the improvement of the defect detection rate.
The conclusion of the quality of the smartphone’s physical
button is based on the manufacturer’s standards. The
experimental results reveal that the detection rate of the
AOI system using our proposed method has significant
improvement. Especially, the recognition rate of the tiny
defects, which are usually challengeable for most AOI
systems.

The rest of this paper is organized as follows.
Section. II presents the image acquisition system to collect
the smartphone button image dataset. Section III details

our proposed method. Section IV presents the experimental
results, and Section V presents the conclusions.

II. THE IMAGE ACQUISITION SYSTEM AND
SMARTPHONE’S PHYSICAL BUTTON
IMAGE DATASET
In this section, we firstly introduce the system architecture of
the smartphone’s physical button inspection equipment and
present appropriate significance regarding the illumination
scheme. Next, the smartphone’s physical button dataset
(DCL-CBI) collected by ourselves is acquired with a total
of 500 images of two smartphone’s physical button types.
Finally, the image properties and the challenges of defect
detection are also discussed.

A. THE IMAGE ACQUISITION SYSTEM
This subsection introduces the components of the proposed
image acquisition system, such as the light source setting,
camera parameter setting, and image capture design. In an
image acquisition system, the lighting setup plays a vital
role in ensuring the quality of the acquired images. When
positive light is incident on an object’s surface, some of the
light gets reflected based on the refractive indices of the
coating material on the object’s surface, angle of incidence,
and medium of the incident light. The light may be reflected
back and forth several times, thus capturing images with
variable qualities. Therefore, resolving the issue of how to
design a suitable image acquisition system for each type of
object is crucial in the AOI system.

In this paper, we design an image acquisition system for
two types of smartphone’s physical buttons, named as volume
up/down button and side button. These physical buttons are
small, which the volume up/down button has a size of 110 ×
25 mm2 and the side button has a size of 165 × 25 mm2.
Besides, physical buttons also have non-planar and shiny
surfaces, which are very sensitive to lighting. To overcome
these difficulties, it is necessary to prioritize the influence
of the light source and the smartphone’s physical buttons
to increase the contrast difference between defects and the
background. Moreover, the light may be reflected back and
forth several times, thus capturing images with variable
qualities. In addition, the quality of the acquired image is
also affected by unexpected lighting from the surrounding.
So, the designed system is placed in a dark room. In addition,
the sample is placed on a holder, which is made of black
fabric to avoid the unexpected lighting reflection from its
surface to the camera. Therefore, the camera only receives
the lighting reflected from the surface of the smartphone’s
physical button. Fig. 2 displays the proposed smartphone’s
physical buttons image acquisition system. As can be seen
in Fig. 2, the camera used in the designed system is BASLER
acA4112-30uc with a fixed focal length lens. During the
image acquiring process, the lens aperture is constantly set to
f/1.4 at the fixed focal length of 35mm. By using the designed
image acquisition system, we can capture high-resolution
images to make defects clearer.
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FIGURE 2. The image acquisition camera system for the smartphone’s
physical button.

FIGURE 3. The smartphone’s physical button images in the DCL-CBI
dataset. (a) The side button images. (b) The volume up/down button
images.

B. SMARTPHON’S PHYSICAL BUTTON IMAGE DATASET
Normally, the smartphone’s physical button is small and has
non-planar and shiny surfaces. Thus, it is very difficult to
detect defects with human eyes. Therefore, image acquisition
is a critical step in the defect inspection system. By using
our proposed image acquisition system, a total of 500 images
from smartphone’s physical buttons provided by a manu-
facturer are captured and constructed a dataset, named as
DCL-CBI dataset. Fig. 3 shows four smartphone physical
button images in the DCL-CBI dataset. The acquired images
are resized to two different sizes, which correspond to two
types of the smartphone’s physical buttons, to reduce the
time processing during the inspection process. In particular,
the images are resized to 1, 000 × 180 pixels for volume
up/down button images and 1, 600 × 200 pixels for side
button images with a 24-bit BMP format. These images
are not only evaluated for obtaining a high defect detection
rate but also reduced in size to decrease the operation time
ensuring synchronization with the factory’s production line.

After the DCL-CBI dataset is constructed by using the pro-
posed image acquisition system, we manually classify based
on the manufacturer’s specifications. As shown in Fig. 4,
the defects are classified into the following six types—white
mist (WM), collapsed side (CS), scratch (SR), pressed mark
(PM), small dot (SD), and pen mark (MK). There are huge
differences among the sizes of these defect types. The size
of the largest defect on the smartphone’s physical button
surface could be 2× 2 mm2, while the smallest defect is less
than 0.1 × 0.1 mm2, such as the SD defect type. Moreover,
a tiny defect presented in a smartphone’s physical button
image may only differ slightly from the surrounding region.

FIGURE 4. The defect types of smartphone’s physical button in the
DCL-CBI dataset. (a) CS. (b) MK. (c) PM. (d) SD. (e) SR. (f) WM.

Besides, the appearance of the defects is not always uniform
on the smartphone’s physical button surface. For example,
the intensities of some SD defects shown in Fig. 4(d) and
SR defects shown in Fig. 4(e) are relatively low. The colors
of the MK defect in Fig. 4(b) and WM in Fig. 4(f) are
partly suppressed by variant illumination of the smartphone’s
physical button surface. And therefore, although using the
specialized image acquisition system, the collected images
still have many challenges to recognize the defect. In this
paper, we propose a method called HHoWST to highlight the
defect region for improving the recognition rate of the AOI
system. The detail is discussed in the next section.

III. HIGHLIGHT DEFECT REGION USING WAVELET
SUBBAND-BASED TENSOR
In this section, the proposed method is presented in detail.
First, the multiresolution analysis using wavelet transform
is briefly discussed. Then, the wavelet subband-based
tensor, which is the combination of the wavelet subbands
representation and tensor theory, and its higher-order singular
value decomposition (HOSVD) [38], are presented. Finally,
the proposed method used to eliminate the components,
which contain the global illumination information and lead
to highlight the defect region, is presented.

A. WAVELET REPRESENTATION
Wavelet transform is a signal transformation, which is
widely applied in digital image processing. Specifically,
the two-dimensional DWT (2D-DWT) has been studied
in the problems of image compression [30], [31], image
enhancement [32], and texture representation [33], [34].
By using the scaling and shifting operations, 2D-DWT can
effectively extract information from signals and represent a
multiscale of signals or functions. The wavelet representation
of a 2D-signal I (x, y) at an arbitraryM− level is given by:

I (x, y) =
∑
k,l

cMk,l8
0
M ,k,l(x, y)+

M∑
j=1

∑
τ∈T

∑
k,l

d j,τk,l9
τ
j,k,l (x, y),

(1)

where j, k ∈ Z denote the scale and translation parameters,
respectively. The approximation coefficients and the detail
coefficients are represented as cMk,l =

〈
I ,80

M ,k,l

〉
and d j,τk,l =〈

I , 9τj,k,l
〉
, where 〈., .〉 denotes the inner product in the

space L2(R2) and τ ∈ T = {1, 2, 3}. A scaling function
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80
M ,k,l(x, y) and three wavelet basis functions9

τ
j,k,l(x, y) are

defined as follows:

80
j,k,l (x, y) = φj,k (x) φj,l (y) , (2)

91
j,k,l (x, y) = φj,k (x) ψj,l (y) , (3)

92
j,k,l (x, y) = ψj,k (x) φj,l (y) , (4)

93
j,k,l (x, y) = ψj,k (x) ψj,l (y) . (5)

The basic functions
{
φj,k

}
and

{
ψj,k

}
are also determined

by φj,k = 2−j/2φ(2−jx − k) and ψj,k = 2−j/2ψ(2−jx − k).
Therefore, a two-dimensional signal can be approximated
by the sum of approximation and detail coefficients at
multiresolution scales. In other words, there is a sequence
of approximations of a given function I (x, y) at different
resolutions [35], [36]. Moreover, these approximations at a
resolution 2j can be defined as the orthogonal projection of
I (x, y) on a subspace Vj that satisfies

· · ·V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · , (6)

with ⋃
j∈Z

Vj = L2 (R) and
⋂
j∈Z

Vj = {0} . (7)

DenoteWj as the complement space of Vj. The information
about the resolution 2j+1 can be decomposed into the
approximation in subspace Vj and the details in the subspace
Wj. To this end, the orthogonal projection in space Vj+1 can
be written as

Vj+1 = V0 ⊕
[
W0 ⊕W1 ⊕ · · · ⊕Wj

]
, (8)

where V0 is the subspace at the coarsest scale and the notation
⊕ is the direct sum operator that satisfies

V0 ∩W0 ∩W1 ∩ · · · ∩Wj = 0. (9)

Hence, by applying 2D-DWT, a given image can be decom-
posed into several multiresolution frequency components
called LLj, HLj, LHj, HHj subbands. The subband denoted
LL corresponds to approximation coefficients, whereas HLj,
LHj, HHj are the detail coefficients, which contain the
changes of images along with vertical, horizontal, and
diagonal directions, respectively. Indeed, the decomposition
into different frequency ranges (subbands) allows to isolate
the frequency components and process each independently
as mentioned in Eqs. (8), (9).

As seen in Fig. 5(b), the Daubechies 2D-DWT decomposes
a smartphone’s physical button image as shown in Fig. 5(a)
at the first level into LL, HL, LH , and HH subbands.
To demonstrate the influence of the relevant information
contained in each subband among such four subbands,
the reconstructed images using only one corresponding
subband (the remains are set to zero) are also depicted in
Figs. 5(c)-5(f). In particular, the LL subband contains a
considerable amount of information of the original image
since the reconstructed image shown in Fig. 5(c) still
retains most of the information related to the illumination

FIGURE 5. Wavelet decomposition and reconstructed images of a
smartphone’s physical button image from the DCL-CBI dataset. (a) A
smartphone physical button image; (b) Four subbands of (a) obtained by
using 2D-DWT at the first level; (c) Reconstructed image using only LL
subband; (d) Reconstructed image using only HL subband,
(e) Reconstructed image using only LH subband; (f) Reconstructed image
using only HH subband.

and structure of the button. In contrast, the reconstructed
images using HL, LH , and HH subbands, as shown
in Figs. 5(d)-5(f), indicate that the middle- and high-
frequency subbands refer to the noise and the detail of the
image structure corresponding to vertical, horizontal, and
diagonal directions, respectively. Indeed, the key features in
an image are represented by the larger coefficients that appear
almost on the low-frequency subband, while the middle-
and high-frequency subband coefficients are quite small and
closer to zero.

By using 2D-DWT as a multiresolution image decom-
position tool, image information can be spread out and
expressed through various frequency subbands separately.
This allows to extract the meaning features from the image
and process them separately for specific purposes. In this
study, we propose a method to construct a tensor called
wavelet subbands-based tensor (WST), which is based on the
combination of the wavelet representation and tensor theory
to express the image information in high-order dimensions.

B. WAVELET SUBBANDS-BASED TENSOR
In this subsection, the WST is introduced. Firstly, the tensor
fundamentals are reviewed, and then theWST construction is
discussed in detail in the next subsection.

1) TENSOR PRELIMINARIES
Tensor [37] is defined as the multidimensional arrays of
numerical values used to represent multidimensional data.
Specifically, it is widely applied in representing color
images, videos, and hyperspectral images through various
data arrangements. To ensure the clarity of the notation,
we first introduce some terminology and notations of tensors
that are used in this paper [38], [39].

i) An N th- order tensor denoted asX is formally defined as
an element of the tensor product of N vector spaces, where
the order N of a tensor is the number of dimensions and
X ∈ RI1×I2×···×IN .

ii) Fibers are the higher-order analog of matrix rows and
columns. A fiber of tensorX can be determined by keeping an
index, whereas fixing others. A third-order tensorX involves
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column, row, and tube fibers denoted as x:ml, xn:l, and xnm:,
respectively.

iii) Slices are two-dimensional portions of a tensor. A slice
is defined by fixing all indices but two. A third-order tensorX
contains slices denoted as Xn::,X:m:, and X::l , which are called
horizontal, lateral, and frontal slices, respectively.

iv) A tensor X ∈ RI1×I2×···×IN has NN ways to transform
its data into a matrix called mode-k unfolding of tensor X
or tensor matricization. It is denoted by X(k), where k ∈
{1, 2, . . . ,N }. In particular, as defined in [39], the element
(i1, i2, · · · , iN ) of tensor X with size (I1 × I2 × · · · × IN )
maps to matrix element (ik , j) of X(k), which is the mode-k
unfolding of tensor X, where j is computed as:

j = 1+
N∑
k=1
k 6=n

(ik − 1)
k−1∏
m=1
m6=n

Im

 . (10)

v) The mode-k product is the result of the multiplication of a
tensor by a matrix in mode-k . The mode-k product X ×k U
of a tensor X ∈ RI1×I2×···×IN with a matrix U ∈ RJ×Ik is a
tensor of size (I1×· · ·×Ik−1×J×Ik+1×· · ·×IN ). Therefore,
we have

(X×k U )i1···ik−1jik+1···iN =
IN∑
ik

xi1i2···iN ujik , (11)

where xi1i2···iN and ujik are the elementwise of X and U ,
respectively.

2) WST CONSTRUCTION
To effectively exploit the relationship between the spatial
information, color channels, wavelet subbands of the smart-
phone’s physical button image, we construct a tensor with
twelve frontal slices denoting twelve wavelet subbands of
three-color channels of the smartphone’s physical button
image. Given a smartphone’s physical button color image
I of size h × w, I is split into Ib, Ig, and I r , which
correspond to the three-color channel images in RGB color
space. By applying the 2D-DWT at the first level, each color
channel image I c, c ∈ {b, g, r} , is decomposed into the
corresponding frequency subbands of size h/2× w/2, which
are denoted as LLc,HLc,LH c, and HH c, as shown in Figs. 6
(b), (c), and (d). At this point, a tensorX ∈ Rh/2×w/2×12 sized
h/2 × w/2 × 12 is constructed by treating each frequency
subband of each color channel to be a frontal slide X::l ,
where l = 1, 2, . . . , 12, of tensor X. The frontal slides X::l
are arranged in groups based on color channels in order of
blue, green, and red channels. In each group, the frequency
subbands are sorted in order of low-, middle-, and high-
frequency subbands. Finally, the WST three-order tensor X
based on the wavelet frequency subbands of color channels is
constructed as demonstrated in Fig. 6(f). The WST as shown
in Fig. 6(f) is represented by a third-order tensor which is
defined by two indices (vertical and horizontal) for spatial
variables and the remaining index for the wavelet subbands

at the first level scale of color channels. Hence, the spatial
information of the given image is represented along vertical
and horizontal axes, whereas the correlations between color
channels and frequency subbands are represented by the
wavelet subbands of the color channels axis. The construction
of WST is summarized in Algorithm 1.

Algorithm 1WST

Input: Color image I ∈ Rh×w size of h× w.
Output: Tensor X ∈ Rh/2×w/2×12.
1. I (c), c ∈ (b, g, r)← split (I ) ;
2. {LLc,HLc,LH c,HH c} ← 2D-DWT (I c) ;
3. Construct tensor X ∈ Rh/2×w/2×12 by

X::l ← {LLc,HLc,LH c,HH c} , l ∈ {1, 2, · · · , 12} ;
4. Return X.

The WST can be decomposed by using higher-order
tensor decomposition methods, such as PARAFAC [40]
or TUCKER [41]. The PARACFAC method is commonly
applied for estimation and signal modeling purposes, as the
data can often be decomposed into individual components
uniquely. Tucker decomposition (or higher-order singular
value decomposition-HOSVD) is a well-known higher-order
tensor decomposition method and more suited for data
compression, tensor approximation, and image enhancement
application. In this paper, we firstly use HOSVD to
decompose the WST into more detailed components. Next,
we concentrate on analyzing them to propose a method to
highlight the defect feature of the smartphone’s button image
in the DCL-CBI dataset to improve the recognition rate in an
AOI system.

C. HIGHER-ORDER SINGULAR VALUE DECOMPOSITION
OF WST (HoWST)
The tensor is expressed as a linear combination of the
outer products in the different modes. In particular, HOSVD
expresses an N -order tensor X ∈ RI1×I2×···×IN as

X = S×1 U (1)
×2 U (2)

×3 · · · ×N U (N ), (12)

or, elementwise, as

xi1i2···iN =
I1∑

j1=1

I2∑
j2=1

· · ·

IN∑
jN=1

sj1j2···jN u
(1)
i1j1
u(2)i2j2 · · · u

(N )
iN jN , (13)

where S ∈ RI1×I2×···×IN is called core tensor and the
matrices U (k)

∈ RIk×Ik , k = {1, 2, · · · ,N } are matrices
containing the basis of the left singular vectors of the mode-
k unfolding matrices X(k) of tensor X. The matrices U (k),
named as inverse factors, can be found directly through the
implementation of singular value decomposition of mode-k
unfolding X(k) as follows:

X(k) = U (k)
∑(k)

V (k)T , (14)

where
∑(k) and V (k) are the singular value matrices and the

right singular vector matrices of X(k), respectively. Besides,

107404 VOLUME 9, 2021



D. B. Giap et al.: Wavelet Subband-Based Tensor for Smartphone Physical Button Inspection

FIGURE 6. (a) An image in the DCL-CBI dataset; (b) Four wavelet
subbands of the blue channel; (c) Four wavelet subbands of the green
channel; (d) Four wavelet subbands of the red channel; (f) The
three-order tensor of (a).

the core tensor S can be determined by

S = X×1 U (1)T
×2 U (2)T

×3 · · · ×N U (N )T . (15)

Therefore, the mode-k unfolding of S can be obtained by

S(k) =
∑(k)

V (k)
(
U (N )

⊗ · · · ⊗ U (k+1)

⊗U (k−1)
⊗ · · · ⊗ U (1)

)
, (16)

where ⊗ denotes the Kronecker product of two matrices.
Finally, the mode-k unfolding X(k) matrix of the given tensor
X can be reconstructed by

X(k) = U (k)S(k)
(
U (N )

⊗ · · · ⊗ U (k+1)U (k−1)
⊗ · · · ⊗ U (1)

)T
.

(17)

As discussed in Sub-section III.B2, given a smartphone’s
physical button color image I of size h × w, the WST of
I is represented by a third-order tensor X ∈ Rh/2×w/2×12,
as shown in Fig. 6(f). WST contains both spatial information,
and correlations between color channels and frequency
subbands of a color smartphone’s physical button image.
WST X includes 12 frontal slices, denoted by X::l , l =
1, 2, . . . , 12. By using HOSVD, X is decomposed into
4 components: three inverse factors U (1),U (2), and U (3) and
core tensor S. The inverse factors and core tensor S are
presented in Fig. 7. Accordingly, inverse factors U (1),U (2),
and U (3) in Figs. 7(a), (b), (c) are matrices of size h/2× h/2,
w/2×w/2, and 12× 12, respectively, whereas core tensor S
is a three-order tensor of size h/2 × w/2 × 12. Therefore,
S also contains 12 frontal slices S::l , l ∈ {1, 2, · · · , 12},
and can be unfolded at mode-k into S(k), k ∈ {1, 2, 3}
matrices. The detailed implementation of applying HOSVD
to decomposeWST (HoWST) is summarized in Algorithm 2.

To determine the specific information carried by HoWST
components, as shown on the right side of Eq. 12, we con-
ducted several experiments on the image in the DCL-CBI

Algorithm 2 HoWST

Input: WST X ∈ Rh/2×w/2×12

Output: Inverse factors U (1),U (2),U (3) and core tensor S
1. X1,X2,X3← unfolding (X) ;
2. get(U (k),

∑(k)
,V (k)) via Eq. (14);

3. get(S(k)) via Eq. (16);
4. S← Reshape (S(k))
4. Return U (1),U (2),U (3),S.

FIGURE 7. The HOSVD components. (a) Inverse factor U (1); (b) Inverse
factor U (2); (c) Inverse factor U (3); (d) Core tensor S.

dataset. The idea is to remove the effect of the investigated
component in the result tensor reconstructed by using
Eq. (17). As mentioned in Eq. (12) and Eq. (13), the given
tensor can be expressed by the linear combination of the outer
products of the basis vectors. Therefore, the investigation
of the HoWST components can be conducted by alternately
replacing the core tensor S with the all-one tensor and
inverse factors U (i), i = 1, 2, 3 by the all-one matrices,
whereas keeping the others. Thus, the reconstructed tensor
is the combination of all HoWST components except the
investigated component. Recalled that an all-one matrix is
a matrix in which all values are 1. Similarly, the all-one
tensor is a tensor in which all frontal slices are all-one matrix.
By replacing one-by-one U (1), U (2), U (3), and S with all-
one matrix and all-one tensor respectively, the reconstructed
tensors denoted as XU (1) , XU (2) , XU (3) , and XS can be
expressed elementwise respectively as

x(u1)i1i2i3 =
I1∑

j1=1

I2∑
j2=1

I3∑
j3=1

sj1j2j3u
(2)
i2j2
u(3)i3j3 , (18)

x(u2)i1i2i3 =
I1∑

j1=1

I2∑
j2=1

I3∑
j3=1

sj1j2j3u
(1)
i1j1
u(3)i3j3 , (19)

x(u3)i1i2i3 =
I1∑

j1=1

I2∑
j2=1

I3∑
j3=1

sj1j2j3u
(1)
i1j1
u(2)i2j2 , (20)
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FIGURE 8. The reconstructed image of Fig. 6(a) by replacing WST’s HOSVD
components with all-one matrix or all-one tensor, respectively.
(a) Replacing U (1) with all-one matrix; (b) Replacing U (2) with all-one
matrix; (c) Replacing U (3) with all-one matrix; (d) Replacing S with
all-one tensor.

x(S)i1i2i3 =
I1∑

j1=1

I2∑
j2=1

I3∑
j3=1

u(1)i1j1u
(2)
i2j2
u(3)i3j3 . (21)

Fig. 8 demonstrates the result images reconstructed from
XU (1) , XU (2) , XU (3) , and XS of the given image in Fig. 6(a).
As shown in Figs. 8(a) and 8(b), the images reconstructed
without the effect of U (1) or U (2) by replacing U (1) or
U (2) with all-one matrix, still keeps the color information
along with vertical and horizontal directions. Nevertheless,
the structure of the smartphone’s physical button image is
destroyed completely. Hence, U (1) and U (2) contain most
structure information of the given image. Similarly, as seen
in Fig. 8(c), the color of the reconstructed image withoutU (3)

is removed completely, and the image is converted to a gray
image. Furthermore, a small amount of structure of the image
is also discarded. Thus, U (3) does contain not only the color
information but also a small amount of information related
to the structure of the image. In Fig. 8(d), the structure and
color information of the image is mostly removed. Therefore,
the core tensor S contains a part of information related to the
color and structure of the image. Thus, we analyze in more
detail the effectiveness of global illumination affected by core
tensor S and inverse factor U (3).

Next, the core tensor S is further analyzed to investigate the
detailed information carried by its components. In particular,
to understand the specific information contained in each
frontal slice S::l , l = {1, 2, · · · , 12} of S, a new core tensor
denoted as Sf , f = {1, 2, · · · , 12} is constructed by keeping
the coefficients of the f th frontal slice while the remaining
slices are set as zero. Therefore, Sf contains frontal slices S ′::f ,
where

S ′::f =

{
S::l, if f = l
0, otherwise.

(22)

Without loss of generality, a tensor denoted as XSf is
reconstructed from the core tensor Sf and the inverse factors
U (1), U (2), and U (3), and the image corresponding to tensor
XSf is also reconstructed by 2D-iDWT and denoted as
ISf , f = 1, 2, · · · , 12. Fig. 9 shows the reconstructed
smartphone’s physical image from the given images as shown
in Fig. 6(a). Fig. 9(a) presents the reconstructed image by
using only the first frontal slice of the core tensor S and the
remaining frontal slices are set to zero matrices. As seen,
the reconstructed image still keeps global illumination of the

FIGURE 9. The reconstructed images of Fig. 6(a) by keeping only a frontal
slice of core tensor and setting the remaining frontal slice to 0 matrices.
From (a) to (l) show the reconstructed images corresponding to a frontal
slice from 1st to 12th frontal slice.

original smartphone’s physical button image. Figs. 9(b)-9(c)
show the reconstructed images based on the second or third
frontal slices of the core tensor S. As seen in Figs. 9(b)-9(c),
the global illumination has been removed, the defect regions
on the smartphone’s physical button image have been
highlighted. Figs. 9(d)-9(l) show the reconstructed images by
using only one frontal slice, from 4th to 12th frontal slices in
the core tensor S. As seen, the last nine frontal slices carry
less lighting and color information, while mainly contain
information regarding the structure detail and noise of the
image along with various directions.

We continue analysis more detail on the elements of
the first frontal slice matrix. The element values of the
first frontal slice matrix are large, so we do experiments
by keeping only the maximum value of the first frontal
slice matrix while the remaining values are set to 0. The
reconstructed image is shown in Fig. 10(b). As seen,
the maximum value of the first frontal slice matrix still
maintains the global illumination on the surface of the
smartphone’s physical button image. Fig. 10(c) shows the
reconstructed image of Fig. 10(a) by setting the maximum
value of the first frontal slice matrix to 1 and keeping the
remaining values. As seen, the global illumination on the
surface of a smartphone’s physical button image has been
estimated. Therefore, the defect region can be highlighted by
eliminating the first frontal slice and keeping the remaining
frontal slices to remove the influence of global illumination.

The relevant information carried by the subcomponents
of U (3) is further analyzed in detail by fixing the core
tensor S, inverse factors U (1) and U (2) but changing U (3).
To understand the specific information contained in each
row of the inverse factor matrix U (3), we fix the values
of a row and set the remaining rows to 0. The modified
U (3) matrix based on values of the jth row denoted as U (3)

f ,
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FIGURE 10. Analyzing the effect of the maximum element of the first
frontal slice matrix. (a) Three original images; (b) The reconstructed
images by keeping only the maximum value of the first frontal slice
matrix and the remaining values are set to 0; (c) The reconstructed image
by setting the maximum value of the first frontal slice matrix to 1 and
keeping the remaining values.

FIGURE 11. The reconstructed images of Fig. 6(a) by keeping a row of
U (3) and setting the remaining rows to 0. From (a) to (l) show the
reconstructed images corresponding to a row from 1st to 12th row.

f = 1, 2, · · · , 12, is determined as

U (3)
f=1,2,··· ,12 (i, j) =

{
U (3) (i, j) , if i = f
0, otherwise.

(23)

The reconstructed images based on theU (3)
f , the core tensor

S, the remaining inverse factors U (1) and U (2), denoted as

IU (3)
f
, are shown in Fig. 11. In particular, Figs. 11(a)-11(d)

present the reconstructed images IU (3)
f
, f = 1, 2, 3, 4, based

on the 1st, 2nd, 3rd, and 4th rows, which mostly retain the
information related to the blue color channel. Fig. 11(a)
shows that the 1st row ofU (3) contains the global illumination
of the blue color channel, whereas images IU (3)f

, f = 2, 3, 4,

as shown in Figs. 11(b)-11(d), retain the detailed information
along with horizontal, vertical, and diagonal directions of the
blue channel of the given image, respectively. Thus, the 1st-
4th rows can reconstruct the blue channel image information
corresponding to the information that is reconstructed by
the wavelet subbands LLb, HLb, LHb, and HHb of the
blue channel image. Likewise, Figs. 11(e)-11(h) present the
resulting image based on the 5th-8th rows of U (3), which are
referred to the information of the wavelet subbands LLg,HLg,
LHg, and HHg of the green channel image. Figs. 11(i)-11(l)
present the reconstructed image based on the 9th-12th rows
of U (3) which are referred to the information of the wavelet
subbands LLr , HLr , LH r , and HH r of the red color channel
image of the given image. Figs. 11(e) and 11(i) show that the
5th and 9th rows of U (3) contain the global illumination of
the green and red color channels, respectively. So, we focus
on the 1st, 5th, and 9th rows of U (3) to eliminate global
illumination of the original smartphone’s physical button
image to highlight the defect region.

We also continue analysis more detail on the effect for
the 1st, 5th, and 9th rows of U (3) by keeping a value of
these rows and setting the remaining values of U (3) to 0.
Fig. 12 presents the reconstructed images of Fig. 6(a) by
keeping one value of a row (one of 1st, 5th, and 9th rows)
and setting the remaining values of U (3) to 0. Fig. 12(a)
shows twelve reconstructed images by keeping one element
of the 1st row and the remaining values of U (3) set to 0.
Fig. 12(b) shows twelve reconstructed images by keeping
one element of the 5th row and the remaining values of U (3)

set to 0. Similarly, Fig. 12(c) shows twelve reconstructed
images by keeping one element of the 9th row and the
remaining values of U (3) set to 0. As seen, the first values
of these rows, such as U (3)(1, 1), U (3)(5, 1), and U (3)(9, 1),
contain the color channel information on the entire surface
of the smartphone’s physical button, whereas the other
values keep the illumination on the defect region. Therefore,
we estimate the first element of the 1st, 5th, and 9th rows of
U (3) to remove the global illumination of the smartphone’s
physical button image. The defect region is highlighted by
estimating the values on the first frontal slice of core tensor S
and the values of the 1st, 5th, and 9th rows of U (3). The detail
is discussed in the next subsection.

D. HIGHLIGHT DEFECT REGION
The lighting plays an important role to highlight the defects
during the smartphone’s physical button image acquiring
process. However, different types of defects will have
different reflection lighting, lead to the difficulty to highlight
all types of defects on the smartphone’s physical button
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FIGURE 12. The reconstructed images by keeping one element and setting the remaining elements of U (3) to 0. (a) Keeping one element on 1st row;
(b) Keeping one element on 5th ro; (c) Keeping one element on 9th row.

image. By using a specialized camera system as mentioned in
Section. II, the defect which is very sensitive to the lighting,
such as CS type, can be captured. However, the defect
appearing on the rest of the sample is harder to determine
since the lighting is less reflected from this surface area to
the camera.

Without loss of generality, from a given smartphone’s
physical button color image I of size h × w, a WST
X ∈ Rh/2×w/2×12 is first constructed by applying
Algorithm 1. Then, X = {X::l, l = 1, 2, · · · , 12}, where
X::l are frontal slices of X, is decomposed by HoWST
to obtain inverse factors U (1), U (2), U (3), and core tensor
S = {S::l; l = 1, 2, · · · , 12} by applying Algorithm 2.
Our purpose is to remove the global illumination of the
smartphone’s physical button image and highlight the defect
region automatically. In this study, we focus on values on the
first frontal slice of the core tensor S and the values of the 1st,
5th, and 9th rows of U (3). As discussed in subsection III.C,
the core tensor S contains a part of information related to
the color and structure of the image. Besides, the maximum
value of the first frontal slice matrix contains the global
illumination on the surface of the smartphone’s physical
button image. When setting the maximum value of the first
frontal slice matrix to 1 and keeping the remaining values,
the global illumination on the surface of a smartphone’s
physical button image has been estimated. However, some
structure information of the image is also removed, as shown
in Figs. 10(b)-10(c). Therefore, to maintain the structure and
remove the global illumination of the smartphone’s physical
button image, we divide values of the first frontal slice of the
core tensorS by itsmaximumvalue. This division remains the
structure of the image because this transform is linear. Thus,
the maximum of the first frontal slice of the core tensor S is

calculated as

mS(1) = max
(
sij1
)
; i = 1, 2, · · · ,

h
2
; j = 1, 2, · · · ,

w
2
.

(24)

The coefficients of the first frontal slice S::1 of the core
tensor S, denoted as sij1, are updated by dividing these
coefficients by mS(1) as follows,

s(u)ij1 =
sij1
mS(1)

; i = 1, 2, · · · ,
h
2
; j = 1, 2, · · · ,

w
2
, (25)

Then, the updated core tensor S(u) based on the updated
first frontal slice, denoted as S(u)

::1 , is obtained as

S(u) =
{
S(u)
::1 , S::2, S::3, · · · , S::12

}
. (26)

For the effect of U (3), the first values of the 1st, 5th,
and 9th rows of U (3) contain the most color information
of three color channels of the image and the remaining
values contain the most illumination of the defect region.
U (3) represents the correlations among color channels by
arranging the wavelet subbands of the color channels axis.
Thus, changing values of U (3) can convert the illumination
of the image. So, we estimate the first values of the 1st, 5th,
and 9th rows of U (3) by subtracting values of the 1st, 5th,
and 9th rows of U (3), denoted as U (3)(1, 1), U (3)(5, 1), and
U (3) (9, 1), from the mean value of these three values. The
computing of mean value also maintains the relationship of
three color channels of a smartphone’s physical button image.
The mean value of U (3)(1, 1), U (3)(5, 1), and U (3)(9, 1) is
calculated as

µ =
1
3

(
U (3) (1, 1)+ U (3) (5, 1)+ U (3)(9, 1)

)
, (27)
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and we obtained the updated inverse factor U (3)
(u) as

U (3)
(u) (i, j)j=1,2,··· ,12 =

{
U (3) (i, j)− µ, if i = 1, 5, 9
0, otherwise.

(28)

To compute the updated color smartphone’s button image
based on the updated core tensor S(u) and inverse factor U (3)

(u) ,
we first transform the core tensor S(u) into mode-k unfolding
S(u)(k) , k = 1, 2, 3. Then, the mode-k unfolding X (u)

(k) of the
updated tensor, denoted as X(u), is obtained by using one of
the following three equations:

X (u)
(1) = U (1)S(u)(1)

(
U (3)
(u) ⊗ U

(2)
)T
, (29)

X (u)
(2) = U (2)S(u)(2)

(
U (3)
(u) ⊗ U

(1)
)T
, (30)

X (u)
(3) = U (3)

(u) S
(u)
(3)

(
U (2)
⊗ U (1)

)T
, (31)

where ⊗ denotes the Kronecker product. Updated tensor
X(u)

=

{
X (u)
::l , l = 1, 2, · · · , 12

}
, where X (u)

::l are frontal

slices of X(u), is constructed by reshaping one of mode-
k unfolding X (u)

(k) , k = 1, 2, 3. Then, the updated wavelet
subbands are obtained by separating the frontal slices of
tensor X(u) as follows:{

LLcu,HL
c
u,LH

c
u,HH

c
u
}
c∈{b,g,r}← X (u)

::l,l=1,2,··· ,12. (32)

The updated color channel images denoted as I cu ,
is reconstructed by applying 2D-i DWT of updated wavelet
subbands

{
LLcu,HL

c
u,LH

c
u,HH

c
u
}
c∈{b,g,r}. Finally, merging

three updated color channel images I cu , c ∈ {b, g, r} to obtain
the updated image denoted as IH , which removes the global
illumination on the surface of the smartphone’s physical
button and highlights the defect region. Fig. 13 illustrates
the results of using the proposed method in the DCL-CBI
dataset. As seen, the illumination intensities of an SR defect
and several SD defects appearing on the surface of the button
as shown in Fig. 13(a) are relatively low. It leads to the
low contrast of these defects compared to the background
of the button. In contrast, the appearance of these defects
is clearer, and the contrast is improved after applying
the proposed method, as depicted in Fig. 13(b). Similarly,
the color of the defect on the button surface in Fig. 13(c) is
completely suppressed by the unexpected illumination effect.
The color information of this defect is recovered sufficiently
by applying the proposed method, as shown in Fig. 13(d).
Then, the defect can be easily classified as the MK defect,
whereas its appearance in the raw image is not clear, and it
leads to a false decision in the classification process. The
efficiency of the proposed method is also demonstrated in
Figs. 13(f) and 13(h), which are the result images of the
proposed method for raw images in Figs. 13(e) and 13(g),
respectively. As seen, the background of the button surface
is brightened up after applying the proposed method, while
the color of the MK defects existing on the button surface
is recovered. Moreover, the color of these defects is more
uniform between the dark and bright areas. Therefore,

by applying the proposed method, the global illumination
has been removed, the defect regions on the smartphone’s
physical button image have been highlighted. In our proposed
method, the Daubechies wavelet D4 transform is used for
both the WST tensor constructing and reconstructing. The
highlight defect region on the smartphone’s physical button
image by applying HOSVD of WST (HHoWST) is briefly
expressed in Algorithm 3.

Algorithm 3 HHoWST

Input: Smartphone’s physical button image I ∈ Rh×w

Output: Highlighted defect region image IH ∈ Rh×w

1. X ∈ Rh/2×w/2×12
← Algorithm 1 (I );

2.
{
U (1),U (2),U (3),S

}
← Algorithm 2 (X);

3. mS(1)← Calculate the maximum coefficient of
the first frontal slice S::1 of S via Eq. (24);

4. S(u)
::1 ← Update first frontal slice S::1 via Eq. (25);

5. S(u)← Update core tensor S via Eq. (26);
6. µ← Calculate mean value of U (3)(1, 1), U (3)(5, 1),

and U (3) (9, 1) via Eq. (27);
7. U (3)

(u) ← Update inverse factor U (3) via Eq. (28);

8. S(u)(k) ← Transform S(u) into mode-k unfolding;

9. X (u)
(k) ← Calculate mode-k unfolding of the updated

tensor via Eqs. (29) - (31);
10. X(u)

=

{
X (u)
::l,l=1,2,··· ,12

}
← Reshape

(
X (u)
(k)

)
to get

frontal slices of the updated tensor;
11.

{
LLcu,HL

c
u,LH

c
u,HH

c
u
}
c∈{b,g,r}← Update wavelet

subbands via Eq. (32);
12. I cH ← 2D-iDWT

({
LLcu,HL

c
u,LH

c
u,HH

c
u
}
c∈{b,g,r}

)
;

13. IH ←Merge
(
IbH , I

g
H , I

r
H

)
;

14. Return HHoWST image.

We used HHoWST to highlight the defect region on the
smartphone’s physical button surface image automatically.
The effectiveness of the proposed method is discussed in the
next section.

IV. EXPERIMENTAL RESULT AND DISCUSSION
In this section, to illustrate the effectiveness of the HHoWST
method on defect detection tasks, the evaluation of the
experiments adopts color smartphone’s physical button
images obtained by our lab namely the DCL-CBI dataset. For
the defect detection task, the state-of-the-art object detection
deep learning models SSD [42], Faster R-CNN [43], and
YOLOv5 [44], are used to evaluate the accuracy of the
defect detection task. Besides, to demonstrate the efficiency
of the proposed HHoWST method, we also did more exper-
iments to compare with a method named adaptive singular
value decomposition in the wavelet domain (ASVDW) by
Wang et al. [32]. ASVDW is an effective image enhancement
method that is adaptively computed based on the distributions
of the brightness pixels in the three color channels of the
colored image and the correlations among their wavelet sub-
bands. Since the illumination of many defects existing on the
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FIGURE 13. Result images are obtained by using the proposed method. The first column shows the original images in the DCL-CBI dataset.
The second column shows the results of our method.

FIGURE 14. The result images by using the proposed HHoWST method and ASVDW method. (a) Two original images from the DCL-CBI dataset.
(b) ASVDW image; (c) HHoWST images.

surface of the smartphone’s physical button is relatively low,
it can be enhanced by usingASVDW.Therefore, the proposed
HHoWST method and ASVDW method are both adopted
on the color smartphone’s physical button images to get
the highlight defect region images and the illumination-
compensated images, respectively. Then, deep learning
models are used to detect the defects on original, ASVDW,
and HHoWST images for comparison. The experiments in
this paper were implemented on a workstation with an Intel
Core i7-9700, RAM32GB, a single GPUNVIDIAGTX1660
SUPER on Windows 10.

In our dataset, a total of 500 images of the smartphone’s
physical buttons provided by a manufacturer are captured
by our designed image acquisition system, as discussed in
Section II. A. There are two types of smartphone’s physical
buttons, one is the volume up/down button with a size of
110 × 25 mm2 and the other is the side button with a size
of 165 × 25 mm2. The volume up/down button type has
327 images sized 1, 000 × 180 pixels and the side button
type has 173 images sized 1, 600× 200 pixels. Based on the
manufacturer specification, we manually classify the defects
into the following six classes WM, CS, SR, PM, SD, and
MK. A total of 13,472 defects are manually labeled, as shown
in Table 1.

TABLE 1. Number of defects in the DCL-CBI dataset.

There are several challenges to this dataset. First, the size
defects have a large difference. The largest defect has a size
of 2× 2 mm2, while the smallest defect has a tiny size that is
less than 0.1× 0.1mm2. Similarly, the number of defects also
has a large difference, while the SD type has 9,505 samples,
the WM type has only 36 samples. Besides, the contrast
difference between the defects and background is low, such
as SD and SR defect types. Moreover, MK and WM defect
types are partially suppressed by the variant illumination of
the smartphone’s physical button surface. To overcome these
challenges, we applied our HHoWST method to estimate
the global illumination on the smartphone’s physical button
surface, thereby clarifying the error areas. Besides, we also
used ASVDW to enhance the smartphone’s physical button
images in the DCL-CBI dataset. The result images by using
HHoWST and ASVDW methods are shown in Fig. 14.
As seen in Fig. 14(b), the compensated image of the two
original images in Fig. 14(a) are enhanced after applying
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ASVDW. However, since the ASVDW method is a global
enhancement method, both background and defect regions
are enhanced. On the other hand, the global illumination
in the HHoWST images has been removed and the defect
regions on the smartphone’s physical button image have been
retained and highlighted, as shown in Fig. 14(c).

The SSD is a compact CNN network and more suitable
for detecting large objects, while it is not appropriate for
detecting small objects. In this study, we used the SSD model
to demonstrate the effectiveness of the proposed method in
improving the detection rate for the small defect types, such
as SD or PM defect types. The input image of the SSD
network used in the experiment was resized to a size of
300 × 300 pixels and the learning rate was set to 0.001
during the training process. The backbone network used
in this network is VGG16 [45], which was pre-trained by
the ImageNet dataset [46] to reduce the convergence time
of the training process. Compare to the previous YOLO
versions, YOLOv5 is extremely faster and lightweight, while
it can achieve the same accuracy as other benchmarks. The
input image of the YOLOv5 model was set to a size of
1, 280 × 1.280 pixels during the experiments. In contrast
to the SSD model, Faster R-CNN uses the RPN network
to predict the region containing the objects. Therefore,
although this network costs much more time than SSD and
YOLOv5 due to its larger architecture, it performs better in
detecting small objects. In this study, we alternately used
VGG16, ResNet101 [47], and MobileNet [48] as the back-
bone network of the Faster R-CNNmodel.While VGG16 and
ResNet101 backbones perform better than the MobileNet
backbone in extracting the feature of the image, it costs
more time than using the MobileNet backbone, which is a
small network and widely applied in real-time applications.
Similar to the SSD network, the backbone networks used in
Faster R-CNN were pre-trained on the ImageNet dataset to
reduce the training time. The learning rate of Faster R-CNN
was fixed at 0.001 during the training process. The CNN
networks were trained by 100,000 iterations and monitored
by checkpoints. Accordingly, the trained weights having the
lower validation loss have been saved, the best weights were
used for evaluating the test dataset. For training the DCL-CBI
dataset with these deep learningmodels, we used 75% images
for training and 25% remaining images for validation.

In this study, the mean average precision (mAP) is
adopted as the primary metric to evaluate the effectiveness
of recognition rate and determined as follows:

mAP =

∑N
i=1 APi
N

, (33)

whereN is the number of defect classes, while AP value is the
average precision of the class i and calculated by the precision
and recall rate as

AP =
Precision+ Recall

2
, (34)

where Precision and Recall rates are determined as follows:

Precision =
TP

TP+ FP
, (35)

Recall =
TP

TP+ FN
, (36)

where TP, FP, TN , and FN denote the true positive, false
positive, true negative, and false-negative rates, respectively.

The detection rates of the original images, ASVDW images
and the HHoWST images by using different deep learning
models with different backbones are illustrated in Table 2.
Firstly, the effectiveness of the proposed method is evaluated
by comparing the mAP values of the networks on the original
images and HHoWST images. As seen, the mAP values
of the network’s training and evaluation on the HHoWST
dataset are higher than the mAP values of the network’s
training and evaluation on the ASVDW images and original
dataset. SSD is a compact network and it is not suitable
for recognizing small objects. Therefore, SSD’s recognition
performance on the original images is only 85.9% for
mAP. By using the SSD model, the mAP is significantly
improved by 4.7% after applying our proposed method,
while the improvement by using ASVDW is 0.8%. Similarly,
by using the HHoWST method to highlight defect regions,
the mAP of the YOLOv5 is increased by 1.3% from 83.7%
to 85.0%. By using the ASVDW method to enhance images,
the mAP of the YOLOv5 is improved 0.49% compared to the
original images. The Faster R-CNN is a large network and
it costs much more time during the training and evaluating
process. However, the Faster R-CNN performs better than
SSD and YOLOv5 networks in detecting the button defect.
In particular, the mAP values of the Faster R-CNN model
using VGG16 and ResNet101 as the backbone networks
achieve 90.47% and 95.16%, respectively, for the original
dataset. After applying ASVDW, the mAP of this model
is increased by 0.65% and 0.01%, respectively. However,
when applying Faster R-CNN model on HHoWST images,
the mAP values are improved by 2.04% and 0.17%, for
VGG16 and ResNet101 backbones, respectively. Although
MobileNet is a small network, the mAP is also improved by
0.35% from 81.26 % to 81.61% on the HHoWST images
compared to the original images, while the improvement is
only increased by 0.13% when applying ASVDW to enhance
the images.

One of the most challenges in defect detection is that the
size of the defect is tiny. In the DCL-CBI dataset, most SD
and PM defects are tiny. However, the number of SD and
PM defects is large when compared to other defects. The
average precision rates of this defect type in all experiments
are lower than the average precision rates of other defects,
lead to reducing the mean average precision rates of the
models. The major cause of the lower average precision
rates is that the performance of the deep learning models
suffers the low recognition rate from the small size objects,
especially the SSD model. By highlighting the defect region
by using our proposed method, the average precision rates
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TABLE 2. mAP and recognition rate (%) of the CNN networks evaluating on the original and preprocessed datasets.

of tiny defects, such as SD and PM defects, are improved
significantly. In particular, the average precision rates of SD
and PM by using the SSD model on HHoWST images are
improved by 12.6% and 16.8% comparing to the original
images, respectively. Similarly, the average precision rates
in the YOLOv5 model for SD and PM defect types of the
HHoWST images are also increased by 6.4% and 0.7%. The
performance of the Faster R-CNN in detecting the tiny defects
is better than the SSD and YOLOv5 models with VGG16 and
ResNet101 as the backbone networks. However, the average
precision rates of SD and PM defects by these models are
still significantly lower than other defects. By using the Faster
R-CNN with VGG16 backbone for the HHoWST images,
the average precision rates of SD and PM defect types are
improved by 1.36% and 2.35%, in comparison with the
original images, respectively. Similarly, the average precision
rates are increased by 0.34% and 0.03% for the Faster R-CNN
using ResNet101 as the backbone network with our proposed
method. The performance of the Faster R-CNN network
using MobileNet as the backbone network in the detection
of tiny defects is lower than other networks. The average
precision rates of SD and PM defects are low and influence
the mean average precision of the network. After using our
proposed method to highlight the defect region, the average
precision rates of SD and PM defects are improved by 1.84%
and 2.37%, respectively. Therefore, after using the proposed
method, the button defect is highlighted, which increases
the overall recognition rate of the AOI system significantly.
Especially, the tiny defect remains a challenge for any AOI
system due to its less information about the size, shape,
or color than other defects. The recognition rate of this defect

type can be improved after using our proposed method to
enhance the feature.

To demonstrate more effectiveness of the proposed method
in improving the recognition rate of an AOI system for
tiny defects intuitively, the recognition result of the original
images and the HHoWST images by the SSD, Faster
R-CNN, and YOLOv5 model are further compared. Fig. 15,
Fig. 16, and Fig. 17 present the smartphone’s physical
button defects detection results by using the SSD model
with VGG16 backbone, Faster R-CNN model with VGG16
backbone, and YOLOv5 model, respectively. The detection
results on the original images are shown in Fig. 15(b),
Fig. 16(b), and Fig. 17(b), respectively. As seen, all three
deep learning models cannot detect some tiny defects on the
original images, which are indicated by the red arrows in
Fig. 15(b), Fig. 16(b), and Fig. 17(b), respectively. However,
all three deep learningmodels can detect effectively these tiny
defects on the HHoWST images, as illustrated in Fig. 15(c),
Fig. 16(c), and Fig. 17(c), respectively. Therefore, after
preprocessing the smartphone’s physical button images by
the HHoWST method, deep learning models have good
performance in detecting tiny defects, such as SD and PM
defect types.

Among CNN networks used to evaluate the performance
of the proposed method, the SSD network has the largest
improvement in recognition rate than others when using our
proposed method. Therefore, the dependence of the average
precision on the intersection over the union (IoU) value of
the button defect recognized by the SSD network is further
discussed. The IoU is defined as the ratio of the overlap area
over the union area between the predicted bounding box and
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FIGURE 15. The defect detection results on the DCL-CBI dataset by the SSD model with VGG16 as the backbone network. (a) Two original images
from the DCL-CBI dataset. (b) The detection results on the original images; (c) The detection results on the HHoWST images.

FIGURE 16. The defect detection results on the DCL-CBI dataset by the Faster R-CNN model with VGG16 as the backbone network. (a) Two original
images from the DCL-CBI dataset. (b) The detection results on the original image; (c) The detection results on the HHoWST images.

FIGURE 17. The defect detection results on the DCL-CBI dataset by the YOLOv5 model. (a) Two original images from the DCL-CBI dataset. (b) The
detection results on the original images; (c) The detection results on the HHoWST images.

the ground-truth bounding box as follow

IoU =
Area of Overlap
Area of Union

. (37)

Therefore, the change of the IoU value is the main
cause of the change in the recognition rates. Especially,
the recognition rates of tiny defects are very sensitive to
the change of the IoU value. In addition, using the SSD

network, which suffers many challenges from tiny defects,
may increase the sensitivity of the recognition rate to the IoU
value. Fig. 18 shows the changes in the average precision
value evaluated on the original images (the solid line) and
HHoWST images (the dotted line) upon the change of IoU
value. Accordingly, the values of the average precision in
the defect detection rate on HHoWST images are always
larger than the average precision values evaluated on the
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FIGURE 18. The dependence of the average precision on the IOU value of
the button defects recognized by the SSD network.

original images. Especially, the difference between the
average precision values of SD and PM defects evaluated on
the original images and the HHoWST images is relatively
large in the range of IoU of 0.26 - 0.62 for SD defect, and
0.35 - 0.7 for PM defect. Moreover, the average precision
of WM defect of the original images decreases when the
IoU value reaches 0.8, while HHoWST images still maintain
the average precision of detection rate at 100% until the
IoU value reaches 0.88. Therefore, the increment of the IoU
value reduces the average precision of the detection rate of
the button defects, especially the tiny defects. Highlighting
the defect regions by our proposed method can significantly
reduce the effect of the IoU value on the recognition rate
of deep learning models. In addition, compared to the small
size defects, the defects with the larger size, such as WM
or MK defects, are less impacted on the change of the IoU
value when IoU is less than 0.8. However, once the IoU value
reaches a larger value, the recognition rate of the button defect
is decreased rapidly. The recognition rate of these defect types
could be maintained with high values when the IoU value
increases by using our proposed method to highlight defect
regions.

V. CONCLUSION
This paper proposed a novel framework based on machine
vision named HHoWST for real-time smartphone’s physical
buttons quality inspection. First, a modern image acquisition
system is designed to obtain a high-quality smartphone’s
physical button image dataset with a total of 500 images,
which contain 13,472 defect samples of six defect types.
Next, the HHoWST method is proposed to estimate the
global illumination and highlight the defective regions of the
smartphone’s physical button image. To do that, the wavelet
subbands of three color channels of a smartphone’s physical
button image are used to constructs a third-order tensor,
named WST, that contains both spatial information, corre-
lations between color channels, and wavelet subbands of
the color image. Through using higher-order singular value
decomposition, we estimated the components containing the
global illumination automatically, such as the coefficients of

the first frontal slice matrix of the core tensor and the 1st, 5th,
9th rows of inverse factorU (3). For the defect inspection task,
we used three state-of-art deep learning models named SSD,
Faster R-CNN, YOLOv5 to detect and classify the defects
on the HHoWST images. Experimental results show that our
proposed method significantly improves the defect detection
efficiency of deep learning models, especially performance
in detecting the tiny defect types when compared with the
performance of defect detection on the original and ASVDW
images.
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