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ABSTRACT Predictive models in acute care settings must immediately recognize precipitous changes in a
patient’s status when presented with data reflecting such changes. Recurrent neural networks (RNN) have
become popular for clinical decision support models but exhibit a delayed response to acute events. New
information must propagate through the RNN’s cell state before the total impact is reflected in the model’s
predictions. Input data perseveration is a method to train more responsive RNN-based models. Input data
is replicated k times during training and deployment. Each replication propagates through the cell state and
output of the RNN, but only the output at the final replication is maintained and broadcast as the prediction
for evaluation. De-identified Electronic Medical Records (EMR) of 12, 826 patients admitted to a tertiary
care pediatric academic center between 01/2009-02/2019 were analyzed. A baseline Long Short-Term
Memory (LSTM) model (k = 1), four LSTMs with increasing amounts of input data perseveration (k = 2
to k = 5), and an LSTM with an attention mechanism were trained to predict ICU-mortality. Performance
of models was compared using Area Under the Receiver Operating Characteristic Curve (AUROC) after
increasing periods of observation from one to 12 hours. The average variation of the change in predicted
mortality immediately following defined acute events measured responsiveness. The AUROC gains due to
input perseveration were larger at the earlier times of prediction (≤6 hours), increasing at the first hour from
0.77 with no input data perseveration to 0.83 when k = 5. An LSTM with k = 5 was 2 − 3 times more
responsive to acute events than a baseline LSTM.

INDEX TERMS Electronic medical records, health and safety, Kalman filters, long short-term memory,
machine learning, performance evaluation, predictive models, real time systems, recurrent neural networks,
time series analysis.

I. INTRODUCTION
A. THE PROBLEM
Critical care environments require rapid decision making.
To be meaningful, predictive models in these settings must
immediately recognize precipitous changes in a patient’s state
when presented with data reflecting such changes [1], [2].
Newly acquired patient data must be integrated quickly with
previous data and the model’s predictions rapidly updated to
inform clinical decisions in a timely fashion.

Long Short-Term Memory (LSTM) models [3] are a type
of Recurrent Neural Network (RNN) architecture and have
become increasingly popular for modeling tasks in clinical
settings [4]–[10]. In particular, they previously have been
shown to achieve significantly higher predictive performance
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than clinical severity of illness (SOI) scores based on assess-
ing a child’s risk of mortality in an intensive care unit
(ICU) [11]. Critical care requires constant re-evaluations of
a patient’s status, and the desire for a tool that automatically
and continuously evaluates a patient’s status in the ICU is
underscored by studies investigating the continuous applica-
tion of static clinical scores [12]–[14]. The RNN is suited for
providing automatic and continuous patient monitoring and
assessment because of its ability to make ongoing concurrent
predictions with new data integrated into the patient’s historic
context, instead of merely recalculating a new prediction
at a single isolated time. The RNN requires computational
cycles to incorporate new data into its memory cell [15],
which results in a behavior that is recognized but not well
described in the literature: when integrating new data, there is
a delay between the input and a change in the prediction [16].
This characteristic is frequently observed in stock prediction
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tasks where the apparent predictive capability of a model is
comparable to a model that predicts the last observed stock
price [17], [18]. The intersection of deep learning and health-
care, though ever widening, has a paucity of literature on
this phenomenon. Commonly reported metrics such as area
under the receiver operating characteristic curve, sensitivity,
specificity, andmean absolute errors reflect only the accuracy
of the final predictions but do not account for this time lag.

In critical care applications, we have noticed two distinct
but related observable effects of the time lag. The first occurs
during what we refer to as a pipe-up period, during which the
initial input propagates through the memory cell to overcome
the initialized cell state before that input significantly influ-
ences the predictions. The second occurs during subsequent
times when new information only slightly changes the overall
prediction of a model at the time of input, again requiring
propagation through the memory cell before fully augment-
ing the model’s prediction. The first phenomenon is a special
case of the second. These two effects are further illustrated in
Sections II-D and III.

B. PROPOSED SOLUTION
This work aims to enable more timely changes in RNN
predictions when a model is presented with data indicating
acute clinical events. Because the RNN requires computa-
tional cycles to incorporate new data into its memory cell,
and because ICU EMR data is usually presented hourly,
we reasoned that repeating computational cycles at the time
new data becomes available, that is perseverating the data
presentation to the network, would decrease the response
time of the RNN predictions. Instead of giving newly avail-
able input data to an RNN model only once, the input is
replicated, or perseverated, and given to the model multiple
times, during both training and deployment, with only the
prediction of the final perseveration maintained and made
visible to the end-user. This technique of perseverating an
input k times provides additional computational cycles for
new data to be incorporated into the model’s internal states
before a prediction is broadcast. We hypothesized that the
resultant model would react to acute events more quickly
than traditionally trained LSTMs, reduce the pipe-up time to
overcome the initialized cell state, and still maintain overall
model performance.

C. RELATED WORKS
Since the seminal paper by R.E. Kalman in 1960 describing
what is now called the Kalman Filter [19], engineers have
been aware of the tradeoff between integrating historical data
and responding to new data. Most training techniques used
in modern deep learning affect the balance between rely-
ing on historical trends and responding to new information;
such techniques include dropout, optimizers, and activation
functions [20]–[23]. Generating an appropriate target vector
(e.g. using changes in values between consecutive time points
instead of predicting raw values) is another training technique
that can prevent generation of an auto-correlation model [16].

Attention mechanisms [24] are sometimes used to manage
the balance between historical and new data by appending
the entire input sequence to the final hidden layer of an
RNN. Doing so affords the model another opportunity to
learn model weights which expose the moments in time series
data most relevant to the predictions. Attention networks
were originally developed for post-hoc sequence-to-sequence
modeling tasks such as image captioning and neural machine
translation which permit access to the entire input sequence
when making predictions [24], [25]. An attention mechanism
was applied by Zhang, et al. to predict risk of future hos-
pitalization using medical records from a fixed observation
window [26].

While an attention mechanism allows the model to weight
isolated time vectors that are important to the target predic-
tion, input perseveration allows all information to propagate
through both the input and the memory cell and enables the
existing machinery of the RNN (namely backpropogation) to
determine the magnitude of their contribution.

II. METHODS
A. CLINICAL DATA SOURCES
Data for this work were extracted from de-identified observa-
tional clinical data collected in Electronic Medical Records
(EMR, Cerner) in the Pediatric Intensive Care Unit (PICU)
of Children’s Hospital Los Angeles (CHLA) between Jan-
uary 2009 and February 2019. The CHLA Institutional
Review Board (IRB) reviewed the study protocol and waived
the need for IRB approval. A patient record included static
information such as gender, race, and discharge disposi-
tion at the end of an ICU episode, defined as a contigu-
ous admission in the PICU. A patient may have multiple
episodes. The EMR for an episode also contained irregu-
larly, sparsely and asynchronously charted measurements of
physiologic observations (e.g. heart rate, blood pressure),
laboratory results (e.g. creatinine, glucose level), drugs (e.g.
epinephrine, furosemide) and interventions (e.g. intubation,
oxygen level). Episodes without discharge disposition were
excluded, leaving 12,826 episodes (9,250 patients) in the final
dataset.

Prior to any of the computational experiments described
here, the episodes were randomly partitioned into three sets:
a training set for deriving model weights, a validation set
for optimizing hyper-parameters, and a holdout test set for
measuring performance. Tominimize bias in the performance
evaluation metrics, partitioning was done at the patient level,
i.e. all episodes from a single patient belonged to only one of
these sets: 60% in the training set, 20% in the validation set,
and 20% in the test set. No other stratification was applied.
Table 1 displays basic characteristics of the resulting data
partitions.

Preprocessing steps described in previous work [27] con-
verted each episode data to a matrix structure amenable to
machine learning model development. A row of values in this
matrix represented measurements (recorded or imputed) of
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TABLE 1. Basic demographics of data used in this study for each data
partition.

FIGURE 1. The perseverating recurrent neural network (PRNN) is an RNN
with repeating inputs. Each input vector, x(ti ), associated with a
particular time, ti , is replicated k times, and only the output from the last
replication, y (ti ), is considered as the prediction for that time. The
diagram above illustrates the process for k = 3.

different variables at one particular time, while a column con-
tained values of a single variable at different times. A sum-
mary of the preprocessing may be found in Appendix A.
A complete list of variables used asmodel inputs can be found
in Appendix B. Note that diagnoses, while available in the
EMR, were not used as input features.

B. TARGET OUTCOME
ICU mortality was chosen as the target outcome because
it is a simple, unambiguous outcome. Importantly, risk of
mortality (ROM) is used commonly as a proxy for severity of
illness in critical care [13], [28]–[30]. The overall mortality
rate of the data was 3.7% (Table 1).

C. RNN MODELS
Many-to-many recurrent neural network models, consisting
of stacked Long Short-Term Memory (LSTM) layers fol-
lowed by a dense layer, were trained to predict ROM in the
ICU of each patient episode. All themodels output a probabil-
ity of mortality at each distinct time where an observation or
measurement of the patient was made, generating a trajectory
of scores that reflect the changing status of a patient during
their ICU episode.

The baseline RNN model was trained in the traditional
manner: when the model acquired new data x(ti), it generated
and immediately broadcast a prediction y(ti). Other models
which share the architecture of the baseline RNNmodel were

FIGURE 2. Overview of a standard RNN model with a causal attention
layer.

trained using input perseveration: the same x(ti) vector was
repeatedly given as input to the RNN model k times, where k
is a controllable parameter. While all k outputs – correspond-
ing to the k times that x(ti) was given to the model – were
used for optimization during training, only the last one was
maintained and broadcast as the prediction at time ti during
performance assessment and deployment. Figure 1 illustrates
a Perseverated Recurrent Neural Network (PRNN) model
with k = 3. A python implementation of a perseveration
layer written with PyTorch 1.7.1 can be found in Appendix D.
Note that the baseline RNN can be considered as a PRNN
with k = 1. Input perseveration provides the internal cell
state memory of the RNN additional computational cycles
to incorporate the current state of the patient into the final
prediction.

An attention network using the same hyperparameters
of the baseline RNN model was also implemented. Most
attention networks have access to the entire sequence of
inputs – both past and future relative to the current one –
when making a prediction at any point in time. However,
continuous monitoring of patient status precludes access to
future information, available in a retrospective study but not
in a real deployment scenario. Therefore, the attention layer
between the last hidden layer and output layer used a causal
mask that exposed only the inputs up to the time when a
prediction is being made [31]. This ensured that the network
did not use future information to make its predictions while
affording it another opportunity to consider the totality of
information up to the current time. See Figure 2 for a diagram
of the model.

All six models – baseline RNN (k = 1), PRNN for
k = 2, 3, 4, 5, and attention RNN – were implemented and
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TABLE 2. Hyperparameters for all permutations of the PRNN.

trained using Keras 2.0.7 with the Theano 1.0.2 backend [32],
[33]. For each model, weights were optimized on the train-
ing and validation sets; performance was computed on the
validation set after every epoch (i.e. a full cycle through the
training set), and the best performing weights were saved as
the final model. Table 2 displays the hyperparameters that
were used for all six models. The final models were assessed
for performance metrics on the test set.

D. MODEL ASSESSMENTS
Standard metrics such as the Area Under the Receiver Oper-
ating Characteristic Curve (AUROC), precision, and recall
scores for a binary classification task can capture a model’s
overall predictive performance. These metrics at a single
time point do not measure the lag phenomenon displayed by
LSTMs that, although known, is rarely commented on in the
literature. The trajectory of ROM predictions should reflect
the evolving state of a patient which can have instantaneous
changes. Metrics were designed to quantify a model’s pipe-
up behavior and its ability to capture rapid changes resulting
from clinically adverse events. AUROC was used to compare
overall predictive performance for the main task – predicting
ICU mortality.

1) PIPE-UP BEHAVIOR
A model’s prediction at the first time point is a function of
its model weights, initial state of its memory cells and the
first input. Of these, only the first input varies across differ-
ent patient episodes; therefore, the distribution of a model’s
prediction at the first time point of all episodes indicates the
model’s level of reliance on the first input data. We refer to
this period as the pipe-up period.
The mean and standard deviation of the distribution of all

ŷp(t0) predictions, where ŷp(t0) represents the first prediction
for patient episode p, were computed for all survivors and
non-survivors in the test set. These metrics were computed
for all six RNN models and used to compare their respon-
siveness to the first available information about a patient
episode.

Additionally, to assess the temporal increase in responsive-
ness, the AUROCs for the k = 1 and k = 5 models described
in the previous section were computed for increasing periods
of observation from one to 12 hours.

2) RESPONSIVENESS TO ACUTE EVENTS
The models were also assessed for their initial responses to
clinically adverse events using an average variation metric
computed from the predictions during such periods. In con-
sultation with clinicians, the times when any of the following
occurred were defined as acute time points or intervals:

1) a patient’s heart rate fell to 0;
2) there was a substantial decrease in heart rate, mean

arterial pressure, Glasgow Coma Score, blood oxygen
level (SpO2), arterial blood gas (ABG) pH, and venous
blood gas (VBG) pH between two consecutive record-
ings;

3) there was a substantial increase in creatinine levels or
inotrope score between two consecutive recordings.

We quantified substantial changes as those that were in
the top or bottom X percentile (X ∈ {5.0, 1.0, 0.5}) of
inter-measurement changes. For example, a time point ti was
considered acute in terms of creatinine when the increase in
creatinine level from ti−1 to ti was in the topX percentile of all
creatinine level percent changes between any two consecutive
time points in the test dataset. Similarly, acute time points for
heart rate were those times when the decrease in heart rate
was in the bottom X% of all heart rate changes between any
two consecutive time points of all test set episodes. Table 3
shows the specific percent change thresholds indicating acute
changes in a patient. Thus, a 32% drop in heart rate between
two consecutivemeasurements would be in the top percentile,
while a 70% increase in inotrope score would be in the top
fifth percentile.

Applying three percentile-based thresholds to define acute
patient state changes meant a total of 25 acuity definitions
(2 * 3 increases in measured variables, 6 * 3 decreases in
measured variables, and zero heart rate) used to assess mod-
els’ responses when such events occur. It is important to note
that these are not proposed as general definitions of clinical
acuity. They were designed to capture events that indicate
precipitous changes in a patient’s state with high specificity.

Each defined acute event, denoted by E , identified a set of
acute time points, denoted by SE (p), for each patient episode
p. Changes in a model’s mortality prediction at these time
points were evaluated through an average temporal variation
metric given by:

VE (p) =
100
|SE (p)|

∑
ti∈SE (p)

|ŷp(ti)− ŷp(ti−1)|, (1)

where ŷp(ti) is the prediction for patient episode p at time
point ti, and |SE (p)| is the number of time points in SE (p).
This metric measures how much the predicted ROM (scaled
to [0, 100]) changed, on average, at the defined acute time
points of an episode. Model A having a higher VE (p) than
model B means that when both models were presented with
data reflecting a precipitous change in a patient’s state, model
A’s prediction underwent a greater change than model B’s
prediction, indicating that model A had a more pronounced
response to the acute event. The average of this metric across
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TABLE 3. Thresholds of percent change used to define acute changes in
patient state. Negative thresholds correspond to the bottom p% of
changes and positive thresholds correspond to the top p% of changes, for
p ∈ [5, 1, 0.5].

Np episodes gives a measure of the model’s overall respon-
siveness to acute event E of those episodes:

V̄E =
1
Np

∑
p

VE (p). (2)

3) OVERALL PREDICTIVE PERFORMANCE
Model predictions at ICU admission and at 1, 3, 6, 12, and
24 hours after ICU admission were evaluated for predictive
performance via the AUROC. Performance was only mea-
sured for episodes lasting at least 24 hours to maintain a
consistent cohort across time slices (n = 2130, mortality rate
= 0.046).

III. RESULTS
Figure 3 illustrates trajectories of ROM predictions from two
models, the baseline RNN (k = 1) and a PRNN with k = 5,
for two non-surviving episodes. In the first episode (top),
the patient had a rapid desaturation event (Sp02 dropping
from 100% to 33%) 6 hours after ICU admission. When
presented with this defined acute event, the baseline RNN’s
mortality prediction increased from 0.031 to 0.065, while the
PRNN (k = 5) model’s mortality prediction increased from
0.035 to 0.265. In the second episode (bottom), the patient’s
Glasgow Coma Score decreased from 7 to 4. When presented
with this defined acute event, the baseline RNN’s ROM
prediction increased from 0.24 to 0.30, while the PRNN
(k = 5) model’s ROMprediction increased from 0.31 to 0.50.
In either case, the PRNN model’s immediate response to an
acute event was more pronounced than that of the baseline
RNN model. Further, the trajectory of the baseline RNN’s
predictions after either acute event appears to lag behind that
of the PRNN by about 1-2 hours.

The remainder of this section describes the results from
aggregating the assessment metrics described in Section II-D
across episodes in the test dataset.

A. PIPE-UP BEHAVIOR
Figure 4 shows the distribution of ROM predictions at the
first observation. The mean mortality prediction for survivors
decreased with the perseveration parameter k , going from
0.32 (k = 1) to 0.10 (k = 5). For both survivors and
non-survivors, the standard deviation of the ROM predictions

FIGURE 3. Two examples of predictions following acute events in two
individual patient episodes. The blue curves correspond to the baseline
(k = 1) model, while the orange curves correspond to the PRNN model
with k = 5. The dotted vertical lines denote onset of an acute event for
each patient: (A) a patient whose oxygen saturation decreased from
100% to 33%; (B) a patient’s Glasgow Coma Score decreasing from 7 to 4,
indicating significantly reduced levels of consciousness.

increased with k . The increase in standard deviation was
greater in the non-survivors, going from 0.03 (k = 1) to 0.13
(k = 5).
Figure 5 shows the AUROCs of the k = 1 and k = 5

models at the first 12 hours of each episode. The k = 1 curve
is shifted to the right of the k = 5 curve by approximately
one hour.

B. RESPONSIVENESS TO ACUTE EVENTS
Figure 6 displays the average variation, V̄E , as a function of
k and acuity definitions. Two trends are apparent. First is the
behavior of V̄E as a function of percentile change in a given
physiologic observation or intervention. For each model,
the resulting average variation increased as the change in a
physiologic or intervention variable became more severe (i.e.
from 95.0 to 99.5 percentile). Generally, the average variation
increased monotonically as k increased across all definitions
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FIGURE 4. Distribution of model predictions at the first available observation for survivors and non-survivors.

FIGURE 5. Performance for two models (k = 1 and k = 5) over the first
12 hours of an ICU episode.

of acuity. The attention layer generally demonstrated lower
average variation than the k = 1 model.

C. OVERALL PREDICTIVE PERFORMANCE
Table 4 summarizes the AUROC of model predictions at dif-
ferent times after ICU admission of all episodes in the test set
that lasted at least 24 hours. The AUROC gains due to input
perseveration were larger at the earlier times of prediction
(t ≤ 6 hours), increasing at the first hour from 0.77 when k=1
to 0.83 when k = 5. By the 12th hour, the AUROC did not
significantly change with the perseveration parameter k . For
all models, performance increased with greater observation
time and reduced lead time [34]. Adding an attention layer
had similar performance as the baseline model (k = 1) at

TABLE 4. Test set AUROCs for the mortality prediction at admission and
after 1, 3, 6, 12, and 24 hours of observation. Only the patient episodes
lasting at least 24 hours of ICU time were evaluated.

all evaluation times. The complete ROC curves for each time
slice can be found in Appendix C.

IV. DISCUSSION
Real time predictions for ICUmortality are proxies for sever-
ity of illness [13], [28], [30], [35] and should reflect condition
or status in response to a change in observations of the
patient. The examples in Figure 3 show that the mortality
model trained with input perseveration (PRNN with k = 5)
responded more pronouncedly and immediately than the tra-
ditionally trained model (k = 1) when both were presented
with data reflecting acute changes. Subsequent to the acute
changes, the responses of the traditional RNN appeared to lag
behind the PRNN’s. Standard metrics such as AUROCs for
classification or mean absolute errors for continuous regres-
sion at a single time point do not elucidate this predictive
lag and other deleterious behaviors that can be detrimental
in critical or intensive care settings where rapid recognition
and response are crucial.

Input perseveration provides the RNN’s internal cells addi-
tional computational cycles to incorporate the current state of
the patient into the final prediction. The effect of this method
was demonstrated by metrics designed to capture a model’s
initial responses to newly acquired data.
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FIGURE 6. Comparison of the average variation metric V̄E of different models as defined by Equation 2 across all test set episodes, where the events are
defined by: A) a 95th percentile change; B) a 99th percentile change; C) a 99.5th percentile change; D) a cardiac arrest.

The variation metric described in Section II-D2 compares
the models’ initial responses to data indicating precipitous
changes in a patient’s status. These changes may require
quick reaction time from the care team, therefore rapid
responsiveness of the predictions is important. The compari-
son of variation metrics from the different models (Figure 6)
shows that the LSTM became more responsive to acute clin-
ical events as the level of perseveration, k , increased. When
k increased from 1 to 5, the variation metric corresponding
to the defined precipitous events increased by a factor of
2-3 times. This means that the predicted mortality risk after
an acute event was 2-3 times more pronounced when perse-
veration was set to k = 5 compared to a baseline LSTM
(k = 1) or an attention network. The results also show
that a given model’s responsiveness increased with more
acute events (i.e. those belonging to higher percentile changes
for a given physiologic or intervention variable). These are
consistent with expectations about the variation metric. For
example, one would expect the increases in ROM predictions
to be greater for large drops in blood gasses than for less
severe drops.

Figure 4 compares the distributions of initial predictions
from the different models. Since the first prediction is a func-
tion of both the initial input (which varies across episodes)
and the initial cell state memory (which is fixed), a wider
distribution of these predictions across episodes indicates a
higher reliance on the initial input. This is important because
children admitted to the PICU have different severities of
illness [28], [30]. Increasing k resulted in a wider distribu-
tion of predictions as measured by the standard deviation.
The increase was greater for the non-surviving population
(σ = 0.03 when k = 1 to σ = 0.13 when k = 5) relative to
the surviving population. This is again consistent with clinical
expectations that the non-surviving population would have a

broader range of initial SOI scores (especially in the tail) than
the surviving population.

Increasing the first prediction’s reliance on the initial
measurement – as achieved by the PRNN models with
higher k – also resulted in higher AUROC at ICU admission
(Table 4). As the models observed the patient longer, their
AUROCs increased as expected. Importantly, the increase of
AUROC due to perseveration was greater at the early hours
(t ≤ 3) when information is most scarce, with the 1-hour
AUROC increasing from 0.77 when k = 1 to 0.83 when
k = 5. This means that LSTM-based predictive clinical mod-
els relying on scarce data for early detection could benefit
from the perseveration approach.

Figure 5 and Table 4 demonstrate that a PRNN model
(k = 5) more quickly overcame the initialization state of the
network during the pipe-up period than the baseline model
(k = 1). A clear translation of approximately 1 hour indicates
the ability of the PRNN model to more quickly integrate the
patient observations and provide more responsive predictions
to a clinical team.

Adding a causal attention layer to the baseline (k = 1)
model had no apparent performance improvement in any of
the metrics. The attention network theoretically can put more
weight to the most recent state than to the previous ones. The
results indicate that this mechanism did not improve on what
the baseline LSTM’s gates were already doing, but persis-
tently giving the same input to the model – i.e. perseverating
the input – did.

There are limitations to the perseverated input approach.
Although LSTMs are theoretically good at understanding
temporal trends through their memory cells, there remain
practical limitations to how long prior information can be
maintained to inform future predictions [36], [37]. The PRNN
has the potential to exacerbate these algorithmic deficiencies
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TABLE 5. EMR variables (demographics, vitals and labs) in patient episode matrix. The superscript + indicates the variable is binary, while * indicates the
variable is ordinal. Variables without any superscripts are real-valued.

because of the memory cell’s prolonged exposure to the same
data. A comprehensive assessment of the impact of a potential
reduction in temporal memory was not performed. Never-
theless, the basic data perseveration technique can easily be
generalized to any sequential data.

Further, perseveration increases the number of sequences
requiring computation. Perseveration is used during both
training and inference, and the compute time scales linearly
for both, commensurate with the level of perseveration. Train-
ing time for k = 1 required 6 hours and 8 minutes, while
k = 5 required 41 hours and 14 minutes. Nevertheless,
the time required for inference is on the order of 30ms for
k = 1 (baseline) and 150ms for k = 5 on an NVIDIA
Titan RTX. Since the recording frequency is approximately
every 15 minutes, these computational burdens do not hinder
deployment.

Finally, this proof-of-concept study used only a single
clinical outcome (ICU mortality) and data from a single
center. Future work will examine the effect of perseverating
the data input on other important clinical tasks such as risk of
desaturation, sepsis, and renal failure.

V. CONCLUSION
This work demonstrates that perseverated data input increases
the responsiveness of LSTM models, in both timeliness and
magnitude, to a variety of acute changes to patient state.
After acute events, the magnitude of prediction changes was
2-3 times greater when the input was perseverated. Pipe-
up performance showed approximately an hour improvement
in the ability to understand a patient. These enable quicker
evaluation of patients which is critical in an acute clinical
setting.
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TABLE 6. EMR variables (drugs and interventions) in baseline patient episode matrix. The superscript + indicates the variable is binary, while * indicates
the variable is ordinal. Variables without any superscripts are real-valued.

APPENDIX A
DATA PREPROCESSING OVERVIEW
Disparate measurements of a common underlying physio-
logic measure were grouped into a single variable when
deemed medically appropriate by an pediatric intensivist.
For instance, systolic blood pressures (SBP) measured either
invasively via a catheter or non-invasively via a cuff were
grouped into a single variable representing SBP. Drugs or
interventions which were administered in less than one per-

cent of episodes in the training set were excluded. Measure-
ments incompatible with human life were removed from the
dataset, such as heart rates exceeding 400 beats per minute.
Means and standard deviations derived from the training set
were used to transform physiologic variables and laboratory
measurements to have zeromean and unit variance. Therapies
applied to the patient were scaled to be between 0 and 1 using
clinically defined upper limits (with zero indicating absence
of therapy). No age normalization was performed on the data
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FIGURE 7. Complete ROC curves for (a) t = 0, (b) t = 1, (c) t = 3, (d) t = 6, (e) t = 12, and (f) t = 24.

as age was used as an input feature. Diagnoses were not used
as model inputs.

EMR measurements were sparsely, asynchronously, and
irregularly charted. The median time between measurements

was 22 minutes with a minimum interval of one minute.
Missing measurements for any drugs or interventions were
simply set to zero to indicate absence of treatment. If at
any time there was at least one recorded measurement for
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Listing 1. Code snippet for data perseveration augmentation layer in python.

a physiologic observation or laboratory measurement it was
forward filled until another measurement was recorded. This
reflects the charting practices of the nurses within the ICU.
If there was no recorded physiologic or laboratory value for
an entire episode a mean value generated from the training
set population was used.

It should be noted that many variables are symbolic rep-
resentations of symptoms or signs observed within the ICU
(such as Glasgow Coma Score or FLACC Pain scores) but
were processed in the same manner as direct observations
such as heart rate or temperature.

APPENDIX B
EMR VARIABLES
See Table 5 and 6.

APPENDIX C
RECEIVER OPERATING CHARACTERISTIC CURVES FOR
EACH TIME SLICE
See Figure 7.

APPENDIX D
PERSEVERATION CODE
See Listing 1.
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