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ABSTRACT In AC/DC hybrid power system, AC system failures and commutation valve trigger pulse
disorder will lead to commutation failure, which may lead to DC voltage fluctuations, power transmission
interruption and other serious consequences. In order to accurately and effectively identify the specific causes
of commutation failures, a double deck traceability identification method is proposed in this paper. The
surface identification based on wavelet entropy and affinity propagation (AP) algorithm can distinguish
internal and external faults. The deep identification uses convolution neural network which can further lock
the specific cause of commutation failures. In this paper, 1) the various factors leading to commutation
failures are analyzed; 2) the fault feature space consists of the wavelet analysis components of DC voltage
signal, and the AP algorithm is used to identify the surface source; 3) the DC current, AC voltage and current
signals are added into the sample matrix of fault time-space, and the convolution neural network is used to
identify the deep traceability. Finally, the accuracy of the method is verified by using the typical HVDC
model.

INDEX TERMS Commutation failures, AP clustering algorithm, deep learning, fault cases identification,
double-deck method.

I. INTRODUCTION
Commutation failure (CF) is one of the typical faults of
traditional high-voltage direct current (HVDC) system [1].
If the cause of CF persists or is not properly handled, it will
lead to subsequent CF, which will force the DC system to
block and seriously affect the safe and stable operation of AC
and DC systems [2]–[4]. The voltage drop of the inverter side
and DC current rise are the main reasons for commutation
failures [5]–[7]. The fault of internal trigger pulse circuit
in commutation valve will also cause commutation failures.
In [8], the commutation voltage time area was proposed and
combined with the commutation angle to study the mecha-
nism of commutation failures. Some scholars considered AC
system faults, the change of AC voltage and phase shift to
summarize the impact to CF in [9]–[11]. Some researchers
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focused on the prediction control and evaluation of CF, which
could improve the stability of HVDC system in [12] and [13].
With the rapid development of HVDC project, commutation
failure of multi infeed HVDC system has been studied in [9],
[14], [15].

In view of CF fault identification, the existing literatures
mainly focus on the identification indicators and threshold
setting, which are the important part of methods. In [16],
the DC voltage on the inverter side was selected as the
monitoring signal. The wavelet energy of each layer was
calculated and constructed as the inputs. The neural network
based on back propagation (BP) was used to identify the
fault types. However, the internal fault type of the converter
valve was not considered and the specific type of DC line
fault was also not specified. However, the internal fault type
of the converter valve was not considered and the specific
type of DC line fault was also not specified. A CF diag-
nosis method based on wavelet packet decomposition and
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generalized regression neural network was proposed in [17].
AC current was monitored during the CF, and wavelet packet
decomposition was carried out to construct a new energy
spectrum. On this basis, the generalized return neural net-
work in two modes was used to judge whether commutation
failures occurs or not. It can also distinguish the specific
fault cases. The decomposition of DC current and AC voltage
was realized by wavelet analysis, and the specific fault types
were distinguished and identified according to the wavelet
energy statistics of each layer in [18]. However, the index
definition and the threshold setting were mostly related to
the system parameters. The structure setting was related to
the general adaptability of the project. In [19], the grey com-
prehensive relationship degree and wavelet energy spectrum
were introduced into the CF fault diagnosis. The inverter
side DC current was selected as the original input signal.
The wavelet energy spectrum was used to extract features.
According to grey comprehensive relationship degree, the
fault could be diagnosed. However, the specific failure type
of the converter valve was not considered. The general idea of
the above literatures is to extract the features of fault informa-
tion and diagnose the fault by combining with identification
algorithms. However, the parameters for the most of methods
are required to be taken closely with the related to specific
projects.

Accurately identifying the fault causes of commutation
failures and taking corresponding measures in time could
provide a powerful guarantee for suppressing the subsequent
commutation failures, speeding up the fault recovery and
ensuring the safety and stability of the system operation.
In this paper, a double-deck tracingmethod for identifying the
causes of CF in HVDC system is presented, which includes
surface identification and deep identification. In surface iden-
tification, wavelet entropy is used to extract fault signal fea-
tures and construct fault feature space. The AP algorithm is
introduced to distinguish the converter valve faults from the
AC system faults. In this process, the data’s own characteristic
is fully considered, which could avoid the interference of
human factors, so as to make the surface identification unsu-
pervised. In deep identification, sample matrix of fault time-
space is constructed by auxiliary electrical signals, which
could reflect the characteristics of the system during the fault
more effectively. The convolution neural network is selected
as the deep identification algorithm to identify the deep trace-
ability of CF. Finally, the accuracy of the proposed method is
verified by using the typical HVDC model.

The rest of the paper is organized as follows: Section II
analyzes the CF mechanism and the different fault causes
of HVDC system. Section III proposes the surface identifi-
cation method and the composition of fault feature space..
Section IV proposes the deep identification method and the
composition of sample matrix of fault time-space. In section
V, the process of double-deck identification method is pro-
posed. The case study is shown in Section VI, and the sim-
ulation is undertaken on the typical HVDC model. Based on
the case study, conclusions are presented in Section VII.

II. ANALYSIS OF COMMUTATION FAILURES MECHANISM
OF HVDC SYSTEM
The factors that cause commutation failures are complex.
At present, the commonly used expression of the extinction
angle of valves at the inverter side of HVDC transmission
system is described as follows [20]:

γ = arccos

(√
2IdXc
Uac

+ cosβ

)
− ϕ (1)

where Id is the DC current, Xc represents the commutation
reactance and it can be determined by Xc = ωLc. The
commutating voltage is Uac which is AC bus line voltage.
β and ϕ are the leading firing angle and the forward angle
of commutation voltage zero-crossing during the asymmetric
grounding faults.

Generally, when the extinction angle of valves is less than
its minimum angle, the commutation failures of the converter
occur. It can be known from (1) that the failures of the AC
system on the inverter side leads to the decrease of the AC
side line voltage and the increase of the DC current, which
are the main reason for the decrease of γ [7]. At the same
time, the internal faults of the converter will also cause the
converter valve to fail to conduct normally. In this paper,
we consider the converter valve faults and AC system faults,
which could cause CF directly. We use the disturbance of
trigger pulse signals to simulate the faults of converter control
system and firing circuit of converter.

This expression can theoretically analyze which factors
can lead to the decrease of γ , but in practical engineering
applications, it is very difficult to judge which fault lead to
CF. The causes of CF of HVDC systems can be roughly
divided into two categories, which can be expressed as two
surface fault sets V and W, where V is the converter valve
fault set and W is the AC side fault set. Each type of surface
fault set can be subdivided into different deep fault types,,
V = [V1,V2, · · · ,Vn],W = [W1,W2, · · · ,Wn] and the
details are shown in Table 1.

III. SURFACE IDENTIFICATION METHOD
The double-deck traceability identification method proposed
in this paper is divided into surface identification and deep
identification. AP algorithm is selected as the core algorithm
for surface identification to identify which kind of surface
fault the unknown fault signal belongs to.

A. FAULT FEATURE SPACE
When commutation failures occurs in HVDC system,
the fault electrical signals often show complex and disordered
characteristics. Establishing a fault identification framework
with the electrical signals directly could increase the com-
plexity of calculation. At the same time, the single dimension
electrical signals cannot well represent the whole characteris-
tics of the fault signal. Therefore, it is particularly important
to reasonably extract the characteristic information contained
in the fault signal from multiple dimensions.
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TABLE 1. Fault causes classification.

The different types of wavelet entropy are used to show
the characteristics of electrical signals to construct the fault
feature space in this paper, which includes the wavelet energy
entropy (WEE), wavelet singular entropy (WSE), wavelet
distance entropy (WDE) [21]–[23]. The energy distribution
characteristics of the signal in time domain and frequency
domain are shown by WEE. WSE is used to measure the
complexity and uncertainty of signals, and WDE is used to
describe the distance between different coefficient matrices,
which reflects the internal relation characteristics of fault
signals. The expressions are shown as follows:

WEE = −
∑
ε=1

(Eε/E) log (Eε/E) (2)

WSE =
∑
ε=1

[
− (λε/λ) log (λε/λ)

]
(3)

WDE = −
∑
s=1

Ds lnDs

Ds = ‖xa − xb‖ /
∑
a6=b

‖xa − xb‖
(4)

where Eε represents the energy of wavelet layer ε and E is
the sum of the energy, λε represents the singular value of the
coefficient matrix of wavelet layer ε and λ are the sum of
the singular values. Ds represents the distance between the
wavelet coefficients of the s-th pair of wavelet layers. The
parameters xa and xb are the wavelet coefficients of wavelet
layer a and layer b.
Various faults could cause CF. According to the above

theory, three different wavelet entropies are used to construct
the fault feature space T . It not only can show the charac-
teristic information contained in the complex and disordered
fault signal from different angles, but also can reduce the
complexity of the signal. So that the operation speed of the
subsequent algorithm could be improved

T = [T1,T2, · · · ,Ti]T , i = 1, 2, · · · ,m (5)

Ti = [WSEi,WEEi,WDEi] (6)

where i represents a specific fault which cause CF, and m
represents the number of all fault types.

B. AP ALGORITHM
AP algorithm is a new unsupervised clustering algo-
rithm [24]. The algorithm regards all sample points as poten-
tial clustering center points. It introduces the concepts of
attraction and attribution among samples, and realizes sam-
ple clustering through iterative updating. Compared with the
traditional algorithms, this algorithm is insensitive to the
selection of initial values and does not need human interven-
tion [25].

Firstly, the fault feature space T is constructed by process-
ing the data according to section A, and then the similarity
matrix Sm×m can be calculated to initialize the algorithm

S (i, j) = −
∥∥Ti − Tj∥∥ , (i, j = 1, 2, · · · ,m) . (7)

In the matrix S, the diagonal element is called the bias
parameter, and its value is used as the standard to select which
sample point could become the center point.

Then, the attractiveness and the attribution among the sam-
ple points are calculated iteratively

Rt+1 (i, j) =


S (i, j)−max

k 6=i,j
At (i, k)

+ S (i, k)} , i 6= j
S (i, j)−max

k 6=i,j
{S (i, k)} , i = j

At+1 (i, j) =



min {0,Rt+1 (j, j)
+

∑
k 6=i,j

max {0,Rt+1 (k, j)}} , i 6= j∑
k 6=j

max {0,Rt+1 (k, j)} , i = j

i, j, k = 1, 2, · · · ,m
t = 0, 1, · · · , n

(8)

where Rt (i, j) is the attractiveness between the point i and
point j at the t-th iteration. At (i, j) is the attribution between
the point i and point j at the iteration t , it indicates the support
of point i for point j to become itself center. S (i, j) is the
similarity between point i and point j. The initial condition
is A0 (i, j) = 0. In (8), the attractiveness Rt (i, j) and the
attribution At (i, j) are updated iteratively, and the parameter
t denotes the t-th iteration.
Finally, the damping coefficient λ is introduced to avoid

iterative oscillation

Rt+1 (i, j) ← λRt (i, j)+ (1− λ)Rt+1 (i, j) (9)

At+1 (i, j) ← λAt (i, j)+ (1− λ)At+1 (i, j) (10)

where λ ∈ [0.5, 1). When the maximum number of iterations
or the number of fixed iterations is reached, the iterative
update of the algorithm should be stopped.

C = argmax {Q} = argmax {A (i, j)+ R (i, j)} (11)
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The result matrix Q is the sum of the attractiveness matrix
and the attribution matrix and the position of the maximum
value of each row is found in turn. When i = j, it determines
point j as surface identification center. When i 6= j, the point i
is divided into the category which is represented by point j.
Through above iterative process, it can achieve surface iden-
tification of unknown fault signals

IV. DEEP IDENTIFICATION METHOD
In order to further determine the detailed cause of CF, the con-
volution neural network (CNN) is selected for deep iden-
tification to achieve the accurate identification of the fault
tracing based on the surface identification results.

A. CNN AND STRUCTURE OPTIMIZATION
CNN is one of the deep learning modes. The core idea is to
alternately use convolution layer and pooling layer to extract
and pool the input data layer by layer. Compared with other
artificial neural networks, CNN has the characteristics of
local connection, regional weight sharing and feature refine-
ment transmission [26]. It can reduce the training parameters
of the model, improve the training cost and the accuracy of
the algorithm, and is suitable for dealingwith large-scale data.
In order to build a network with excellent structure, excellent
training and test results and strong generalization ability, this
paper optimizes the CNN network structure. The optimized
structure adopted in this paper is described as follows:

1) ADAM OPTIMIZATION ALGORITHM
In the training of neural network, the setting of learning rate
is related to the speed of parameter updating, which plays
an important role in network training. Adam optimization
algorithm has the invariance of gradient diagonal scaling and
adaptive learning rate, which has unique advantages in deal-
ing with large-scale and high-latitude electrical signal data.
It has good performance for noisy electrical fault data and
non-steady-state problems with sparse gradient as well [27].
Moreover, the overshoot parameters are simple and clear,
and the default parameters have a wide range of applications
without manual adjustment. In this paper, Adam optimization
algorithm is selected as the learning rate adjustment optimiza-
tion algorithm to improve the accuracy of deep identification.

2) CODING
The training samples coding of deep identification adopts
commonly used one-hot coding, which gives each kind of
deep fault type the single label. In the coding, only one bit is
valid at any time. The output target of test samples is judged
according to the value of different targets. The maximum
value corresponding to the label determines the category of
the test samples. The encoding formula is

RV = RW ∈


R1 |1, 0, 0, 0|

R2→ |0, 1, 0, 0|

R3→ |0, 0, 1, 0|

R4→ |0, 0, 0, 1|

(12)

where RV and RW are the labels of surface fault samples
respectively, both of which include four deep fault types of
R1 ∼ R4. Each of them is only label corresponding to it.

3) DROPOUT MECHANISM
CNN has unique advantages in dealing with massive data.
However, when the training data contains noise and the sam-
ple size is insufficient, the phenomenon of over-fitting often
occurs, which shows that it has a good ‘‘memory’’ ability for
the training set, but does not ‘‘learn’’ the features contained in
the training set, resulting in poor performance in identifying
unknown data. Considering the interference of noise and
uncertain signal in fault electrical signal, this paper adopts
the dropout mechanism which is widely used to improve the
network generalization ability [28].

B. SAMPLE MATRIX OF FAULT TIME-SPACE
According to the learning characteristics of CNN, it is nec-
essary to construct a high-dimensional sample matrix, so that
CNN can fully and effectively analyze the state characteris-
tics of the system during the fault period. Considering the
variation law of electrical signals at AC and DC sides of
converter station during the fault period, and the operation
state characteristics of AC and DC sides. The voltage and
current values of DC line, current value and AC side voltage
of inverter valve are selected as fault information acquisition
signals to construct the sample matrix of fault time-space
(SMOFTS).

In this paper, the sliding high frequency data acquisition
window is used to collect data points of four kinds of electri-
cal signals. The windowwidth is set to 7, that is, each window
contains 7 data points, and the data matrix size is 7 × 1.
Then, the four groups of window matrices are rearranged
in sequence, and the size of SMOFTS is transformed into
28 × 1. In order to meet the requirements of CNN inputting
samples and give full play to its advantages in the field of
image recognition, it is necessary to transform the data form
of SMOFTS. In this paper, the matrix is reconstructed in the
form of binary data conversion. The specific steps are given
as follows: Firstly, the information points in the matrix are
divided into integer and decimal parts. Secondly, the values
of the two parts expressed in decimal system are converted
into 14-digit binary numbers respectively. Finally, the two
parts are combined into a twenty-eight-bit binary number
according to the principle that the integer part comes before
the decimal part, so that the size of the SMOFTS is converted
into 28× 28. The schematic diagram of the process is shown
in Fig. 1.

V. DOUBLE-DECK IDENTIFICATION METHOD
The process of double-deck traceability identificationmethod
is shown in Fig. 2. It includes three parts: data processing,
surface identification and deep identification. The digital
simulation results are used as the data source for the pro-
posed method. It is composed of the original data set, which
could be used to train the convolutional neural networks.
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FIGURE 1. Sample matrix of fault time-space construction process.

FIGURE 2. Double-Deck identification method.

DC voltage is an important representation of HVDC system
transmission stability, and its fault waveform contains rich
information. In this paper, DC voltage is selected as the
input data source signal for surface identification method.
The process of the method is shown as follows.

1) Firstly, data processing. In the converter station,
various electrical signals such as Udc, Idc, Uac, and Iac are
collected locally during the fault period. According to the
above content, the fault feature space T and the SMOFTS are
constructed respectively, which are prepared to identify the
fault type.

2) Secondly, surface identification. In this part, the T of
step 1) is put into the AP algorithm to surface identify.
According to the result matrix Q, the surface fault category
of the T could be clear.

3) Thirdly, deep identification. In this part, the CNN corre-
sponding to the surface fault category is selected according to
the result of step 2). Putting the SMOFTS of test sample into
the CNN, the deep fault type of CF is identified by the output
results. The label with the maximum value is determined as
the failure type of the test sample.

FIGURE 3. Curves of DC fault voltage.

VI. CASE STUDY
This section is to verify the validity of the proposed
method. According to an actual operated HVDC system
in South China power grid, a HVDC model is built in
PSCAD/EMTDC. The rated voltage and capacity of DC
system are respectively 500kV and 3000MW. The digital
simulation results are used as the numerical source for the
verification of this method, in which the simulation step is
set to 50µs and the drawing step is set to 100µs. According
to Table 1, all faults are set to the converter bus and converter
valve of the inverter side. Failures duration is 0.1s (from 13s
to 13.1s), and the electrical fault data is recorded to form
surface identification reference data group. Taking the faults
V3, W1 and W2 as examples, the curve of DC voltage is
shown in Fig. 3.

It can be seen from Fig.3 that during the fault duration,
the DC voltage waveform drops to different degrees under the
three fault conditions with the fault duration, the DC voltage
fluctuates in different amplitudes. Among them, the variation
trend of DC voltage curves from 10ms to 40ms is basically
identical, ranging from 100kV to 300kV. The curve changes
between different DC voltages were observed at the later
stage of the fault. The DC voltage waveforms of fault V3 and
fault W2 oscillated around 100kV, and the different voltage
waveforms were slightly different during the fault period, but
the discrimination was not great. It was not easy to judge
the specific cause of commutation failures only from the DC
voltage waveforms.

A. SURFACE IDENTIFICATION
The two-phase short circuit fault is set at the converter bus of
the inverter side with grounding resistance of 10� and multi
trigger pulse loss of No.6 valve fault are chosen as test sam-
ple, which are numbered S1 and S2 respectively. Fault feature
space T is shown in Table 2. According to reference [24],
the maximum number of iteration AP algorithm is 500, the
number of fixed iterations is 50, the damping coefficient is
0.5 and the bias parameter P is the median value of data. The
result of surface identification is shown in Table 3.

In Table 3, the maximum value of each row is positive
value. It can be determined that [V1,W1] is the center of the
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TABLE 2. Fault feature space T.

fault cause category [V,W] of surface identification, and it is
the representative fault of each surface fault cause category.
And the surface fault category of other data could be judged in
turn according to the number of columns in which the positive
elements of each row are located. According to the maximum
values of each element in the second and third rows of the
result matrix Q appear in the first column, V2, V3 and V1
can be classified into the same category, which belong to the
surface fault category represented by V1. Similarly, it can be
known that the attribution results of other reference sample
conforms to the expected design. Furthermore, the results of
surface identification of test signals reveal that: the test signal
S1 is identified as AC system fault of the inverter side, and the
test signal S2 is identified as converter valve fault. The surface
identification result is accurate.

In this part, the simulation uses the fuzzy-clustering algo-
rithm as the comparison algorithm to recalculate the same
data. The number of clustering center is set to 2, and the
membership degree is taken as the basis of fault type division.
The comparison algorithm set the Euclidean distance as based
distance formula. The results are shown in Table 4. For clas-
sification of test signals, the result of fuzzy-clustering algo-
rithm accords with pre-design, but on the result of reference
data, the comparison algorithm has poor performance. The
reference signal V2 is misjudged as the AC system faults W,
and the reference signal W1 is misjudged as converter valve
faults V. Therefore, it can be seen that the accuracy of AP
algorithm is better than that of fuzzy-clustering algorithm,
and the surface identification of unknown fault causes can be
realized accurately. In order to better demonstrate the surface
identification results, this paper takes the fault feature space
values as the coordinates of the fault signal samples, visu-
alizes the identification results of the surface identification,
and establishes a three-dimensional diagram. The results are
shown in Fig. 4.

B. DEEP IDENTIFICATION
In this paper, the TensorFlow architecture based on Python
is selected to build the CNN model of deep identification
method. The CNN structure parameters are shown in Table 5.

FIGURE 4. Three-dimensional fault feature space of surface identification.

According to the characteristic that the training of CNN
needs a large number of samples as support, this paper
expands the data samples under different fault types to sup-
plement different fault states of the system under the same
fault condition. For converter valve fault, this paper considers
different bridges and different combined bridges of converter
valve, set single trigger pulse loss and multi-trigger pulse loss
faults during the simulation. For AC side faults, this paper
uses different fault resistances (0 ∼ 50�) to represent dif-
ferent fault locations of transmission lines under the different
AC side fault types. The simulation settings are the same as
above. According to the construction method of SMOFTS,
the sliding sampling is carried out on the simulation data
within the failure duration of 0.1s, and a total of 21600 sample
data are generated. In this paper, the training set and the
test set are intentionally divided. The random sub-sampling
verification method is adopted, and 2,400 samples are ran-
domly selected as test sets. Therefore, there are 9,600 training
sets and 1,200 test sets for converter valve faults. There are
9600 training sets and 1200 test sets for AC system faults.

In the simulation of test signals, the deep identification
results of part test samples are shown in Tables 6 and 7, where
the label with the maximum value is determined as the failure
type. According to the results, the five samples which are
randomly selected from the test signal S1 are identified by
the deep algorithm as double phase to grounding fault at AC
system of converter valve W2, and the test samples of test
signals S2 are identified as single bridge multi-trigger pulse
loss of converter valve V3. The values of the correct target of
the identification results are much larger than other targets.

The results of the deep identification method are shown
in Fig. 5, where principal component analysis (PCA) is used
to reduce the dimension of the output vector. The test sam-
ples of fault types are separated and clustered successfully.
Fig.6 shows the confusion matrix of CNN in identifying vari-
ous deep faults in the test samples. The data on the symmetry
axis represents the rate of judgment results consistent with
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TABLE 3. Matrix Q of surface identification.

TABLE 4. Membership degree matrix of fuzzy-clustering algorithm.

TABLE 5. Deep identification parameters.

TABLE 6. Deep identification results of some examples of test signal S1.

the real category in the test set. The rest of the data in each
row is the proportion of other types of data. Except for a few
test samples that are misidentified, different deep fault types
can be accurately identified. The identification accuracy of

TABLE 7. Deep identification results of some examples of test signal S2.

TABLE 8. Identification accuracy of different methods.

fault test set W is better than that of fault test set V. The
experimental results show that the proposed method could be
used to identify the cause of commutation failure.

To verify the effectiveness of the deep identification
method, the proposedmethod is comparedwith the traditional
machine learning methods such as support vector machine
(SVM) [17], k-nearest neighbor (KNN) [29] and decision
tree (DT) [30]. All methods share the same training process
and testing samples, and Table 8 shows the identification
accuracy.

It can be seen from Table 8 that the identification accuracy
of the proposed method is higher than that of the traditional
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FIGURE 5. Three-dimensional feature visualization of deep identification
outputs.

FIGURE 6. Confusion matrix of deep identification.

methods. The identification accuracy of converter valve faults
and AC system faults are 96.50% and 98.75%, respectively.
The identification time for single sample is in 2ms. For
test samples, receiver operating characteristic (ROC) curves
under different comparison methods can be drawn by taking
false positive rate and true rate as abscissa and ordinate,
respectively. According to the area under the ROC curves,
the performance of identification method can be evaluated.
The larger the area is, the better the performance is. Here,
we take fault W test set as an example to draw ROC curves
corresponding to different methods, as shown in Fig.7. The
area under the ROC curves of the proposed deep identifica-
tion method is the largest, which means the performance of
deep identification method is the best.

FIGURE 7. Curves of ROC for different methods.

TABLE 9. Input eigenvector of test samples.

C. VERIFICATION OF COMPARISON METHOD
In this paper, taking the AC system fault simulation data of
typical HVDC model as an example, the effectiveness of the
proposed method is verified and compared to the identifica-
tion method in [16]

According to the method in [16], the fault signal is decom-
posed and reconstructed by 10 layers based on db10 wavelet.
The wavelet energy of each layer, that is, Eε in equation (2),
could be calculated.Wavelet energy from the fifth layer to the
tenth layer were selected to form input eigenvector [E5 E6 E7
E8 E9 E10]. Some test signals and the eigenvector elements,
from E5 to E10, are shown in Table 9. The contents of brackets
in signals indicate the grounding resistances. For example,
W1(20�) means the W1 fault type with 20� grounding
resistance.

According to [16], the parameters and structure of the
neural network settings were carried out, and the simulation
example data used in the paper is trained. AC system faults
with different grounding resistance are selected as test sig-
nals. The results are shown in Table10. In Table 10, the fail-
ure type of the test signals can be determined according to
the label with the maximum value, which is with the same
definition of failure and success of the proposed method.
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TABLE 10. Results of method in [16].

TABLE 11. Identification accuracy of the method in [16] and our method.

The results of the method presented in [16] are shown
in Table 10, where the label with the maximum value is deter-
mined as the failure type. As can be seen, the test samples
W2 and W3 are identified correctly. However, the test sample
W1(5�) is misidentified as W2, and the test sample W4(5�)
is misidentified as W3. Although the test sample W1(10�) is
identified correctly, the label value of W1 is 0.5797 and the
label value of W2 is 0.4521, that is, the difference between
them is only 0.1276. In Tables 6 and 7, the proposed method
can correctly identify all the failure types of the test samples
S1 and S2. Moreover, the result distinction is also obvious.
Taking the first sample of S1 as an example, the difference
between the label values of W1 and W2 is 2.2374.

There are two reasons behind failure of the method to
detect W1 and W4 faults. First, we uses the AP algorithm to
achieve surface classification, which could reduce the diffi-
culty of the method for sample identification tasks. However,
the AP algorithm is not used in [16]. It is easy to cause
identification confusion between samples and lead to failure.
Second, [16] used wavelet energy with back propagation
neural network (WBPNN), which has aweak ability to extract
sample features and has poor performance in identifying
similar samples, so failures may occur. In contrast, we utilizes
CNN to extract the features of the samples, which could make
the method more sensitive to the features contained in the
samples and clearly identify samples with similar features.
The comparison of these method is given in Table 11, and the
superiority of our method is demonstrated.

VII. CONCLUSION
In this paper, based on wavelet entropy AP clustering algo-
rithm theory and CNN deep learning theory, a double-
deck traceability identification method for HVDC system

commutation failures fault reason is proposed, which is ver-
ified by simulation experiments and draws the following
conclusions:

1) The surface identification method based on wavelet
entropy fault feature space and AP algorithm can use DC
voltage signal to quickly and effectively judge whether the
fault signal belongs to converter valve fault or AC side fault,
and complete shallow identification.

2) On the basis of surface identification, DC current,
AC voltage and current signals are supplemented, and con-
volution neural network can be used to realize the deep iden-
tification of commutation failures and lock the real cause of
commutation failures. This method has superior performance
and high recognition rate.

3) The experimental verification in this paper takes the
simulation data as the signal source. In practical application,
the on-line monitoring data and fault recording signals can
be used to accurately determine the specific fault types of
commutation failures and expand the identification database.
How to apply the proposed method in HVDC system and
extend the potential fault identification in control system need
to be further studied.
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