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ABSTRACT Knowledge distillation, which is a process of transferring complex knowledge learned by
a heavy network, i.e., a teacher, to a lightweight network, i.e., a student, has emerged as an effective
technique for compressing neural networks. To reduce the necessity of training a large teacher network,
this paper leverages the recent self-knowledge distillation approach to train a student network progressively
by distilling its own knowledge without a pre-trained teacher network. Far from the existing self-knowledge
distillation methods, which mainly focus on still images, our proposed Teaching Yourself is a self-knowledge
distillation technique that targets at videos for human action recognition. Our proposed Teaching Yourself
is not only designed as an effective lightweight network but also a high generalization capability model.
In our approach, the network is able to update itself using the best past model, termed the preceding model,
which is then utilized to guide the training process to update the present model. Inspired by consistency
training in state-of-the-art semi-supervised learning methods, we also introduce an effective augmentation
strategy to increase data diversity and improve network generalization and consistent predictions for our
proposed Teaching Yourself approach. Our benchmark has been conducted on both the 3D Resnet-18 and 3D
ResNet-50 backbone networks and evaluated on various standard datasets such as UCF101, HMDB51, and
Kinetics400 datasets. The experimental results have shown that our teaching yourself method significantly
improves the action recognition performance in terms of accuracy compared to existing supervised learning
and knowledge distillation methods. We also have conducted an expensive ablation study to demonstrate that
our approach mitigates overconfident predictions on dark knowledge and generates more consistent predic-
tions in input variations of the same data point. The code is available at https://github.com/vdquang1991/
Self-KD.

INDEX TERMS Self-knowledge distillation, self-learning, knowledge distillation, action recognition, deep
learning, convolutional neural network.

I. INTRODUCTION
Human action recognition is one of the most fundamental
research problems in computer vision and machine learning
due to its prevalence in real life. The recognized actions
can be used for other tasks such as security surveillance,
abnormalities detection, etc. The goal of action recognition
is to identify many different actions from given video clips.

The associate editor coordinating the review of this manuscript and

approving it for publication was Joewono Widjaja .

This requires considering the temporal structure of input data
by aggregating information from multiple frames. In which
each frame is an RGB image or an optical flow image.
To accomplish this goal, many deep learning models have
been proposed with various architectures such as the 2D
convolutional neural networks (CNNs) [1], 3DCNNs [2], and
LSTM combined with the 2D CNN [1], [3]. Several methods
have used more than one network (two streams) with two
different inputs to increase the model’s learning ability. For
example, the input contains an image and an optical flow
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FIGURE 1. The comparison among three KD mechanisms including offline knowledge distillation (left), online KD (middle), and self-KD
(right). In offline KD, the teacher presented by a large network is first offline trained on a large-scale dataset. Then, the teacher’s
knowledge is then transferred to a student presented by a small network. In online KD, both a large teacher network and a small student
network are simultaneously trained. In self-KD, a large teacher network is no longer required. Only a small student network is defined, and
it is able to distil the knowledge by itself.

clip [3], the input contains an RGB video clip and an optical
flow clip [4], and the input contains an RGB slow pathway
and an RGB fast pathway [5].

By combining 3D CNNs with either RGB or optical
flow produces state-of-the-art (SOTA) performance, how-
ever, it has some limitations such as: (i) it requires optical
flow extraction from RGB frames, which is computationally
expensive and time-consuming; (ii) these aforementioned
networks require a large number of model parameters that
need to be learned, which could make the model more prone
to overfitting. Despite the fact that 3D CNN networks with
either RGB or optical flow are powerful models and achieve
appealing results on many tasks, they are too large to be
deployed on edge devices like smartphones or embedded
sensor nodes. Thus, such approaches may not be suitable for
real-world applications.

To address the above limitations, knowledge distilla-
tion (KD) has become a promising approach because of its
ability to transfer a heavy network’s interpretation capabil-
ity to other lighter architectures without reducing the per-
formance capability. Given a heavy and powerful network
(i.e., the teacher), conventional distillation approaches [6]
encouraged to transfer the teacher’s knowledge to a
lightweight student network by minimizing the differences
between two outputs from two networks. The student net-
work can effectively inherit the knowledge of the teacher
network. Various KD approaches have been proposed to
transfer different knowledge such as feature magnitude [7],
feature flow [8], activation maps [9], gradient maps [10],
and other factors [11]. Particularly in action recognition,
KD methods have proposed to transfer knowledge from dif-
ferent domains such as from the image domain to the video

domain [12], [13] or from optical flow models to RGB
models [14].

Based on the distillation scheme, KD approaches can be
divided into two main categories: offline knowledge distil-
lation (Offline-KD), online knowledge distillation (Online-
KD). The Offline-KD [6], [7], [12], [13] usually contains
two successive stages, namely (i) training a heavy teacher
network, (ii) the teacher network is then frozen and utilized
to extract the knowledge to guide the student network (as
shown in Figure. 1 left). However, a big capacity gap between
a large pre-trained network (teacher) and a smaller net-
work (student) is one of the notable limitations in the Offline-
KD approach. As shown in [15], [16], the student network
performance degrades when the gap between student and
teacher is large. Furthermore, a two-stage training process
in Offline-KD will increase both training cost and pipeline
complexity. Unlike Offline-KD, Online-KD [14], [17], [18]
is a one-phase end-to-end training scheme. In Online-KD,
both the teacher and student networks are simultaneously
updated (as shown in Figure. 1 middle). Although Online-KD
is able to address the Offline-KD’s limitations with a flexible
teacher, it still requires a teacher network, and the teacher
network needs to be trained. Recently, Self-knowledge dis-
tillation (Self-KD) [19]–[21], which is a special case of
Online-KD, has been proposed to remove the heavy and
expensive teacher network. In Self-KD, the student is learned
and updated without any teacher (as illustrated in Figure. 1
right).

Many methods based on Self-KD have been proposed and
achieved SOTA performance on image and natural language
processing tasks in recent years [19]–[22]. For example,
in [19], the authors present an approach to distil the predictive
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distribution between different samples of the same label dur-
ing training. Ji et al. [21] utilizes an auxiliary self-teacher
network to transfer refined knowledge for the classifier net-
work. Kim et al. [22] used the previous network as the
pseudo-teacher to guide the current network. Far apart from
the existing Self-KD methods on images, our approach is
inspired by the consistent training [23], [24]. We explore the
relationship between the preceding network and the present
network in our approach. We utilize the best-performing
student network at past epochs to distil knowledge to itself,
i.e., the current student network during the training process.
Moreover, a robust and suitable data augmentation strategy
is proposed for the video domain to generate the heavily
distorted versions of a given video clip. This helps increase
data diversity, improve network generalization, and generate
more consistent predictions between the preceding network
and the present network in input variations of the same
video clip. Finally, we provide a summary of state-of-the-art
methods on different distillation schemes for both image and
video domains and highlight the differences of our proposed
method with the other KD methods in Table. 1.

TABLE 1. A summary of several common methods on different
distillation schemes for both the image and video domain.

Our contribution is summarized as follows:
(1) Far from the existing Self-KD methods [19]–[22] which

target at still images, our teaching yourself is the first
Self-KD framework which aims to address human action
recognition.

(2) In our proposed self-knowledge distillation method,
the predictive distributions of the preceding student are
utilized to guide the present student for ‘‘dark knowl-
edge’’ (i.e., the knowledge on incorrect predictions)
via the Kullback–Leibler Divergence (KLD) loss. This
forces the network at the current epoch (assume at epoch
n) to produce consistent predictions for dark knowledge
similar to the preceding model in the past (i.e., the best
performing model from epoch 1 to n-1). Furthermore,
it avoids overconfident predictions and prevents the
present model from beingworse than the best-performing
model trained in the past epochs.

(3) Due to the difference between image and video domains,
thus not every data augmentation strategy that is good for
images is suitable for videos. In this paper, we introduce a
robust and suitable set of data augmentations for videos.
This increases the diversity of data in the training set and
improves the generalization performance of the network.
Combining with our proposed self-knowledge distilla-
tion method, we found that our approach prevents the
model’s overconfident predictions and generates more
consistent predictions in input variations of the same data
point.

(4) Experimental results show that our approach has signif-
icantly improved accuracy compared to the supervised
learning baselines regardless of the backbone networks.
Moreover, our method outperforms the SOTA methods,
including self-supervised [25]–[31], supervised learn-
ing [4], [32]–[35], and KD approaches [12]–[14].

The remaining of the paper is organized as follows:
Section II provides a review on various action recognition
approaches. The proposed Teaching Yourself approach is
described in Section III. The experimental results, compar-
isons and ablation studies are presented in Section IV and the
conclusion is given in Section V.

II. RELATED WORK
Action recognition has always been one of the most impor-
tant topics in computer vision. The traditional methods
proposed to solve this problem are based on efficient
spatio-temporal feature representations and motion propa-
gation across frames in videos such as the HOG3D [36],
SIFT3D [37], ESURF [38], MBH [39], iDTs [40],
and so on.

A popular approach today is to use CNNs [1]–[3]. In [4],
the authors presented five popular strategies to design a CNN
for action recognition, including LSTM [1], 3D-ConvNet (or
3D CNN) [2], Two-Stream [3], 3D-Fused Two-Stream [41],
Two-Stream 3D-ConvNet [4]. In this paper, we focus on 3D
CNNs, which outperforms 2D CNNs in large-scale video
datasets [2]. Due to kernel size being 3D, i.e., (t, s, s)
where t and s denote temporal and spatial kernel size,
these models can be used to extract spatio-temporal fea-
tures from raw videos [35] directly. This section introduces
three main types of action recognition approaches, including
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supervised learning, self-supervised learning, and knowledge
distillation.

A. SUPERVISED LEARNING
The models in supervised learning are built to predict classes
based on annotated data. Tran et al. [2] proposed a simple
linear model named C3D and found a 3 × 3 × 3 convolu-
tional kernel to work best among a limited set of explored
3D CNN architectures. Instead of using only RGB frames,
Simonyan et al. [3] proposed a two-stream networkwhere one
stream contains RGB images and the other contains optical
flow images. The I3D [4] is a new approach to transform
a 2D pre-trained network into a 3D network. In the I3D,
the 3D filters are replaced by a set of repeated 2D filters.
Inspired by the success of the ResNet in the image classi-
fication, Hara et al. [35] extended the ResNet architecture
to a 3D CNN and examined the architectures of various
3D CNNs including the ResNet-18, ResNet-34, ResNet-50,
ResNet-101, etc.

Following the success of the C3D and I3D networks,
many new architectures have been proposed in recent years.
For example, a new method has been proposed to explicitly
factorize a 3D convolution into two separate and succes-
sive operations, namely a 2D spatial convolution and a 1D
temporal convolution referred to as the (2+1)D convolution
([33], [42]). Recently, the SlowFast network [43] is a
variation of the 3D CNN networks category. Two parallel
pathways are utilized to explicitly capture the appearances
and object motion in a video. Instead of using one stream for
RGB, and the other for optical flow, the SlowFast network
utilizes RGB for all streams. A slow pathway operates at a low
frame rate, capturing spatial semantics, and a fast pathway
captures motion with fine temporal resolution at a high frame
rate. The SlowFast network has been proposed to tackle the
action recognition and action spatial localization tasks. It has
achieved the highest scores inmany benchmark datasets, such
as Kinetics, Charades, AVA, etc.

B. SELF-SUPERVISED LEARNING
Self-supervised learning aims at learning visual features
from unlabeled data in pretext tasks. The learned visual
representation model in the pretext task is then transferred
to the downstream task. The objective of self-supervised
learning focuses on extracting good feature representations
without annotation; thus, it targets designing an effective
pretext task component. Inspired by frame reordering tasks,
Dahun et al. [28] shown that ambiguity in time direction
when we hardly distinguish between a ‘‘catch’’ or a ‘‘throw’’
action from given shuffled frames. The authors introduced a
self-supervised task called Space-Time cubic puzzles. Given
a randomly permuted sequence of 3D spatio-temporal pieces
cropped from a video clip. The 3D CNN is used to learn both
spatial and temporal relations from the input video frames and
predict their original arrangement.

Different from the above method, a model based on
deep reinforcement learning was introduced in [44]. The

authors observed that there had been unused potential in
self-supervision based on ordering. The diverse permutations
will affect CNN differently. How can we find permutations
of higher utility to improve a CNN representation than the
random set? The authors presented a reinforcement learning
algorithm that helps to create permutations in the training
phase. To learn the function for proposing permutations,
the authors simultaneously train a policy and self-supervised
network by utilizing the CNN network’s improvement over
time as a reward signal. Jiangliu et al. [30] presented a
self-supervised learning method by predicting motion and
appearance statistics. Each video frame is divided into several
spatial regions. Then a model predicts the region with the
largest motion and its direction. Vu et al. [45] introduced
seven different transformations for videos, and a model is
trained to predict which transformations are applied to the
input video.

C. KNOWLEDGE DISTILLATION
This method is first introduced by Hinton et al. [6].
The method helps the student model (a small network)
learn knowledge from teacher models (a large network).
In [12], the authors proposed a new model named ‘Tem-
poral 3D ConvNet’ (T3D). In this model, 3D dense blocks
and Temporal Transition Layers (TTL) are arranged alter-
nately. The TTL layers use kernels with different sizes
for temporal dimensions to increase the model’s ability
to learn temporal features. Additionally, the T3D model
uses knowledge transferred from a pre-trained 2D ConvNet
(DenseNet-169) on ImageNet. Like T3D, Diba et al. [13]
proposed Spatio-Temporal Channel Correlation (STC) model
based on ResNet architecture, and the authors also used the
teacher models are 2D ResNet and ResNext pre-trained on
ImageNet. The main contribution of this method is to pro-
pose STC blocks alternating 3D Residual blocks. The STC
block behaves similarly to the squeeze and excitation block
in [46]. Girdhar et al. [47] proposed a distillation model
based on ResNet architecture. In their model, ResNet50 pre-
trained on image datasets as ‘‘teachers’’ to train video mod-
els in a distillation framework. This is a new approach
for learning spatiotemporal representations from unlabeled
video data.

III. PROPOSED METHOD
In this section, we first introduce an overview of our proposed
Teaching Yourself for action recognition. We then discuss
the training paradigm, the loss function, network architecture,
and data augmentation in our approach.

A. TEACHING YOURSELF
As mentioned in Section I, Self-KD is proposed to overcome
offline and online distillation limitations such as avoiding the
high-capacity teacher and reducing the capacity gap between
large teachers and small students. Different from the existing
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FIGURE 2. Overview of our proposed Teaching Yourself approach for action recognition where the preceding student as the pseudo-teacher
denotes the best performing model checkpoint from epoch 1 to epoch n-1, guides training the present student via the last output layer, and the
present student denotes the training model at the current epoch (epoch n).

Self-KD methods [19]–[21] for image and natural language
processing tasks, in our work, we utilize the model at the
past epochs (i.e., preceding model) to guide the model at the
current epoch (i.e., present model) during the training phase.
Our proposed Teaching Yourself (TY) method is arguably the
simplest way to save time in the training process, minimize
the competency gap between teacher and student, and pre-
venting overconfident predictions. The proposed method is
illustrated in Figure. 2.

1) SAVING TIME IN THE TRAINING PROCESS
Due to no teacher network in our approach, so the best
performing model checkpoint at the past epochs (i.e., the pre-
ceding student network) is utilized as the pseudo teacher
to ‘‘teach’’ the model at the current epoch (i.e., the present
student network). Therefore our approach doesn’t require cal-
culating the loss function, performing the backpropagation,
and updating the weights for the teacher network. As a result,
the proposed method saves a lot of processing time during the
training phase.

2) MINIMIZING THE COMPETENCY GAP BETWEEN
TEACHER AND STUDENT
In conventional knowledge distillation, including offline and
online distillation, the complex high-capacity teacher net-
works are sometimes ineffective for the student models.
Mirzadeh et al. [15] have shown that the student network
performance degrades when the gap between student and
teacher is large. In our approach, the teacher and student
networks are shared the same architecture; hence, there is no
capacity gap between the student and teacher in the proposed
TY. As a result, our approach addresses the high-capacity
teacher issue. Moreover, the teacher network in our approach
is not a fixed model with weights but dynamically evolves as
the training proceed.

3) PREVENTING OVERCONFIDENT PREDICTIONS
To avoid this issue, the TY approach utilizes the predictions
of the past model as the soft-labels, and a rich set of data
augmentations is proposed suitable for the video domain and
increases the diversity of data in the training set. Furthermore,
our proposed method exploits the relationship between the
preceding student network and the present student network)
via two predictive distributions of both networks. This forces
the network at the current epoch to provide more consistent
predictions in the input variations of the same data point by
minimizing the distance between the two logits within the
same sample.

Far apart from the Siamese networks [23], [24] that usu-
ally uses a weight-sharing neural network to maximize the
similarity object in two or more inputs, our proposed method
uses only one input andmaximizes the similarity between two
networks (preceding and present networks). Our approach is
the combination of the Self-KDmethod and the data augmen-
tation strategy for video. Given the input video clip, we ran-
domly apply data augmentation operators to the video clip,
such as color distortion, noise addition, Gaussian blur, con-
trast and brightness adjustments, etc. The transformed video
clip is then passed into two student models (including the pre-
ceding student and the present student) with the same network
architecture. During the training phase, the present student
model is the model checkpoint at the current epoch. The
preceding student is the model checkpoint with the best per-
formance for several past epochs on the validation set. The
predictive distributions of the preceding student network are
utilized as the knowledge distilled to guide the present student
network.

B. TRAINING PARADIGM
Given a set of N training samples is denote as {(xi, yi)}Ni=1
where xi is a video clip and yi is label (i.e., the action). Note
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that yi is a K -dimensional one-hot vector where K is the
numbers of classes. We assume that FT and FS correspond
to the preceding student (pseudo-teacher) and present stu-
dent models. Let x ′i = G(xi) denote the transformed video
from the original video xi where G(·) is the set of transfor-
mation operators. Let zT (x ′i ) = FT (x ′i ; θ

T ) and zS (x ′i ) =
FS (x ′i ; θ

S ) denote the output of the preceding student model
and the present student model, respectively. z(x ′i ) represents
the logit vector [z1(x ′), z2(x ′), . . . , zK (x ′)] where zk (x ′i ) is the
logit value for the k th class (with k = 1, 2, . . . ,K ); θT

and θS correspond to the set of parameters for the preced-
ing student and the present student models with only θS

being the set of trainable parameters, and θT being the set
of frozen weights during the backpropagation process. Let
p(x ′i ) = [p1(x ′i ), . . . , pK (x

′
i )] denote the probability that the

input belongs to the K classes can be estimated by a softmax
function given by:

pk (x ′i ) =
exp(zk (x ′i ))∑K
j=1 exp(zj(x

′
i ))

(1)

The predictions of the teacher models’ soft targets contain
dark knowledge, i.e., the knowledge for the wrong predic-
tions. They can be used as supervisors to transfer knowledge
to the student. Hinton et al. [6] suggest utilizing a temperature
factor τ to scale the probabilities:

p̃k (x ′i , τ ) =
exp(zk (x ′i )/τ )∑K
j=1 exp(zj(x

′
i )/τ )

(2)

where the temperature factor τ is introduced to control the
importance of each soft target. The distillation loss is defined
to match two logits between the preceding student model and
the present student model by:

LKL(̃pT |̃pS; τ, θS ) =
N∑
i=1

p̃T (x ′i ) log
( p̃T (x ′i )
p̃S (x ′i )

)
(3)

In Eq. 3, LKL denotes the Kullback-Leibler divergence
loss, p̃T (x ′i ) and p̃S (x ′i ) are the prediction probabilities of the
soft targets by the preceding student and the present student,
respectively. The cross-entropy (CE) loss between the ground
truth y and the present student model’s predictions is defined
by:

LCE(yi|pS; θS ) = −
N∑
i=1

yi log(yi,pS (x ′i )) (4)

where pS (x ′i ) is the predictions probability of the student
model. From Eq. 3 and Eq. 4, the total training loss LSelf−KD
for the proposed method is defined as:

LSelf−KD(yi, p̃T , p̃S ,pS , τ, θS ) = LCE(yi|pS; θS )

+λLKL(̃pT |̃pS; τ, θS ) (5)

The loss LSelf−KD is then backpropagated to optimize
the whole framework. In Eq. 5, λ a hyper-parameter repre-
senting the weight of LKL. The detailed procedure of the
self-knowledge distillation in the training phase is illustrated

Algorithm 1: Teaching Yourself: Self-KD for Action
Recognition

Input: (FS , θS ): The present student model where θS

is the set of trainable parameters.
(FT , θT ): The preceding student model
where θT is the set of frozen parameters.
N : numbers of epochs.
λ, τ : loss weight and temperature factor.

Output: Return θ? is optimal weights
1 for epoch = 1..N do
2 for batch in training set do
3 Sample a batch (x, y) from the training set
4 x = Resize(size= (−1 : 128))(x)
5 x = Random_Crop(size= (112, 112))(x)
6 x ′ = Flip(p = 0.5)(x)
7 x ′ = Adjust_Contrast(p = 0.5)(x ′)
8 x ′ = Adjust_Brightness(p = 0.5)(x ′)
9 x ′ = Adjust_Hue(p = 0.5)(x ′)

10 x ′ = Gaussian_Blur(p = 0.5)(x ′)
11 x ′ = Channel_Splitting(p = 0.5)(x ′)
12 x ′ = Add_Noise(p = 0.5)(x ′)
13 zT = FT (x ′)
14 zS = FS (x ′)
15 p̃T = softmax(zT , τ )
16 p̃S = softmax(zS , τ )
17 pS = softmax(zS )
18 Calculate the loss function

LSelf−KD(y, p̃T , p̃S ,pS , τ, θS )
19 Calculate the backpropagation and update θS

20 if Val_Accuracy(FS , θS ) >
Val_Accuracy(FT , θT ) then

21 θT = θ? = θS

22 if θS has converged then
23 Early Stopping and return θ?

in Algorithm 1, where each data augmentation operator has
an execution probability of 0.5 (p = 0.5).

C. DATA AUGMENTATION
Data augmentation is an important component in training
deep learning models. Data augmentation aims to generate
new training data by applying transformations to an example
without changing its label. There are many data augmentation
strategies proposed for images, such as RandAugment [48],
Data Augmentation for Object Detection [49]. However,
data augmentation strategies for videos are still minimal.
By experiments, we found several good data augmentation
operators for images, but they are not good for videos, espe-
cially for action recognition such as ShearX. In other words,
not every operator that is good for images is suitable for video.
This section introduces a simple yet robust data augmentation
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TABLE 2. The architecture of the two networks including 3D ResNet-18 and 3D ResNet-50. For the 3D ResNet-18 network, C2,C3,C4,C5 are 64, 128, 256,
and 512, respectively. For the 3D ResNet-50 network, C2,C3,C4,C5 corresponds to 256, 512, 1024, and 2048.

strategy for the video domain that includes temporal and
spatial augmentations.

1) TEMPORAL AUGMENTATION
is a sampling perspective [50]. Typically, the model input
is the short video clips with T frames of length (e.g. T =
{8, 16, 32, 64, . . .}). There are two common ways to sam-
ple the data. In the first sampling method, a clip with T
continuous frames is trimmed from the raw video and used
to represents the entire video [2]. In the second sampling
method, a sequence of short snippets sparsely sampled from
the entire video represents the input video [51]. We adopt
the first method in our work. A clip of length T is extracted
with a randomly selected starting frame from the input video.
If the length of a video is less than T frames, the last frame is
repeated.

2) SPATIAL AUGMENTATION
is a temporally consistent design. Spatial augmentation has
been being widely adopted for images in many tasks such as
image classification, object detection, object segmentation,
etc. Unlike the images, a video is a continuous sequence of
frames where each frame is an image; thus, we cannot use
existing image-based augmentation operators on the frames
individually, such as vertically flip for the first frame, adjust
contrast for the second frame, etc. This could negatively affect
the motion features across the frames. Therefore, we design
a simple method to address this issue. Instead of utilizing
augmentation operators individually on the frames, we con-
sistently apply the spatial augmentations across the entire
input video clip. Given an input clip of length T, our data

augmentation strategy takes two steps. We first scale the
shorter edge of the frames in the clip to 128 and the other
edge is calculated to maintain the frame original aspect ratio.
A random cropping window with dimensions of 112×112 is
generated and applied to all of the frames. We then randomly
choose several data augmentation operators for the clip,
i.e., perform consistently for all frames in the clip. The list
of all augmentation operators used in our work includes flip,
contrast adjustment, brightness adjustment, hue adjustment,
Gaussian blur, channel splitting, and noise addition. The
probability chosen for each augmentation operator is set to
0.5. For the channel splitting operator, we randomly select
one of the three-channel (RGB channel) and then replace it
with another (e.g., RGR or GGB or RBB, etc.). For noise
addition, we create a random noise matrix using a Gaussian
distribution with the mean as 0 and the standard deviation
as 0.1. The noise matrix is added to all of the frames in
the input clip. The other augmentation operators such as
flip, contrast adjustment, brightness adjustment, hue adjust-
ment, Gaussian blur follow the concepts from the image
domain.

D. NETWORK ARCHITECTURE
ResNet [52] is one of the most popular architectures in com-
puter vision. The ResNet significantly increases the perfor-
mance of many image-related tasks such as classification,
detection, and segmentation. The 3D ResNet is an extension
of the ResNet for videos [35]. In our work, we consider two
SOTA CNN architectures including the 3D ResNet-18, and
the 3D ResNet-50 in [35]. The details of the two networks are
described in Table 2 where FC represents a fully connected

VOLUME 9, 2021 105717



D.-Q. Vu et al.: Teaching Yourself: Self-Knowledge Distillation Approach to Action Recognition

layer. Both networks are mainly composed of a stack of Conv
layers grouped into four blocks. The stride value is set to 2 for
the first convolution layer in each block (except the first Conv
block). Each convolution layer in the networks is followed by
a BatchNormalization layer and a ReLU layer.

IV. EXPERIMENT
In this section, we first introduce the datasets used in this
work and our implementation in detail. We then discuss
ablation studies, visualization, and performance comparison
with different benchmarks.

A. DATASETS AND IMPLEMENTATION
We have conducted experiments on three standard datasets
including HMDB51 [53], UCF101 [54], and Kinet-
ics400 [55].

1) UCF101
is an action recognition dataset, including 101 action cate-
gories. All videos from this dataset are real action videos
collected from YouTube. UCF101 gives diversity in terms
of actions, with 13,320 videos containing large variations
in camera motion, object appearance and pose, object scale,
viewpoint, cluttered background, illumination conditions,
etc. The average duration of each video is about 7 seconds.
Three train/test splits (70% training and 30% testing) are
provided in this dataset.

2) HMDB51
is a small dataset collected from various sources, mostly from
movies, and a small proportion from public databases such
as the Prelinger archive, YouTube, and Google videos. The
dataset contains 6,849 clips divided into 51 action categories,
each containing a minimum of 101 clips. Three train/test
splits (70% training and 30% testing) are also provided in this
dataset.

3) KINETICS400
(K400) is a large dataset that has 400 human action
classes [55]. Kinetics is a standard benchmark for action
recognition in videos. The videos in this dataset were tempo-
rally trimmed and last around 10 seconds and 200–1000 clips
for each action. The total has 306,245 videos in Kinetics400.
The number of training, validation, and testing sets are about
240,000, 20,000, and 40,000, respectively.

4) IMPLEMENTATION DETAILS
Both 3D ResNet-18 and 3D ResNet-50 are trained from
scratch and optimized by stochastic gradient descent (SGD)
with a momentum of 0.9 and an initial learning rate of 0.01.
Theweight decay is set to 5×10−4. Themodel input is a video
clip with 16 frames (T = 16), each frame has 112× 112× 3
of dimension and normalized to be [-1, 1]. We use the mini-
batch of 16 clips per GPU, and training is done in 200 epochs.
The learning rate is dropped by 10× after 10 epochs if the
validation accuracy not improving.

B. PERFORMANCE COMPARISON
In this section, we conduct the comparison with different
benchmarks as follows:

• Compare with independently training (including with
and without data augmentation).

• Compare with the KD action recognition approaches
with both 3D ResNet-18 and 3D ResNet-50.

• Compare with the SOTA action recognition approaches
including supervised, self-supervised approaches under
both 3D ResNet-18 and 3D ResNet-50.

1) COMPARE WITH INDEPENDENTLY TRAINING
To examine the effectiveness of the proposed TY method,
we have compared our approach to the baselinemethod (inde-
pendently training) with cross-entropy loss on the standard
datasets and standard learning paradigm settings using the 3D
ResNet-18 and 3D ResNet-50. As can be seen in Table. 4,
our approach significantly improves the accuracies for both
the large and small-scale datasets. Specifically, our method
increases the accuracies by 21.9% and 11.9% for the 3D
ResNet-18 and 3D ResNet-50 networks, respectively, on the
UCF101 dataset. For the HMDB51 dataset, our approach
increases the accuracies by 12.6% and 10.8% for the 3D
ResNet-18 and 3D ResNet-50 networks, respectively. In the
large-scale dataset, i.e., the Kinetics400 dataset, the TY
method increases the accuracies by 11.1% and 12.2% for
the 3D ResNet-18 and 3D ResNet-50 networks, respectively.
From these results, we confirm that our approach can sig-
nificantly improve generalization compared to independently
training only with hard labels on regardless of the backbone
networks.

We compare in detail the TY with the baseline method
combined with data augmentation to demonstrate the effec-
tiveness of the proposed self-knowledge distillation method
combines with our data augmentation strategy. The results of
the comparisons are given in Table. 3 and Figure. 3.

TABLE 3. Performance as a function of epochs. All experiments use the
3D ResNet-18 network and are trained on the UCF101 dataset.

Table. 3 shows that the proposed data augmentation
method significantly improves the model’s performance.
Specifically, the performance of the baseline method with
data augmentation (Baseline + Data Aug) is better than the
baseline methodwithout data augmentation by up to 10.3% in
terms of clip accuracy and 11.3% in terms of video accuracy.
In comparison to Baseline + Data Aug method, the TY
method achieves improvements of 9.8%, and 10.6% for clip
and video accuracies, respectively.
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FIGURE 3. Performance as a function of epochs. All experiments use the
3D ResNet-18 network and are trained on the UCF101 dataset.

TABLE 4. The performance of the TY compares to the baseline method in
both the 3D ResNet-18 and the 3D ResNet-50 network architectures on
the UCF101 and HMDB51 datasets. All networks are trained from scratch.

As shown in Figure. 3, the convergence is different between
methods. Specifically, the Baseline method has converged
after epoch 40, while the Baseline + Data Aug method has
converged after epoch 55, and the TY method has converged
after epoch 80. The reason for the difference in the conver-
gence speed of the methods is due to the diversity of data
augmentation and the variation in the loss function. Data aug-
mentation is the simplest approach to generate more diverse
videos in the training set, fit the model on more training data,
and reduce the model variance. Moreover, the loss function
of our method is more complex, it requires minimizing two
losses, including the CE loss andKL loss, so it affects the con-
vergence speed of the TY. As a result, overfitting occurs more
slowly than the baseline with and without data augmentation.

2) COMPARISON WITH OTHER KD MECHANISMS
Table 5 compares our TY method with other training mecha-
nisms. As expected, the student performance in distillation
approaches actually improves compared to independently
training. However, the training cost of KD approaches also
increases due to the training of two networks (teacher and
student). Unlike KD approaches, our proposed TY method
doesn’t require training the teacher networks so our approach
reduces a lot of time training (decrease 10.1 hours compared
to Teacher to Student method and 2.8 hours compared to
Student to Student method). This is extremely useful when
training deep models on large datasets such as the Kinet-
ics400. Besides, the combination between our TY method
and data augmentation strategy significantly improves the

TABLE 5. Comparison with several distillation mechanisms on the
UCF101 dataset. The student network in all mechanisms is the 3D
ResNet-18 network. The column ‘‘Model size’’ denotes the number of
parameters in each method. The ‘‘Training time’’ indicates the total
training time of each approach. T and S denote teacher and student,
respectively. All mechanisms are trained on the same batch size, GPU,
and PC.

generalization ability of the single networkwithout additional
models.

3) SMALL-SCALE DATASET EXPERIMENT
We present our experimental studies of the TY method for
small-scale datasets. We compare the TY method against the
SOTA self-supervised learning methods on standard bench-
marks such as the UCF101 and HMDB51 datasets.

As shown in Table 6, all results are top-1 accuracy in action
recognition on two standard datasets. The results in the table
are grouped into three categories.
+ The first category includes the accuracies of the var-

ious networks (C3D, 3D ResNet-18, and 3D ResNet-50)

TABLE 6. Top-1 test accuracy (%) of the TY method against
state-of-the-art self-supervised learning methods on the UCF101 and
HMDB51 datasets. The best performing model is indicated as bold.
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trained from scratch (random-initialization weights) on the
UCF101 and HMDB51 datasets.
+ The second category shows the accuracies of the SOTA

self-supervisedmethods with various backbone networks. All
self-supervised methods have been pre-trained on different
pretext tasks with different pre-training datasets. After that,
these models are fine-tuned for action recognition via super-
vised learning.
+ The third category shows our method’s performance

on the 3D ResNet-18 and 3D ResNet-50 networks. All
networks are trained from scratch on the UCF101 and
HMDB51 datasets.

Our proposed method obtains the SOTA performance in
terms of accuracy on the UCF101 dataset compared to the
existing approaches with various backbone networks and
different pretext tasks. In particular, when compared to the
several methods that use the Kinetics dataset in the pretext
task, the proposed TYmethod outperforms 2.3% to TCE [25],
2.9% to DPC [26] and 5.3% to 3D Cubic Puzzles [28] in
the UCF101 dataset. For the HMDB51 dataset, our accu-
racy is lower than several self-supervised methods such as
TCE [25], DPC [26], 3D Cubic Puzzles [28]. However, these
methods are pre-trained on large-scale datasets such as the
Kinetics400 dataset; meanwhile, our method is trained from
scratch.

4) LARGE-SCALE DATASET EXPERIMENT
Since TY has shown its effectiveness for training various
networks on these small datasets, in this part, we scale up
the TY method to train on a large dataset, i.e., the Kinet-
ics400 dataset. We then compare the TYmethod to the SOTA
methods, including the supervised learning and knowledge
distillation methods.

Table. 7 shows top-1 accuracy results in action recognition,
which are split into two groups. The top group shows the
performances of the supervised learning-based methods, and
the bottom group shows the performances of the knowledge
distillation-based methods. Several methods pre-trained on
large-scale datasets have either ImageNet or Sport1M entered
under ‘‘Pretraining dataset’’.

As shown in Table. 7, the proposed TY method has
obtained higher accuracy while utilizing fewer frames and
lower frame resolutions. In particular, the TY method uses
RGB frames without the optical flow, which significantly
reduces the cost of optical flow calculation and model train-
ing on the optical flow domain. Compared to the SOTA
supervised learning methods (the top group), the TY method
achieves performances that are on par with the bLVNet [34]
(73.5%) with fewer frames (16 vs. 24) and lower frame
resolution (112 vs. 224). Moreover, our method outper-
forms the I3D [4] and R(2+1)D [33] by 2.4% and 0.3%,
respectively, even though these methods are pre-trained on
large-scale datasets such as the ImageNet and Sport-1M.
Our proposed TY has obtained a better performance with a
shallower model compared to other knowledge distillation

TABLE 7. Top-1 test accuracy (%) of the TY method on the
Kinetics400 dataset compared to the SOTA methods, including supervised
learning and knowledge distillation. # frames denotes the number of
frames used in the models. * indicates that these methods use both RGB
and optical flow frames in the training phase. The best performing model
is indicated as bold.

TABLE 8. The effect of two main hyper-parameters τ and λ on our
approach. All experiments use the 3D ResNet-18 network and are trained
from scratch on the UCF101 dataset. The best performing model is
indicated as bold while the worst model is indicated as underline.

methods. Specifically, even if the STC, T3D and MARS
methods utilize deep neural networks such as the ResNeXt-
101 and DenseNet-169, the TY method still outperforms
the STC [13], T3D [12], MARS [14] by 4.8%, 11.3%,
and 4.6% respectively. It implies that the TY method is
also effective on the large-scale dataset. It further demon-
strates that our approach drives the single network to
learn more spatio-temporal features and improve the gen-
eralization capability. So, compared to the conventional
distillation methods, our proposed TY method has better
generality and extensibility for any network backbone and
dataset.

C. ABLATION STUDY
To examine the effect of the main hyper-parameters τ and λ,
we conduct a detailed ablation study in this section. Specif-
ically, we test the hyper-parameters across an array of τ ∈
{5, 10, 20} and λ ∈ {0.1, 0.2, 0.5} on the 3D ResNet-18 using
the UCF101 dataset. The results are presented in Table. 8.
Except for the hyper-parameters τ and λ under consideration,
all of the other settings are the same as in Algorithm 1.
Overall, we have found that our method is fairly robust with
respect to τ and λ, except for the extreme case where the large
values of τ = 20 and λ = 0.5.
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FIGURE 4. Probability distributions (top-5 softmax scores) on misclassified samples between our proposed TY method and baseline
method from the UCF101 dataset. All samples are tested on the 3D ResNet-18 network. GT denotes the ground-truth labels of these videos.

D. VISUALIZATION FOR OVERCONFIDENT PREDICTION
In this section, we examine whether the proposed method
generates more meaningful predictions and mitigates
overconfident predictions. To this end, we investigate pre-
diction values in softmax scores from the 3D ResNet-18 net-
work, i.e., p(x). Specifically, we analyze the predictions of
two methods, namely the Baseline and the proposed TY
methods, with four concrete misclassified samples in the
UCF101 dataset in Figure. 4.

As shown in Figure. 4, the baseline method outputs
overconfident prediction on misclassification. In contrast,
the TY method relaxes the overconfident predictions and
provides the class probabilities distributed over the classes
with similar visual characteristics. For example, with the
sample clip labeled ‘‘Brushing_Teeth’’ (top right), the Base-
line method provides the predictive distribution of 99.0%
for ‘‘Apply_Eye_Makeup’’ class; meanwhile, the ‘‘Brush-
ing_Teeth’’ class has the only 0.9%. Unlike the Baseline
method, the TY method generates a predictive distribution
of 63.7% for the ‘‘Apply_Eye_Makeup’’ class and 25.5%
for the ‘‘Brushing_Teeth’’ class. This demonstrates that the
TY method mitigates overconfident predictions and gener-
ates more consistent predictions by forcing the networks to
produce similar predictions despite the input variations of the
same data point.

V. CONCLUSION
In this work, we have introduced a simple yet effective
self-knowledge distillation that utilizes knowledge distilled
from itself to enhance the generalization capability. Our
approach utilized the preceding model (best performing
model in the past) as a pseudo-teacher to guide the model
at the current epoch during the training phase. We have
also introduced a robust and effective data augmentation
method for the video domain. Combining Self-knowledge
distillation and data augmentation, we have demonstrated
that our approach mitigates overconfident predictions, pro-
vides more consistent predictions in input variations of the

same data point and enhances the generalization perfor-
mance of deep neural networks without additional networks.
Experiments conducted across different network architec-
tures have shown that our proposed method achieves state-
of-the-art performance compared to supervised learning,
self-supervised learning, and knowledge distillation methods
on both small-scale and large-scale datasets. In addition,
to action recognition, the proposed method can be adapted
and applied to other tasks involving the generalization and
calibration of neural networks.

REFERENCES
[1] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and

L. Fei-Fei, ‘‘Large-scale video classification with convolutional neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1725–1732.

[2] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘‘Learning
spatiotemporal features with 3D convolutional networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489–4497.

[3] K. Simonyan and A. Zisserman, ‘‘Two-stream convolutional networks for
action recognition in videos,’’ in Proc. NIPS, 2014, pp. 568–576.

[4] J. Carreira and A. Zisserman, ‘‘Quo vadis, action recognition? A new
model and the kinetics dataset,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 6299–6308.

[5] C. Feichtenhofer, H. Fan, J. Malik, and K. He, ‘‘SlowFast networks for
video recognition,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 6202–6211.

[6] E. G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ CoRR, vol. abs/1503.02531, pp. 1–9, Mar. 2015.

[7] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
‘‘FitNets: Hints for thin deep nets,’’ in Proc. ICLR, 2015.

[8] J. Yim, D. Joo, J. Bae, and J. Kim, ‘‘A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4133–4141.

[9] S. Zagoruyko and N. Komodakis, ‘‘Paying more attention to attention:
Improving the performance of convolutional neural networks via attention
transfer,’’ in Proc. ICLR, 2017.

[10] T. Guo, C. Xu, S. He, B. Shi, C. Xu, and D. Tao, ‘‘Robust student
network learning,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7,
pp. 2455–2468, Aug. 2019.

[11] S. Srinivas and F. Fleuret, ‘‘Knowledge transfer with Jacobian matching,’’
in Proc. ICML, 2018, vol. 80, pp. 4730–4738.

[12] A. Diba, M. Fayyaz, V. Sharma, A. H. Karami, M. M. Arzani,
R. Yousefzadeh, and L. Van Gool, ‘‘Temporal 3D ConvNets: New
architecture and transfer learning for video classification,’’ 2017,
arXiv:1711.08200. [Online]. Available: http://arxiv.org/abs/1711.08200

VOLUME 9, 2021 105721



D.-Q. Vu et al.: Teaching Yourself: Self-Knowledge Distillation Approach to Action Recognition

[13] A. Diba, M. Fayyaz, V. Sharma, M. M. Arzani, R. Yousefzadeh, J. Gall,
and L. V. Gool, ‘‘Spatio-temporal channel correlation networks for action
classification,’’ in Proc. ECCV, 2018, pp. 284–299.

[14] N. Crasto, P. Weinzaepfel, K. Alahari, and C. Schmid, ‘‘MARS:
Motion-augmented RGB stream for action recognition,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 7882–7891.

[15] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh, ‘‘Improved knowledge distillation via teacher assistant,’’
in Proc. AAAI Conf. Artif. Intell., vol. 34, 2020, pp. 5191–5198.

[16] J. Gou, B. Yu, S. J. Maybank, and D. Tao, ‘‘Knowledge distilla-
tion: A survey,’’ 2020, arXiv:2006.05525. [Online]. Available: http:
//arxiv.org/abs/2006.05525

[17] D. Chen, J.-P. Mei, C. Wang, Y. Feng, and C. Chen, ‘‘Online knowledge
distillation with diverse peers,’’ in Proc. AAAI Conf. Artif. Intell., 2020,
vol. 34, pp. 3430–3437.

[18] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, ‘‘Deepmutual learning,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4320–4328.

[19] S. Yun, J. Park, K. Lee, and J. Shin, ‘‘Regularizing class-wise predictions
via self-knowledge distillation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 13876–13885.

[20] S. Hahn and H. Choi, ‘‘Self-knowledge distillation in natural language
processing,’’ 2019, arXiv:1908.01851. [Online]. Available: http://arxiv.
org/abs/1908.01851

[21] M. Ji, S. Shin, S. Hwang, G. Park, and I.-C. Moon, ‘‘Refine
myself by teaching myself: Feature refinement via self-knowledge
distillation,’’ 2021, arXiv:2103.08273. [Online]. Available: http://arxiv.
org/abs/2103.08273

[22] K. Kim, B. Ji, D. Yoon, and S. Hwang, ‘‘Self-knowledge distillation with
progressive refinement of targets,’’ 2020, arXiv:2006.12000. [Online].
Available: http://arxiv.org/abs/2006.12000

[23] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, ‘‘Unsupervised
data augmentation for consistency training,’’ 2019, arXiv:1904.12848.
[Online]. Available: http://arxiv.org/abs/1904.12848

[24] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk,
A. Kurakin, H. Zhang, and C. Raffel, ‘‘FixMatch: Simplifying
semi-supervised learning with consistency and confidence,’’ 2020,
arXiv:2001.07685. [Online]. Available: http://arxiv.org/abs/2001.07685

[25] J. Knights, B. Harwood, D. Ward, A. Vanderkop, O. Mackenzie-Ross,
and P. Moghadam, ‘‘Temporally coherent embeddings for self-supervised
video representation learning,’’ 2020, arXiv:2004.02753. [Online]. Avail-
able: http://arxiv.org/abs/2004.02753

[26] T. Han,W. Xie, andA. Zisserman, ‘‘Video representation learning by dense
predictive coding,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop
(ICCVW), Oct. 2019, pp. 1483–1492.

[27] D. Luo, C. Liu, Y. Zhou, D. Yang, C. Ma, Q. Ye, and W. Wang, ‘‘Video
cloze procedure for self-supervised spatio-temporal learning,’’ in Proc.
AAAI Conf. Artif. Intell., 2020, vol. 34, pp. 11701–11708.

[28] D. Kim, D. Cho, and I. S. Kweon, ‘‘Self-supervised video representation
learning with space-time cubic puzzles,’’ in Proc. AAAI Conf. Artif. Intell.,
2019, vol. 33, pp. 8545–8552.

[29] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang, ‘‘Self-
supervised spatiotemporal learning via video clip order prediction,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 10334–10343.

[30] J. Wang, J. Jiao, L. Bao, S. He, Y. Liu, and W. Liu, ‘‘Self-supervised
spatio-temporal representation learning for videos by predicting motion
and appearance statistics,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 4006–4015.

[31] U. Ahsan, R. Madhok, and I. Essa, ‘‘Video jigsaw: Unsupervised
learning of spatiotemporal context for video action recognition,’’ in
Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2019,
pp. 179–189.

[32] L. Zhu, D. Tran, L. Sevilla-Lara, Y. Yang,M. Feiszli, and H.Wang, ‘‘Faster
recurrent networks for efficient video classification,’’ in Proc. AAAI Conf.
Artif. Intell., 2020, vol. 34, pp. 13098–13105.

[33] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
‘‘A closer look at spatiotemporal convolutions for action recognition,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6450–6459.

[34] Q. Fan, C.-F. Chen, H. Kuehne, M. Pistoia, and D. Cox, ‘‘More is less:
Learning efficient video representations by big-little network and depth-
wise temporal aggregation,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates,
2019.

[35] K. Hara, H. Kataoka, and Y. Satoh, ‘‘Can spatiotemporal 3D CNNs retrace
the history of 2D CNNs and ImageNet?’’ in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., Jun. 2018, pp. 6546–6555.

[36] A. Klaeser, M. Marszałek, and C. Schmid, ‘‘A spatio-temporal descriptor
based on 3D-gradients,’’ in Proc. Brit. Mach. Vis. Conf., 2008, pp. 1–275.

[37] P. Scovanner, S. Ali, and M. Shah, ‘‘A 3-dimensional sift descriptor and
its application to action recognition,’’ in Proc. 15th Int. Conf. Multimedia
(MULTIMEDIA), 2007, pp. 357–360.

[38] G. Willems, T. Tuytelaars, and L. V. Gool, ‘‘An efficient dense and scale-
invariant spatio-temporal interest point detector,’’ in Proc. ECCV. Berlin,
Germany: Springer, 2008, pp. 650–663.

[39] N. Dalal, B. Triggs, and C. Schmid, ‘‘Human detection using oriented
histograms of flow and appearance,’’ in Proc. ECCV. Berlin, Germany:
Springer, 2006, pp. 428–441.

[40] H. Wang and C. Schmid, ‘‘Action recognition with improved trajectories,’’
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 3551–3558.

[41] C. Feichtenhofer, A. Pinz, and A. Zisserman, ‘‘Convolutional two-stream
network fusion for video action recognition,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1933–1941.

[42] Z. Qiu, T. Yao, and T. Mei, ‘‘Learning spatio-temporal representation with
pseudo-3D residual networks,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5533–5541.

[43] C. Feichtenhofer, H. Fan, J. Malik, and K. He, ‘‘SlowFast networks for
video recognition,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 6201–6210.

[44] U. Buchler, B. Brattoli, and B. Ommer, ‘‘Improving spatiotemporal self-
supervision by deep reinforcement learning,’’ in Proc. ECCV, 2018,
pp. 770–786.

[45] D. Q. Vu, N. T. H. Le, and J.-C. Wang, ‘‘Self-supervised learning
via multi-transformation classification for action recognition,’’ 2021,
arXiv:2102.10378. [Online]. Available: http://arxiv.org/abs/2102.10378

[46] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[47] R. Girdhar, D. Tran, L. Torresani, and D. Ramanan, ‘‘ DistInit: Learning
video representations without a single labeled video,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 852–861.

[48] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, ‘‘Randaugment: Practical
automated data augmentation with a reduced search space,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2020, pp. 702–703.

[49] B. Zoph, E. D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, and Q. V. Le,
‘‘Learning data augmentation strategies for object detection,’’ in
Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2020,
pp. 566–583.

[50] R. Qian, T. Meng, B. Gong, M.-H. Yang, H. Wang, S. Belongie, and
Y. Cui, ‘‘Spatiotemporal contrastive video representation learning,’’ 2020,
arXiv:2008.03800. [Online]. Available: http://arxiv.org/abs/2008.03800

[51] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool,
‘‘Temporal segment networks: Towards good practices for deep action
recognition,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 20–36.

[52] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[53] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, ‘‘HMDB:
A large video database for human motion recognition,’’ in Proc. Int. Conf.
Comput. Vis., Nov. 2011, pp. 2556–2563.

[54] K. Soomro, A. R. Zamir, and M. Shah, ‘‘A dataset of 101 human action
classes from videos in the wild,’’ Center Res. Comput. Vis., vol. 2, no. 11,
pp. 1–7, Nov. 2012.

[55] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier,
S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman,
and A. Zisserman, ‘‘The kinetics human action video dataset,’’ 2017,
arXiv:1705.06950. [Online]. Available: http://arxiv.org/abs/1705.06950

105722 VOLUME 9, 2021



D.-Q. Vu et al.: Teaching Yourself: Self-Knowledge Distillation Approach to Action Recognition

DUC-QUANG VU was born in Nam Dinh city,
Nam Dinh, Vietnam, in 1991. He received the
B.S. degree in education in information technol-
ogy from Thai Nguyen University of Education,
Vietnam, in 2013, and the M.S. degree in infor-
mation system from the University of Engineer-
ing and Technology, Vietnam National University,
Hanoi (VNU), in 2016. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Information Engineering, National

Central University, Taiwan.
His research interests include the machine learning, deep learning, com-

puter vision, and bioinformatics. He received several awards and honors,
including the 2nd in National Informatics Olympiad for Universities, Viet-
nam, in 2009, the 3rd in National Informatics Olympiad for Universities,
Vietnam, in 2011, the 4th in Young Scientist Talent Contest for Universi-
ties, Vietnam, in 2012, the Certificate of Achievement in the ACM-ICPC
2010 Asia Hanoi Regional Contest, and the Certificate of Achievement in
the 2011 ACM-ICPC Vietnam National Programming Contest.

NGAN LE (Member, IEEE) received the bache-
lor’s and master’s degrees in CS from the Uni-
versity of Science, Vietnam, in 2005 and 2009,
respectively, and the master’s and Ph.D. degrees
in ECE from Carnegie Mellon University (CMU),
in 2015 and 2018, respectively.

From 2018 to 2019, she was a Research Asso-
ciate with the Department of Electrical and Com-
puter Engineering (ECE), CMU. She is currently
an Assistant Professor with the Department of

Computer Science and Computer Engineering, University of Arkansas. Her
publications appear in top conferences, including CVPR, MICCAI, ICCV,
SPIE, IJCV, and ICIP, and premier journals, including IJCV, JESA, IEEE
TRANSACTIONS ON IMAGE PROCESSING, PR, JDSP, and IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY. She has coauthored more than 55 jour-
nal articles, conference papers, and book chapters, more than 7 patents
and inventions. Her past research interests include biometrics, compressed
sensing, image processing, data hiding, watermarking, document analysis,
and handwriting recognition. Her current research interests include image
understanding, video understanding, computer vision, robotics, machine
learning, deep learning, reinforcement learning, biomedical imaging, and
single cell-RNA.

Dr. Le is also a Guest Editor of Scene Understanding in Autonomous
(Frontier) andArtificial Intelligence in Biomedicine andHealthcare (MDPI).
She co-organized the Deep Reinforcement Learning Tutorial for Medical
Imaging at MICCAI 2018, Medical Image Learning with Less Labels and
Imperfect Data workshop at MICCAI 2019, 2020. She has served as a
Reviewer formore than ten top-tier conferences and journals, including IEEE
TRANSACTIONSON PATTERNANALYSISANDMACHINE INTELLIGENCE, AAAI, CVPR,
NIPS, ICCV, ECCV,MICCAI, IEEE TRANSACTIONSON IMAGE PROCESSING, PR,
TAI, and IVC.

JIA-CHING WANG (Senior Member, IEEE)
received the Ph.D. degree in electrical engineering
from theNational ChengKungUniversity, Taiwan,
in 2002.

He was an Honorary Fellow with the Depart-
ment of Electrical and Computer Engineering,
University of Wisconsin-Madison, in 2008 and
2009. He is currently a Professor with the Depart-
ment of Computer Science and Information Engi-
neering, National Central University, Taiwan. His

research interests include signal processing, deep learning, machine learning,
and VLSI architecture design. He is an Honorary Member of the Phi Tau Phi
Scholastic Honor Society and a member of ACM and IEICE.

VOLUME 9, 2021 105723


