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ABSTRACT Accurate identification of the shape and position of organs and abnormal objects (e.g., tumors)
in medical images plays an important role in surgical planning as well as in the diagnosis and prognosis of
diseases. However, this is difficult to achieve from two-dimensional medical images as these images present
inaccurate and ambiguous organ boundaries. Further, traditional image processing-based boundary detection
methods such as the Canny edge detector and Sobel operator exhibit poor boundary detection performance
for images with substantial noise. Recently, the use of deep learning has resulted in improvements in semantic
segmentation in medical images. In this paper, we propose a generic boundary-aware loss function to
facilitate the effective discernment of the boundaries of organs and abnormal objects in medical images.
Specifically, the proposed loss function introduces a boundary area and assigns higher weights to the loss
of pixels located in the boundary area than to those in the non-boundary areas, thereby promoting effective
learning in the boundary area. The results of experiments conducted using publicmedical datasets comprising
colon polyp, skin lesion, and chest X-ray data indicate that the standard loss functions, such as cross-entropy
loss and Dice loss, combined with the proposed boundary-aware loss function, achieve comparable or better
performance than those without the boundary-aware loss function.

INDEX TERMS Boundary extraction, deep learning, loss function, medical image analysis, segmentation.

I. INTRODUCTION
Precisely distinguishing the boundary of each region of
organs and abnormal objects of interest is essential when
the segmentation results of such entities are used for diag-
nosing diseases. Various recent studies have combined deep
learning with medical images for tasks such as detecting
cardiac hypertrophy by locating the heart and lungs in X-ray
images [1] and identifying brain tumors in many clinically
produced magnetic resonance imaging (MRI) images [2].
However, two-dimensional (2D) medical images, such as
X-ray images, show inaccurate and ambiguous boundaries
of organs because three-dimensional (3D) objects are repre-
sented in 2D in such images. Thus, it is difficult to accurately
distinguish boundaries in medical images without expert
anatomical knowledge [3].

Traditional image processing methods for boundary detec-
tion, such as the Canny edge detector [4] and Sobel
operator [5], exhibit poor boundary detection performance
for images with substantial noise owing to their relatively
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simple algorithm processing method [6]. Recently, deep
learning-based image segmentation has been applied to detect
the boundaries of organs and specific objects of interest
with encouraging results [7]. In particular, a convolutional
neural network (CNN) has been used to extract the features
of input images and is frequently used to detect boundaries
in medical images [8]. The three necessary components for
obtaining valid and generalized results from deep learning
are as follows: a deep neural network structure, a rich dataset
to train the network with, and a loss function to optimize
the network parameters. Many studies have been conducted
on neural network structures because they can be designed
according to the characteristics of the dataset and the learning
objective. In addition, the use of feature maps extracted from
the learning process is also being actively researched.

A loss function is a crucial component in deep learn-
ing because it calculates the difference between the ground
truth and the predicted value in the deep learning process.
Representative loss functions that are currently used to seg-
ment medical images include the mean square error (MSE)
loss [9], cross-entropy (CE) loss [10], and Dice loss [11].
The MSE loss is mainly used for linear regression problems.
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It calculates the loss value by squaring the difference between
the value predicted by the CNN and the ground truth and
using it for learning. CE loss is used in multi-class division
problems. Here, a loss function is obtained between the class
predicted by the CNN at the highest probability and the
class of the ground truth, and is used for learning. Dice
loss uses the Dice coefficient between the value predicted
by the CNN and the ground truth for learning. Currently,
novel loss functions based on the differential framework or
distance maps are also being researched in addition to these
traditional loss functions [12]. A feature common to many
of these loss functions is that pixels that are close to the
border as well as those that are not, are considered equally
important.

This paper proposes a loss function to facilitate effec-
tive discernment of the boundaries of organs and abnormal
objects (e.g., tumor) in 2D images. The proposed loss func-
tion introduces a boundary area and assigns higher weights
to the loss of pixels located in the boundary area than to
those in the non-boundary areas, thereby promoting effective
learning in the boundary area. The efficacy of the pro-
posed loss function was evaluated using three medical image
datasets: polyp dataset, skin lesion dataset, and chest X-ray
dataset.

The remainder of this paper is organized as follows.
Section II presents an overview of the studies related to the
proposed loss function. Section III explains the proposed loss
function in detail. Section IV describes the datasets used
in the experiments. Section V validates the proposed loss
function by applying it to each dataset described above and
compares its performance. Finally, Section VI analyzes the
performance of the proposed loss function and outlines future
research directions.

II. RELATED WORK
Effective extraction of the boundary area of organs and
other specific objects of interest is a critical part of image
segmentation. Traditional image processing techniques such
as edge detection algorithms have been used to extract bound-
aries in input images. In addition, adaptive histogram equal-
ization and contrast-limited adaptive histogram equalization
have been used to identify the distribution of light and dark
parts in images and readjust them for effective boundary
distinction.

With the progressively increasing number of studies focus-
ing on deep learning, efforts to effectively detect boundary
areas are being made, such as improvements in the neural
network structure and changes to the loss function. Various
network structures apart from U-Net [13], which is predom-
inantly used in the medical image segmentation field, are
being researched. DoubleUNet [14], which is a combination
of two U-Nets, has effectively extracted features using atrous
spatial pyramid pooling [15] instead of an existing pooling
method. Furthermore, experiments using the 2015 MICCAI
sub-challenge on automatic polyp detection dataset [16] and
the 2018 Data Science Bowl challenge dataset [17] showed

improved segmentation performance for DoubleUNet com-
pared to other segmentation networks. PraNet [18] used an
inverted image of the ground truth in the learning process
as the input of an attention module, realizing an effective
medical image segmentation performance. The self-attention
technique, which is mainly used in recurrent neural networks
(RNNs), is applied to CNNs; this technique plays a role
in emphasizing the important parts in the learning process.
The self-attention technique has been applied to the neural
network structure in various ways, and has shown improved
performance compared to existing neural networks [19].

The traditional medical image segmentation approach uses
basic loss functions such as MSE, CE, and Dice, which
are also used in image classification and object detec-
tion. Many loss functions specializing in boundary dis-
tinctions have recently been researched [12]. For example,
Kervadec et al. [20] effectively distinguished the boundaries
of brain tumors by calculating the difference between the
area predicted by a neural network and the ground truth area
using the differential framework. The HausDorff loss [21] has
been applied to effectively distinguish boundaries by mini-
mizing the HausDorff distance between the area predicted by
a neural network and the ground truth area. Caliva et al. [22]
used a loss function with a distance map for a dataset with
data imbalance and effectively distinguished a 3D knee joint
boundary. The focal loss function [23] resolves the data
imbalance problem, and when the prediction by the neural
network is incorrect, it facilitates the accurate training of
the neural network by assigning weights to the loss values.
The boundary-attention semantic loss [24] is similar to the
proposed loss function in that the loss of pixels located on the
boundaries is weighted. However, the proposed loss function
has a more general form as it allows both the boundaries and
the neighboring areas to be considered in learning definitive
boundary features.

III. BOUNDARY-AWARE LOSS FUNCTION
This paper proposes a boundary-aware (BA) loss function
that can effectively distinguish boundaries. The proposed
function calculates the loss values for boundary and
non-boundary areas separately to perform learning with a
focus on the boundary area. It sets weights to the loss values
of the boundary area so that learning can be performed accu-
rately when the neural network makes an incorrect judgment
in a boundary area. A boundary area refers to the inner and
outer areas starting at a boundary and extending to a distance
of r pixels from the boundary, as shown in Fig. 1. The bound-
ary areas of individual training images are pre-computed in
the training process using the range of the boundary area and
corresponding ground truths. Therefore, when calculating the
loss value of a model prediction, the deep learning model
determines whether each pixel is included in the boundary
area and calculates the loss values separately for the boundary
and non-boundary areas.

Equation (1) is the general form of the BA loss func-
tion, where LB denotes the loss value for the boundary area,
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FIGURE 1. An example of a boundary area (Thick black line: boundary,
brown dotted line: boundary of the boundary area, r : range of the
boundary area).

LnotB denotes the loss value for the non-boundary area, and
p1 and p2 denote the weights given to each area. Each weight
emphasizes the boundary and non-boundary areas in the
learning process. Equation (2) shows an example of imple-
menting the proposed BA loss function by applying it to the
MSE loss function.

LBA = p1 × LB + p2 × LnotB, p1 > p2> 0 (1)

LMSE+BA =
1
n

(
p1

n∑
i

b(i) (yi − ti)2

+ p2
n∑
j

(1− b (j))
(
yj − tj

)2 (2)

The MSE loss function calculates the loss by squaring the
difference between the ground truth (ti) and the predicted
value (yi). In Equation (2), n denotes the total number of
pixels in the input image. The b(i) is an indicator function
to determine if a given pixel i belongs to the boundary area.
That is,

b (i) =

{
1, if the pixel i belongs to the boundary area,
0, otherwise

If k denotes the number of pixels located within the bound-
ary area, then the BA loss function calculates the loss values
of k pixels in the boundary area and (n− k) pixels in the
non-boundary area based on the MSE loss function, and
weights are given for p1 and p2. Finally, the loss values
calculated using the BA loss function are added to the two loss
values (boundary area and non-boundary area loss values),
which are divided by n to obtain the average loss value.
As shown in Equation (3), the BA loss function is suffi-

ciently general that it can be used in combination with various
other standard loss functions, in addition to the MSE loss
function. For example, it can be combined with the CE loss
(e.g., LCE+BA) and Dice loss (e.g., LDice+BA) functions, which
are frequently used in image segmentation.

LCE+BA = −
1
n

(
p1

n∑
i

b(i)yi log ti

+ p2
n∑
j

(1− b(j))yj log tj



LDice+BA =
1
n

(
p1

k∑
i

b(i)
(
1− 2×

ti ∩ yi
ti + yi

)

+ p2
n∑
j

(1− b(j))
(
1− 2×

tj ∩ yj
tj + yj

) (3)

Boundary (BD) loss, a relatively new type of loss func-
tion, aims to minimize the distance between the ground
truth and predicted segmentation. In particular, for addressing
highly unbalanced segmentation, the loss function uses inte-
grals over the boundary between regions of interest, rather
than using unbalanced integrals over the regions [12], [20].
As with other standard loss functions, the BA loss function
can be easily combined with the BD loss function (e.g.,
LBD+BA)—see (4).

LBD+BA = −
1
n

(
p1

∫
b(q)8G (q) sθ (q) dq

+ p2

∫
(1− b (q))8G (q) sθ (q) dq

)
(4)

In Equation (4), 8G(·) is the level set representation of the
boundary that evaluates the distance between a pixel on a
model prediction and the nearest pixel in the boundary area
of the target object, whereas sθ (·) is the softmax probability
outputs of the deep learningmodel. More details can be found
in [20].

IV. DATASETS
A. POLYP DATASET
For the polyp datasets, the CVC-ClinicDB [25] and
ETIS [26] datasets were used. CVC-ClinicDB is com-
posed of 612 frames extracted from 29 colonoscopy images
and videos. These frames contain several examples of
polyps. The database was used in the training stages of the
MICCAI2016 sub-challenge for automatic polyp detection
based on colonoscopy. Similarly, the ETIS database consists
of 196 frames extracted from colonoscopy videos.

B. SKIN LESION DATASET
For the skin lesion datasets, open PH2 [27] and ISBI [28]
were used. The PH2 dataset, provided by a research team
at Proto University in Portugal, is composed of 200 images,
including 80 atypical and typical moles each, and 40
melanomas. The ISBI dataset was created for the detection of
melanoma and is composed of 900 images in total. Because
the skin lesion dataset is composed of skin images captured
with a microscope, the skin areas have a circular shape,
whereas the other parts are shown in black.

C. CHEST X-RAY DATASET
For the chest X-ray datasets, Montgomery [29] and Japanese
Society of Radiological Technology (JSRT) [30] datasets
were used. TheMontgomery dataset, published by the Health
Department of Montgomery County in the US, consists
of 138 images, including 80 tubercular patient images and
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FIGURE 2. The segmentation deep learning model using the standard
U-Net architecture. Numbers in parentheses represent the spatial
resolutions of feature maps when images of 256× 256 pixels are used as
inputs.

58 normal images. The JSRT dataset is composed of 154 lung
nodule patient images and 93 normal images.

V. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
To evaluate the effectiveness of the BA loss function,
deep learning models for segmentation were built based
on the standard U-Net architecture using ResNet-101 [31]
as the backbone (see Fig. 2). U-Net is a representative
encoder–decoder network that has proven to be efficient and
stable in many biomedical image segmentation tasks such
as brain image segmentation and liver image segmentation.
The encoding part of U-Net is similar to that of the typical
CNNs, where convolutional operations followed by a max-
pool downsampling are applied to encode the input image into
feature representation at multiple different levels. The decod-
ing part consists of upsampling and concatenation followed
by regular convolutional operations to semantically project
the discriminative features learned by the encoder network
onto pixel space to obtain a dense classification. The key
aspect of U-Net is its skip connections between mirrored
layers in both encoder and decoder networks for concatenat-
ing higher resolution feature maps from the encoder network
with the upsampled feature map to transfer coarse global
contextual information, thus enabling the recovery of local
discriminative features attenuated during downsampling. For
implementation, the convolutional block is composed of the
repeated application of a 3 × 3 convolution with stride and
padding of one, followed by batch normalization (BN) and
a rectified linear unit (ReLU). For downsampling, a 2 × 2
maxpooling with stride of two is used, whereas a 3 × 3
transpose convolution with stride of two and no padding is
used for upsampling at the decoder side.

All deep learning models in our study were implemented
using the PyTorch [32] framework and ran on an NVIDIA
TITAN-XP GPU. The whole network was trained end-to-end
using a stochastic gradient descent optimizer [33] with a

mini-batch size of eight and a momentum of 0.9. The base
learning rate was set to 10−2 and then decreased by a factor
of 10 when the validation set accuracy ceased to improve.
The epoch size was set to 100. We applied early stopping
to avoid overfitting. The boundary area (r) was set to two
pixels, and the weights of the boundary area to five for p1
and one for p2. These values were empirically set. Ourmodels
were initialized with standard ResNet-101 pre-trained on the
ImageNet [34] classification dataset. Eighty percent of the
total data was used as training data while the remaining 20%
was used as evaluation data. We conducted such split for all
datasets. Prior to training and evaluation, colonoscopy skin
images were resized to 256×256 pixels, whereas chest X-ray
images were resized to 512× 512 pixels.
For performance comparison, Dice coefficient, precision,

and recall were used. The corresponding equations are pre-
sented as Equation (5), where TP, FP, and FN indicate the
number of true positive, false positive, and false negative
pixels, respectively.

Dice =
2TP

TP+ FP+ FN

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN
(5)

To improve the validity of the proposedmethod, we applied
a 5-fold cross validation on the dataset: for each fold, wemea-
sured the corresponding performancemetrics. The final result
was the averaged result incorporating the standard deviation
of the five evaluations.

B. RESULTS BY DATASET
1) POLYP DATASET
Table 1 presents the results of the experiment conducted
using the polyp dataset. The results show a poor segmen-
tation performance in general because polyps are similar to
wrinkles in the large intestine. However, when the proposed
BA loss function was combined with the MSE, CE, and
Dice loss functions, the Dice, precision, and recall values
generally improved. The method of calculating the loss by
dividing the boundary and the non-boundary areas, which is
a characteristic of the BA loss function, can detect polyps
effectively because of the difference created between them
and the background. Figs. 3 shows an example of the polyp
dataset, ground truths (GTs) indicating disease areas, and the
segmentation results when each loss function was combined
with BA loss. As shown in the figures, particularly when the
CVC-ClinicDB dataset was used, the area predicted by the
existing loss function is smaller than the area of the ground
truth, or its shape is not similar to that of the ground truth.
However, when the BA loss function was applied, the shape
of the area predicted was similar to that of the ground truth,
showing an improvement compared to when only the existing
loss function was applied.
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TABLE 1. Experimental results obtained using the polyp dataset.

FIGURE 3. Polyp segmentation results obtained using the CVC-ClinicDB and ETIS datasets. For each dataset, the first column shows input images
from the dataset and the second column includes the segmentation masks used as the ground truth. The third and fourth columns show the
segmentation results for different loss functions.

2) SKIN LESION DATASET
Table 2 shows the experimental results obtained when the
skin lesion dataset was used. It was observed that a relatively
high segmentation performance was achieved compared to
those with the polyp datasets because the differences in pixel
values between the area affected by disease and the back-
ground are clear, which enables accurate prediction of the
inner part of lesions. The Dice, precision, and recall values
in Table 2 show a slight improvement in performance, except
the MSE loss function for the ISBI dataset. However, many
of the skin lesion images contain relatively coarse boundaries,

as shown in Fig. 4, making it difficult for a neural network to
accurately predict their boundaries. As a result, when the area
predicted by the existing loss function is compared with that
obtained using the same loss function combined with the BA
loss function, it was observed that accurate prediction of the
boundary was difficult to achieve and only a rough boundary
was obtained in both cases.

3) CHEST X-RAY DATASET
Table 3 shows the result of the experiment conducted using
the chest X-ray dataset. The results show high segmentation
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TABLE 2. Experimental results obtained using the skin lesion dataset.

FIGURE 4. Skin lesion segmentation results obtained using the PH2 and ISBI datasets. For each dataset, the first column shows input images from the
dataset and the second column includes the segmentation masks used as the ground truth. The third and fourth columns show the segmentation
results for different loss functions.

performance for every loss function because it has a relatively
clear boundary area compared to the colon polyp dataset or
skin lesion dataset, which makes it relatively easy to dis-
tinguish the boundary area from the background. According
to the experimental results shown in Table 3, although the
existing loss functions combined with the BA loss function
had slightly superior performance over the corresponding loss
functions without the BA loss function, both types of loss
functions already showed a very high level of segmentation
accuracy and the differences between them were marginal.
As shown in Fig. 5, both types of loss functions were able
to accurately predict the boundaries of the left and right side

of the thorax. However, they differ in segmentation results
for the areas where the heart and the lungs are in contact
and/or the diaphragmatic region, where the boundaries were
predicted less accurately.We acknowledge that because of the
diversity of the shape of the heart and the lungs, the segmenta-
tion accuracy was not improved considerably by the BA loss
function alone, but it can improve if data on various lung areas
are provided.

C. SENSITIVITY TO THE CONFIGURABLE PARAMETER
The range of the boundary area is a hyperparameter that
controls where in the input image the deep learning models
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TABLE 3. Experimental results obtained using the chest X-ray dataset.

FIGURE 5. Lung segmentation results obtained using the Montgomery and JSRT datasets. For each dataset, the first column shows input images from
the dataset and the second column includes the segmentation masks used as the ground truth. The third and fourth columns show the segmentation
results for different loss functions.

should focus more; therefore, it can affect the overall perfor-
mance of the deep learning models using the loss function.
To explore the behavior of the BA loss function according
to the hyperparameter, we conducted several experiments
while changing the values of the range of the boundary area.
For the experiments, the range of the boundary area was set
to 1, 5, and 10. Note that the setting of various boundary
area ranges is only for comparing the performance changes
according to the range of the boundary area, and not for
finding the optimal range of the boundary area in each dataset.
Fig. 6 shows the Dice, precision, and recall performances for
various combinations of the datasets (CVC-ClinicDB, ETIS,

PH2, ISBI,Montgomery, and JSRT) and loss functions (MSE,
CE, and Dice) used in this experiment. The experimental
results show performance variations because each dataset has
very different characteristics. In general, as shown in the
figure for each dataset, if the range of the boundary is too
small, there are fewer factors affecting the learning, making
it difficult to achieve performance improvement. Conversely,
if the range is too large, performance improvement is also
difficult to achieve because the meaning of the boundary area
disappears.

The other hyperparameters are the weights assigned
to the loss of pixels for the boundary area and the
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FIGURE 6. Sensitivity to the range of the boundary area.

FIGURE 7. Sensitivity to the weights. X-axis represents the weights pair (p1, p2).

non-boundary area. For the experiments, with a fixed bound-
ary range of two, we used six different weights pairs for
(p1, p2) from (50, 1) to (1, 50). As shown in Fig. 7, the indi-
vidual loss functions exhibited different performance pat-
terns depending on the datasets used. However, in general,

the larger the difference between two weights, the less likely
it is to achieve better performance (see Fig. 8). In particular,
when a higher weight is assigned to the loss of pixels in the
boundary area, the boundary of the object of interest can be
more accurately predicted. However, the downside of this
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FIGURE 8. Examples of segmentation using different weight parameters.
The first column shows input images from different datasets and
the second column includes the segmentation masks used as the ground
truth. The third and fourth columns show segmentation results for the
LDice+BA loss with (p1 = 50, p2 = 1) and (p1 = 1, p2 = 50), respectively.

is less-accurate predictions for the inner part of the target
object to segment, resulting in holes in the inner part of the
segmentation result. On the other hand, with a higher weight
for the non-boundary area, the performance for the boundary
extraction can degrade.

VI. CONCLUSION
This paper proposed a loss function for effective distinction
of the boundary areas in medical images. The proposed loss
function calculates the loss values separately for the boundary
and non-boundary areas. Furthermore, it assigns different
weights to the loss values of the two separated areas to pro-
mote effective learning of the neural network in the boundary
area.

To verify the efficacy of the proposed loss function, exper-
iments were conducted using three types of datasets: colon
polyp dataset, skin lesion dataset, and chest X-ray dataset.
The experimental results obtained using these public medical
datasets showed that the existing loss functions, such as cross
entropy loss and Dice loss, combined with the proposed
boundary-aware loss function achieved comparable or bet-
ter performance than those without the boundary-aware loss
function depending on the dataset used.

There are several limitations in this study. The BA loss
function assigned different weights to the boundary area
and non-boundary area to force the deep learning models
to learn from poorly segmented pixels in the boundary area.
Therefore, if the boundaries are not definitive, as in the case
of the skin lesions, the performance improvement may be
marginal. The performance of the deep learning models using
the BA loss function varied according to the weights and
the range of the boundary area. Optimal values for these
can vary depending on the applications, and they need to be
determined empirically. The public medical datasets used for
the experiments contain a relatively small number of samples
compared to large-scale image datasets such as ImageNet.

Therefore, experiments using a large number of training
samples with various lesions may be necessary to further
investigate the performance of the BA loss function. In future,
we will investigate the possibility of extending the BA loss
function to address the abovementioned limitations.

REFERENCES
[1] Z. Li, Z. Hou, Z. Hao, Y. An, S. Liang, B. Lu, and C. Chen, ‘‘Automatic

cardiothoracic ratio calculation with deep learning,’’ IEEE Access, vol. 7,
pp. 37749–37756, 2019.

[2] A. Ari and D. Hanbay, ‘‘Deep learning based brain tumor classification
and detection system,’’ Turkish J. Elect. Eng. Comput. Sci., vol. 26, no. 5,
pp. 2275–2286, 2018.

[3] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, ‘‘Image segmentation using deep learning: A sur-
vey,’’ 2020, arXiv:2001.05566. [Online]. Available: http://arxiv.org/abs/
2001.05566

[4] J. Canny, ‘‘A computational approach to edge detection,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[5] I. E. Sobel, ‘‘Camera methods and machine perception,’’ Ph.D. disserta-
tion, Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 1970.

[6] R. B. Hegde, K. Prasad, H. Hebbar, and B. M. K. Singh, ‘‘Comparison of
traditional image processing and deep learning approaches for classifica-
tion of white blood cells in peripheral blood smear images,’’ Biocybern.
Biomed. Eng., vol. 39, no. 2, pp. 382–392, Apr. 2019.

[7] M. Lai, ‘‘Deep learning for medical image segmentation,’’ 2015,
arXiv:1505.02000. [Online]. Available: http://arxiv.org/abs/1505.02000

[8] B. Kayalibay, G. Jensen, and P. van der Smagt, ‘‘CNN-based segmentation
of medical imaging data,’’ 2017, arXiv:1701.03056. [Online]. Available:
http://arxiv.org/abs/1701.03056

[9] C. Sammut and G. I. Webb, Eds. Encyclopedia of Machine Learning.
Boston, MA, USA: Springer, 2011, doi: 10.1007/978-0-387-30164-8_528.

[10] S. Mannor, D. Peleg, and R. Rubinstein, ‘‘The cross entropy method
for classification,’’ in Proc. 22nd Int. Conf. Mach. Learn. (ICML), 2005,
pp. 561–568.

[11] K. H. Zou, S. K. Warfield, A. Bharatha, C. M. Tempany, M. R. Kaus,
S. J. Haker, W. M. Wells III, F. A. Jolesz, and R. Kikinis, ‘‘Statistical
validation of image segmentation quality based on a spatial overlap index,’’
Acad. Radiol., vol. 11, no. 2, pp. 178–189, Feb. 2004.

[12] J. Ma, J. Chen, M. Ng, R. Huang, Y. Li, C. Li, X. Yang, and A. L. Martel,
‘‘Loss Odyssey in medical image segmentation,’’ Med. Image Anal.,
vol. 71, Jul. 2021, Art. no. 102035.

[13] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional net-
works for biomedical image segmentation,’’ in Proc. Med. Image Comput.
Comput.-Assist. Intervent, 2015, pp. 234–241.

[14] D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen,
‘‘DoubleU-Net: A deep convolutional neural network for medical image
segmentation,’’ in Proc. IEEE 33rd Int. Symp. Comput.-Based Med. Syst.
(CBMS), Jul. 2020.

[15] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘‘Rethinking atrous
convolution for semantic image segmentation,’’ 2017, arXiv:1706.05587.
[Online]. Available: http://arxiv.org/abs/1706.05587

[16] (Jun. 23, 2021). 2015 MICCAI Challenge. [Online]. Available:
http://www.imagenglab.com/wiki/mediawiki/index.php?title=
2015_MICCAI_Challenge

[17] (Jun. 23, 2021). 2018 Data Science Bowl. [Online]. Available:
https://www.kaggle.com/c/data-science-bowl-2018

[18] D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao,
‘‘PraNet: Parallel reverse attention network for polyp segmentation,’’ 2020,
arXiv:2006.11392. [Online]. Available: http://arxiv.org/abs/2006.11392

[19] Y. Wu, Y. Ma, J. Liu, J. Du, and L. Xing, ‘‘Self-attention convolutional
neural network for improvedMR image reconstruction,’’ Inf. Sci., vol. 490,
pp. 317–328, Jul. 2019.

[20] H. Kervadec, J. Bouchtiba, C. Desrosiers, E. Granger, J. Dolz, and
I. B. Ayed, ‘‘Boundary loss for highly unbalanced segmentation,’’ Med.
Image Anal., vol. 67, Jan. 2021, Art. no. 101851.

[21] D. Karimi and S. E. Salcudean, ‘‘Reducing the Hausdorff distance in
medical image segmentation with convolutional neural networks,’’ 2019,
arXiv:1904.10030. [Online]. Available: http://arxiv.org/abs/1904.10030

[22] F. Caliva, C. Iriondo, A. M. Martinez, S. Majumdar, and V. Pedoia,
‘‘Distance map loss penalty term for semantic segmentation,’’ 2019,
arXiv:1908.03679. [Online]. Available: http://arxiv.org/abs/1908.03679

VOLUME 9, 2021 103883

http://dx.doi.org/10.1007/978-0-387-30164-8_528


M. Kim, B.-D. Lee: Simple Generic Method for Effective Boundary Extraction in Medical Image Segmentation

[23] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2980–2988.

[24] Y. Liu, H. Shi, H. Shen, Y. Si, X. Wang, and T. Mei, ‘‘A new dataset and
boundary-attention semantic segmentation for face parsing,’’ in Proc. 34th
AAAI Conf. Artif. Intell. (AAAI), 2020, pp. 11637–11644.

[25] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez,
and F. Vilariño, ‘‘WM-DOVA maps for accurate polyp highlighting in
colonoscopy: Validation vs. saliency maps from physicians,’’ Comput.
Med. Imag. Graph., vol. 43, pp. 99–111, Jul. 2015.

[26] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, ‘‘Toward embed-
ded detection of polyps in WCE images for early diagnosis of colorectal
cancer,’’ Int. J. Comput. Assist. Radiol. Surg., vol. 9, no. 2, pp. 283–293,
Mar. 2014.

[27] (Jun. 23, 2021). PH2 Dataset. [Online]. Available: https://www.kaggle.
com/sergeygoldyaev/ph2dataset

[28] (Jun. 23, 2021). ISICChallenge. [Online]. Available: https://challenge.isic-
archive.com/data

[29] S. Jaeger, ‘‘Two public chest X-ray datasets for computer-aided screen-
ing of pulmonary diseases,’’ Quant. Imag. Med. Surg., vol. 4, no. 6,
pp. 475–477, Dec. 2014.

[30] J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi,
K.-I. Komatsu,M.Matsui, H. Fujita, Y. Kodera, andK.Doi, ‘‘Development
of a digital image database for chest radiographs with and without a
lung nodule: Receiver operating characteristic analysis of Radiologists’
detection of pulmonary nodules,’’ Amer. J. Roentgenol., vol. 174, no. 1,
pp. 71–74, Jan. 2000.

[31] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. CVPR, Las Vegas, NV, USA, Jun. 2015,
pp. 770–778.

[32] (Jun. 23, 2021). PyTorch. [Online]. Available: https://pytorch.org
[33] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’

2016, arXiv:1609.04747. [Online]. Available: http://arxiv.org/abs/
1609.04747

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, and A. C. Berg, ‘‘ImageNet large
scale visual recognition challenge,’’ Int. J. Comput. Vis., vol. 115, no. 3,
pp. 211–252, Dec. 2015.

MINKI KIM received the B.S. degree from the
Department of Computer Science, Kyonggi Uni-
versity, SouthKorea, in 2020, where he is currently
pursuing the M.S. degree with the Department of
Computer Science. His current research interests
include computer vision, deep learning, and med-
ical image analysis.

BYOUNG-DAI LEE received the B.S. and M.S.
degrees in computer science from Yonsei Uni-
versity, South Korea, in 1996 and 1998, respec-
tively, and the Ph.D. degree in computer science
and engineering from the University ofMinnesota,
Minneapolis, USA, in 2003. From 2003 to 2010,
he worked with Samsung Electronics, Company
Ltd., as a Senior Engineer. He is currently a Full
Professor with the Division of Computer Sci-
ence and Engineering, Kyonggi University, South

Korea. His research interests include machine learning, deep learning, and
medical image analysis.

103884 VOLUME 9, 2021


