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ABSTRACT Due to the extreme change of human behavior, the load consumption in public holidays
fluctuates more significantly compared to general weekdays resulting in the difficulty of hourly holiday load
forecasting. The holiday load forecasting is even challenging because the forecast is practically predicted on
the nearest workday which might be more than one days prior to the public holiday. In this paper, we propose
a Joint Dynamic time warping and LSTM (JDL) framework, to predict the hourly holiday load consumption
on the nearest workday which is at least one day before the incoming holiday. The proposed JDL is a hybrid
short-term holiday forecasting framework which combines dynamic time warping (DTW) and long-short
term memory (LSTM) network. The DTW predicts the load consumption of the nearest workday and any
preceding compensatory holiday(s), if any, based on the similar holiday occurrence pattern. LSTM predicts
the highly unpredictable load consumption of the target holiday by univariate and multivariate models.
Current results show the proposed JDL outperforms others.

INDEX TERMS Holiday load forecasting, short-term load forecasting (STLF), long-short term memory
(LSTM), dynamic time warping (DTW).

I. INTRODUCTION
Accurate electrical load forecasting in a power generation
and distribution system can better assist the balance between
the electricity production and demand. With accurate load
forecasting, excess power reserve and redundant power gen-
eration cycle can be avoided so that the overall system effi-
ciency will be enhanced [1]. Approximately 1% decline in
prediction error is worth up to $1.6 million on a year-to-
year basis [2]. However, the forecasting accuracy on holiday
decreases significantly due to the drastic change in human
behavior which in turn affects the electricity demand com-
paring to the weekdays/weekends.

A public holiday may be preceded by weekends and form
a consecutive holiday period. We denote the weekends pre-
ceding this public holiday as compensatory holidays. Due
to practical considerations, it is infeasible to only consider
a day-ahead prediction in the presence of compensatory hol-
idays. In addition, most previous works do not address the
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need to perform multiple days ahead prediction for holiday
load forecasting. The behavior of load consumption on a pub-
lic holiday preceded by compensatory holidays is even harder
to predict due to complex relationship between day-type and
the occurrence of the holiday itself. In this sense, the time
horizon for holiday load forecast spans from one up to several
days. Electric load forecasting is divided into several different
groups based on their prediction horizon. Long-term load
forecasting (LTLF) is designed to predict five years until a
decade in the future to plan electricity capacity or grid while
short-term load forecast (STLF) aims to predict a short period
of time, such as twenty-four-hour ahead until a week [3].
In accordance with the chosen prediction horizon, we choose
to perform STLF to enhance the power plant scheduling and
demand response for hourly holiday load forecasting.

To better predict the short-term holiday load consumption,
the challenges are listed as follows:

• Several holidays fall on different days of the week on a
year-to-year basis. As a result, the resulting load usage
is not the same between each year.
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• The available data record of a given public holiday is
insufficient, resulting in a sparse data problem for the
short-term holiday load forecasting. Because a specific
holiday occurs only once in a year, only one load con-
sumption record for that holiday is available for each
historical year.

Previous works propose a number of strategies to perform
holiday load forecasting. Linear regression-based approaches
are considered in [4], [5]. The advantage of statistics-based
method, such as linear regression, is that it only needs a
small amount of data. However, linear regression can only
capture the linear relationship between input features. Alter-
natively, similarity-based methods are proposed as they take
advantage of the fact that days with similar features, such as
weather information, have similar load consumption patterns
as well [6], [7]. However, since similarity-based methods
heavily rely on the used feature, they are not a strong pre-
diction model to predict the volatile load consumption of a
holiday.

Then, machine-learning (ML) based approaches, such
as support vector machine (SVM) [8] and artificial neu-
ral network (ANN) [9], are heavily favored since they
can be trained to learn non-linear functions. Specifically,
as ANN are the most commonly used model, it is con-
tinuously developed by adding more layers to improve its
prediction performance. Nevertheless, increasing the number
of layers causes over-fitting issues, limiting the perfor-
mance of ANN. In response, deep learning (DL) meth-
ods are developed to improve the performance of ANN by
modifying the inner structure of the network itself, such
as deep residual networks [10]. In particular, long-short
term memory network (LSTM) is a popular choice due to
its capability to learn the non-linear relationship between
input features of different past time periods [11]–[15].
However, DL methods require a sufficient amount of training
data in order to perform accurately, but data of a specific
holiday is insufficient due to the scarce data problem. To solve
this issue, several ideas, such as transfer learning [16] and
data augmentation [17], are proposed, where each one of
them has their own limitations. However, among those works,
only a few mention the need to perform multiple days ahead
prediction [5], [11], [15].

In this paper, we propose a Joint Dynamic time warping
and LSTM (JDL) framework to predict a consecutive holiday
period. We assume the load forecasting task is executed at the
start of the working day, and thus, given a target public hol-
iday, JDL predicts not only the loads of the holiday but also
compensatory holiday(s), if any, and the nearest workday.

To summarize, our contribution are as follows:

1) We propose a forecasting framework, JDL, based on
a combination of similarity-based method using DTW
and LSTM to predict holiday load consumption regard-
less of its occurrence.

2) We conduct a case study to predict nine holidays of
a specific year from the dataset containing 9-year-

load-consumption to validate and analyze the achieved
prediction results among our proposed JDL and other
approaches from the literature. The results show the
prediction accuracy of JDL does not decline greatly
between holidays with different length of prediction
horizon.

The rest of the paper is organized as follows. Section III
and IV describe the system model and the proposed JDL.
Section V provides the prediction results, and this work is
concluded in Section VI.

II. RELATED WORKS
To solve the scarce data issue, transfer learning is pro-
posed [16]. By carefully selecting relevant historical load
consumption information from neighbouring cities, the fore-
casting performance for a target city is improved. However,
this method is viable only when additional data for multiple
cities are available. Alternatively, to solve the scarce data
issue, a data augmentation can be performed to increase the
amount of available data by creating new, artificial data based
on the available data. For example, Forestier et al. [17] design
a data augmentation method for time-series classification by
using weighted average from a set of time-series data to
be used as a new, synthetic time-series data. However, said
method needs at least two time-series data of the same class
since an averaging process is performed whereas some power
companies might not have more than one historical year for
a certain holiday. To select past days to train a prediction
model, a concept of similarity is commonly adopted, either
by using temperature information or day-type information as
a feature. Wi et al. [7] select weekdays data prior to the past
holiday for each year in the historical data and the present
year based on several weather features, such as temperature
and humidity, to train their prediction model. However, their
proposed data selection procedure relies heavily on weather
features, where further optimizations might be required to
adopt the procedure since different regions of the world have
different climates.

Ding et al. [6] combine the load consumption of the most
similar day to the target holiday in terms of temperature
information and annual load consumption growth between
the present year and one previous year. Cai et al. [8] pro-
pose a support vector machine model optimized by genetic
algorithm which takes load consumption of past days whose
day-type are the same as the target holiday as inputs. How-
ever, both [6] and [8] do not consider the effect of which day
of the week does the holiday falls has on the resulting load
consumption. Fernandes et al. [4] propose a weighted addi-
tion method by combining the load consumption of day with
the same day-type in the previous one week and the nearest
Sunday prior to the target holiday. However, in their results,
some holidays have much higher prediction error compared
to the rest of the holidays, which indicates that statistics-based
method, such as linear regression, is not the best solution
to predict the load consumption of a public holiday. Based
on regression analysis, Ziel et al. [5] propose two time-series

106886 VOLUME 9, 2021



J. Gunawan, C.-Y. Huang: Extensible Framework for Short-Term Holiday Load Forecasting

approaches, which are univariate and multivariate models,
to perform holiday load forecasting. Although the idea of
univariate and multivariate model will be used in this study,
the regressionmodel itself is not used in our framework since,
as we mention, it is not the best solution for holiday load
prediction.

Artificial neural network (ANN) [9] is a classic prediction
model in the field of STLF. However, one disadvantage of
ANN is that the size of the networks will grow along with the
increase in the number of input features, resulting in over-
fitting issues. Thus, deep learning methods are proposed to
improve the performance of ANN by modifying the building
block inside the network itself. For instance, to avoid stacking
multiple hidden layers between the input and the output layer,
which will increase the difficulty of the training process due
to increase in the number of hidden layers, a deep resid-
ual network is proposed [10]. Specifically, LSTM has been
widely used in load forecasting problems, especially when
a traditional machine learning model fails to deliver, such
as residential load forecasting and industrial power demand
forecasting. Two LSTM layers are used by [11] and [13]
to predict customer-level and region-level load consumption,
respectively. However, both [11] and [13] only use a binary
holiday indicator to anticipate an incoming holiday instead of
further analyzing whether the incoming holiday is preceded
by compensatory holidays or not. In order to further improve
forecasting performance, an ensemble model is proposed by
combining multiple prediction models. Tan et al. [12] pro-
pose an ensemble model by constructing multiple LSTM
models, where each one is trained with a random subset of
data and feature space and their outputs are combined using
a weighted additive combination. However, said ensemble
method is only possible when data with a large feature space
is available. Tang et al. [15] propose a neural network layer
to combine the prediction results from multiple LSTM mod-
els and auto-regressive integrated moving average (ARIMA)
models which demonstrates an improvement over individual
LSTM and ARIMA model. To avoid using another holiday
occurring several weeks before the target holiday, the pro-
posed methods in [15] require further modification.

Among existing approaches, only a few previous works
address the need to perform multiple days ahead forecast-
ing, which would be necessary for holiday load forecasting,
as mentioned in the previous section. Although LSTM is
popularly used in electric load forecasting, it is not an optimal
solution for our considered multiple steps ahead forecasting
because the prediction error for the forecast one day ahead
load consumption will be propagated to the predicted load
consumption of the next day [14].

Moreover, methods combing similarity-based approach,
DTW, and deep learning-based approach, neural network
are proposed to predict the time series information [18],
[19]. Authors in [18] propose a combination of DTW-based
fuzzy clustering algorithm and LSTM to predict traffic flow
using data from multiple sensors. DTW is used to measure
similarity between multiple sensor readings and form sev-

eral clusters fed to the LSTM prediction model. However,
multiple data sources are required to perform the clustering.
In addition, the motivation in [18] is that sensors which are
geographically close to each other are related by a traffic
flow, whereas for holiday load forecasting, an initial data
exploratory procedure to determine the relationship between
load consumption curves of different cities is necessary.
Thus, their proposed method cannot be directly adopted for
short-term holiday load forecasting. In [19], DTW and gated
recurrent neural network is combined to perform day-ahead
peak load consumption forecasting of a target day. DTW
selects the most similar peak load consumption of the same
day of the week in the historical data. Since they focus on
daily peak load forecasting, they consider daily peak load
curves of one week due to the auto-regressive effect of a
week whereas this paper focuses on the hourly holiday load
forecasting whichmight need to predict the load consumption
several days prior to the target holiday.

III. SYSTEM DESCRIPTION
We denote x as an indicator of a public holiday, in present
year. Following [5], we consider hourly load information
for one observed day. Thus, the length of observed load
information for one day is twenty-four. Further, considering
the target holiday with index x, we denote |d | days before the
target holiday x as d, d < 0 and |N | years prior to present year
as N , N < 0, assuming at least |N | years historical data is
available to assist the target holiday load forecasting. Further,
h is denoted as the time of the day indicator, and h = {i},
where i indicates the i-th hour in one day, i ∈ [1, 24]. Then,
we denote the twenty-four-hour load information for the day
which is |d | days before the target holiday x in the previous
|N |-th year as (1).

Lhd,N = {L
1
d,N , . . . ,L

24
d,N }. (1)

Hence, we denote the load consumption of the holiday x as
Lh0,0 and the prediction result of x as L̄h.
We assume that load forecasting task in a certain power

system company is executed in the nearest workday prior
to x. For the nearest workday of x, w, is denoted as the
number of days before x, and thus w ≤ −1. Specifically,
the holiday might occur right after the nearest workday so
that w = −1. Compensatory holiday(s) may exist between
the nearest workday and the target holiday, and thus w < −1.
We further assume the load forecasting execution time is at
the δ-th hour of the nearest workday of x, where δ ∈ [2, 23].
Thus, for the nearest workday, only L i

′

w,0, i
′
∈ [1, δ − 1] is

available when the incoming holiday load forecasting is per-
formed. Hence, in the presence of compensatory holiday(s),
not only part of the load consumption information on the
nearest workday but also that on compensatory holiday(s) are
unavailable for the holiday load forecasting. To better predict
the holiday load usage, it is important to investigate load
consumption patterns, in the viewpoint of the target holiday,
workdays and compensatory holiday(s), if any.
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FIGURE 1. Load curves of two consecutive weeks under different
condition.

Fig. 1 presents the load consumption curve for three
different time zones, denoted as current week, previous
week and previous year under different holiday occurrence
patterns. In terms of the load consumption of current week,
the curves of previous week and previous year indicate the

load consumption a week and a year ago, respectively. Fur-
ther, the x-axis indicates the consecutive seven days, ranging
from −6 to 0 (i.e., d = −6 to 0). The y-axis illustrates the
corresponding load consumption among twenty-four hours
on each day. Obviously, it can be seen that the load pattern
on each day is related, and within a day, the scale of the
hourly load consumption depends on its previous hours and
days. Further, as shown in Fig. 1a, in the absence of a holi-
day, the load consumption patterns between two consecutive
weeks is almost identical. More specifically, for a target day,
such as d = 0 of current week, the load consumption pattern
is more close to that of the same day of previous week com-
paring to others. Although the load pattern of previous year
is still similar to current year, certain variations occur which
might be caused by human behavior. For example, when
d = −6 or−1, the scales of load usage between current week
and previous year are different. Further, the load consumption
scales at d = 0 between current week and previous year are
similar, but the patterns are different.

On the other hand, Fig. 1b - 1d present the load consump-
tion curves when a holiday occurs on Day 0 of current week.
It can be found in ‘A’ block, the load consumption patterns on
Day 0 of current and previousweek are significantly different,
especially in Fig. 1d. It might be because the holiday falling
on Day 0 of current week changes the human behavior which
in turn causes the variation of load usage pattern. Further-
more, considering the load consumption pattern and scale of
Day 0 in current week, no similarity can be found among
Fig. 1b - 1d, even though a holiday occurs on that day. It also
can be found in Fig. 1b and 1d, the load consumption patterns
and scales of Day 0 between current week and previous year
are similar, which implies historical data may help holiday
load forecasting under certain conditions.

Additionally, one and two days compensatory holidays
happen in Fig. 1c and 1d, respectively as shown the cur-
rent week curves in ‘B’ block. It can be seen that the load
consumption pattern between the current and previous week
in ‘B’ block is smaller than ‘A’, but larger than other days
in which no holidays or compensatory holidays present in
current and previous week. Further, in Fig. 1c, in ‘B’ block,
the curve of previous year is less similar to that of current
week than the curves between current week and previous
week. It might be because in previous year, the holiday occurs
in the presence of no compensatory holiday, and the load
curve of previous year in ‘B’ block is closer to that of working
days such as the patterns of d = −2.

Moreover, in practice, the load forecasting is executed at
the first hour of the nearest workday prior to the public
holiday. In Fig. 1b - 1d, the current week curve falling the ‘C’
block indicates the load usage of the nearest workday. Obvi-
ously, the load consumption pattern on the nearest workday is
similar to other working days such as its previous week, and
even its previous year.

To sum up, the holiday load consumption might not only
depend on the consecutive hours or days prior to the holiday,
but also the same holiday in the past years. Further, the hol-
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iday load forecasting is executed on the nearest workday,
which indicates that no complete load usage information is
available on the nearest workday and compensatory holi-
day(s), if any, to assist the target holiday load forecasting.
Hence, a framework is required to better predict the complex
load consumption pattern, especially when the public holiday
is preceded by multiple compensatory holidays.

IV. JOINT DYNAMIC TIME WARPING AND LSTM (JDL)
FRAMEWORK
To effectively predict holiday load consumption, we pro-
pose a hybrid short-term holiday load forecasting framework,
namely Joint Dynamic time warping and LSTM (JDL). Con-
sidering the load patterns in Fig. 1b - 1d, the proposed JDL
combines two components, which are Dynamic time warping
for the Nearest workday and Compensatory holiday load
prediction (DynaNC) and LSTM for Holiday load prediction
(LSTMH). Firstly, DynaNC utilizes DTW to forecast load
consumption for the nearest workday and compensatory holi-
day(s), because the load consumption behavior on the nearest
workday and the compensatory holiday(s), if any, between
two consecutive week does not change drastically. Further,
the load consumption pattern is time related, and thus the
load consumption of the nearest workday and compensatory
holidays are worth to be estimated aiming to assist the load
forecasting for the target holiday. Secondly, LSTMH adopts
LSTM to forecast the target holiday load consumption, which
is denoted as L̄h, because the load consumption pattern on the
target holiday behavemore differently from its previous week
and other holidays.

A. DYNAMIC TIME WARPING FOR THE NEAREST
WORKDAY AND COMPENSATORY HOLIDAY LOAD
PREDICTION (DYNANC)
The proposed DynaNC predicts the load consumption of the
nearest workday prior to a public holiday, x, and its compen-
satory holiday(s), if any. Specifically, based on the observa-
tion of Fig. 1, we apply similarity-based approach to perform
load forecasting for the nearest workday and compensatory
holiday(s), if any, aiming to provide more useful information
to assist load forecasting of the target holiday.

Algorithm 1 presents the procedure of DynaNC to predict
Lhd,0,w ≤ d ≤ −1, and DynaNC firstly finds w. Based on
Lh
′

w,0, h
′
∈ {i′}, i′ ∈ [1, δ− 1], DTW is used to select the most

similar load pattern from the past two consecutive weeks,
Lhj,0, j = {w− 14,w− 7}. Specifically, we denote a distance
function with DTW to be DTW (a,b) which is shown as (3).

DTW (a,b) =W[24, 24], a ∈ R24 and b ∈ R24 (3)

Algorithm 1 DynaNC
1: Find w;
2: w̄ = argmin

j∈{w−14,w−7}
DTW (Lh

′

w,0,L
h
j,0),

h′ = {i′}, i′ ∈ [1, δ − 1];
3: Obtain L iw,0,∀i ∈ [δ, 24] by (2);
4: for c = w+ 1; c < 0; c++ do
5: if mod (D1

c,0, 6) == 0 then
6: c̄ = argmin

j∈{c−14,c−7}
DTW (T hc,0,T

h
j,0);

7: Obtain L ic,0,∀i ∈ [1, 24] by (5);
8: else
9: Obtain L ic,0,∀i ∈ [1, 24], by (6);

10: end if
11: end for

Each of the two vectors, a and b, contains twenty-four-hour
load information as the input of DTW. We denote was the
output of the DTW indicating the difference between each
observed load consumption inside a and b and the minimum
value from a set of differences between previous observations
inside a and b. Further, the first row and column of W are
initialized as infinity. Further,W[0,0] is set as zero. Following
Bellman’s principle [20],W can be obtained by (4), as shown
at the bottom of the page.

Then, according to the load consumption pattern of x,
the most similar week of the corresponding nearest workday,
denoted as w̄, is selected for the load forecasting of the nearest
workday. Following (2), as shown at the bottom of the page,
the load forecasting of the rest hours in the nearest workday,
L iw,0,∀i ∈ [δ, 24], can be obtained. Specifically, in (2), u(.) is
a step function, and O1 is an offset which can be obtained by
a trial and error to bring L iw̄,0 closer to L

i
w,0. Inspired by the

idea of curve fitting, the predicted load curve for hδ until h24
will be adjusted by considering the load consumption trend
of w̄ between the δ-th (δ-1)-th hour to maintain a consistent
load consumption level between the predicted load curve
and the known load curve of the nearest workday. In the
nearest workday prior to the incoming public holiday, the load
consumption of the δ-th hour is generally higher than that
of the (δ-1)-th hour, due to the human behavior. Therefore,
the step function is applied to adjust the trend of the load
curve.

DynaNC also predicts the load consumption of the com-
pensatory holidays. We adopt temperature information to
assist compensatory holiday load forecasting, because the
load consumption of the compensatory holidays are not avail-
able. More specifically, it is well known that the temperature

L iw,0 = L iw̄,0 + sgn
( δ−1∑
i=1

L iw,0 − L
i
w̄,0

δ − 1

)
O1 + u(L

δ−1
w,0 − {L

δ
w̄,0 + sgn

( δ−1∑
i=1

L iw,0 − L
i
w̄,0

δ − 1

)
O1})(Lδw̄,0 − L

δ−1
w̄,0 ) (2)

W[j, k] = |a[j]− b[k]| +min(W[j− 1, k],W[j, k − 1],W[j− 1, k − 1]), 1 ≤ j ≤ 24, 1 ≤ k ≤ 24 (4)
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would affect the electricity usage which in turn influence the
load consumption. Therefore, the temperature information is
adopted. Further, the twenty-four-hour temperature informa-
tion for |d | days before x, |N | years ago is denoted as T hd,N =
{T id,N }. The temperature of the compensatory holidays can
be obtained by the ten-day weather forecast or weekends
forecast released by official weather service organizations.

Furthermore, c is denoted as the |c|-th compensatory hol-
iday prior to a holiday x, and c < 0. We in further denote
this compensatory holiday falling on weekends as weekends
compensatory holiday and denote the compensatory holiday
falling on weekdays a weekdays compensatory holiday. It is
because normally user behavior is different between week-
ends andweekdayswhich in turnwould affect the consecutive
load patterns among the nearest workday, weekdays com-
pensatory holiday(s) and weekends compensatory holiday(s).
For weekends compensatory holiday, DTW is also used to
measure the similarity between temperature information of
the |c|-th compensatory holiday, Tc,0, and temperature infor-
mation of one or two weeks prior to the |c|-th compensatory
holiday, Tj,0,∀j ∈ {c−14, c−7}. We select the past day with
the most similar temperature as days with similar temperature
tend to have similar load consumption patterns. The chosen
past day is denoted with c̄. Then, for weekends compensatory
holiday, L ic̄,0, i ∈ [1, 24] can be obtained by (5), O2 is also
an offset to bring the load consumption value of c̄ closer to
the load consumption of the target weekends compensatory
holiday, and can be obtained by a trial and error.

L ic,0 = L ic̄,0 + sgn
( 24∑
i=1

T ic,0 − T
i
c̄,0

24

)
O2 (5)

On the other hand, if the compensatory holiday falls on
weekdays, we adopt the load consumption information on
its previous day to predict the load consumption of this
weekdays compensatory holiday. It is commonly known that
temperature would influence the load consumption, therefore
the weekdays compensatory holiday usage, L ic,0,∀i ∈ [1, 24]
can be obtained with the assistance of temperature, T ic,0,
the load consumption of its prior day, L ic−1,0, and an offset,
O3 obtained by try and error.

L ic,0 = L ic−1,0 − DTW (T hc,0,T
h
c−1,0)O3 (6)

B. LSTM FOR HOLIDAY (LSTMH)
Fig. 2 shows the flowchart of LSTMH. In LSTMH, given x,
LSTM is applied to predict Lh0,0, and the prediction result is
L̄h. LSTMH firstly pre-processes the input features, which
is a set of several features, including Lhd,0, T

h
d,0, D

h
d,0, I

h
d,0,

where d ∈ [w,−1] and h. In addition to the historical load
consumption data, to predict the target holiday load consump-
tion, we apply the temperature information for twenty-four-
hour observation, T hd,N , since the temperature is known to
related to the electricity load consumption. We also consider
the day of the week indicator for |d | days before x, |N | years
ago, which is denoted as Dhd,N = {D

i
d,N }, i ∈ [1, 24] aiming

FIGURE 2. LSTMH flowchart.

to in further leverage the user behavior between weekdays
and weekends for load forecasting. Specifically, Did,N can be
obtained following (7). Moreover, Ihd,N = {I

i
d,N }, i ∈ [1, 24]

is denoted as holiday occurrence indicator for |d | days before
x in the previous |N |-th year is also adopted to assist load
forecasting. I id,N can be obtained by (8).

Did,N =



0, |d | days prior to x, |N |-th years ago is Sun.
1, |d | days prior to x, |N |-th years ago is Mon.
2, |d | days prior to x, |N |-th years ago is Tue.
3, |d | days prior to x, |N |-th years ago is Wed.
4, |d | days prior to x, |N |-th years ago is Thu.
5, |d | days prior to x, |N |-th years ago is Fri.
6, |d | days prior to x, |N |-th years ago is Sat.

(7)

I id,N =

{
1, d = −1
0, otherwise

(8)

The input features are pre-processed by min-max nor-
malization and one-hot encoding. The former aims to scale
number features, such as Lhd,0 and T hd,0, between zero and
one while the latter aims to transform categorical features,
such as Dhd,0, I

h
d,0, and h into binary values. Then, two

time-series forecasting methods, U-LSTM and M-LSTM,
are created by implementing univariate and multivariate
method with LSTM, respectively. Considering multivariate
approach, M-LSTM creates separate models to forecast the
load consumption of each forecast period in h. Although
multivariate approach allows fine-tuning for each forecast
period in h, each model cannot learn the inter-dependency
between different hour of the day because each model is
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created and trained independently. Additionally, multivari-
ate method allows local normalization for features belong-
ing on a specific forecasting period, so that the forecasting
accuracy increases [9]. On the other hand, using univariate
approach, U-LSTM creates a single model to predict over
the twenty-four hour period. In this approach, the model
can learn inter-dependency between each forecast period.
However, it is less capable of accommodating volatility in
the load consumption pattern because every hour of the day
is predicted with a single model.

U-LSTM and M-LSTM are constructed using a uni-
form architecture since we focus on designing the fore-
casting framework, instead of optimizing the architecture
itself. Specifically, as (6), these two models are trained by
using the features selected from the historical data, including
h,Lhd,N ,T

h
d,N ,D

h
d,N , I

h
d,N , d ∈ [w − 14,w − 1], in which

year the holiday occurrence pattern is the same as the target
holiday. Moreover, using multiple layers generally works
better than a single layer, and thus we use two LSTM layers
and two dense layers inside the model. Further, the difference
between U-LSTM andM-LSTM lies in the shape of the input
and output layer, while the depth of the model stays the same.

Additionally, we use dropout layers [21] as they help to
reduce overfitting. M-LSTM and U-LSTM use a slightly
different input features from each other. M-LSTM predicts
L i0,0 using the features the i-th hour in the past |p| days, where
i ∈ [1, 24] and p < 0. As shown in (9), E i,M is denoted as the
set of the considered features for M-LSTM.

E i,M =


L i
−1,0 T i

−1,0 Di
−1,0 I i

−1,0
...

...
...

...

L ip,0 T ip,0 Dip,0 I ip,0

 (9)

On the other hand, U-LSTM considers twenty-four-hour
holiday load for prediction all at once. Following [13], to pre-
dict the twenty-four-hour holiday load consumption, we use
the past twenty-four-hour features, denoted as a matrix Eh,U

illustrated as (10).

Eh,U =
[
Lh
−1,0 T h

−1,0 Dh
−1,0 Ih

−1,0 h
]

(10)

When Lh,M0,0 and Lh,U0,0 , which are denoted as the twenty-
four-hour predicted load consumption for the target holiday
from M-LSTM and U-LSTM, respectively, are available,
the ensemble layer (EM) combines Lh,M0,0 and Lh,U0,0 to fur-
ther increase forecasting performance [22]. Specifically, EM,
consisting of a neural network layer, is trained using Lh,M0,N
and Lh,U0,N , if the nearest workday of the |N |-th past year is the
same asw. It is because the number of compensatory holidays
would vary the load pattern, according to Fig. 1.

V. EVALUATION RESULTS
A. EXPERIMENTAL SETUP
In this section, we analyze the prediction results for nine
holidays in Asia. To ease of presentation, the holiday index

(x) for each holiday is set according to the corresponding w.
Specifically, x ∈ {1, 6} refers to w = −1, x = 7 refers to
w = −2, x = 8 refers to w=−3, and x = 9 refers to w = −4.
Nine years hourly load consumption and temperature data are
applied for performance evaluation. Note that the temperature
forecasting is out of scope of this paper, and thus we assume
the temperature is predicted correctly in the load forecasting.
Further, mean absolute percentage error (MAPE) and peak
prediction error are used to measure the prediction perfor-
mance of a method.

MAPE =
1
24

24∑
i=1

|
L̄ i − L i0,0
L i0,0

| × 100%

We also consider the peak prediction error denoted as

max
i∈[1,24]

|L̄ i − L i0,0|

since the peak prediction error is also an important factor.
In M-LSTM, following [5], we set p to be −7 to cap-

ture the auto-regressive effect of a week. To set the weight
in dropout layers, following [12], we use 0.2 and 0.25 in
M-LSTM and U-LSTM, respectively. Further, Adam opti-
mizer is chosen as it is known to be the best performing
optimizer for time-series prediction task [23]. In addition,
to prevent over-fitting JDL, we set the number of epochs
when training M-LSTM, U-LSTM, and ensemble layer to be
40, 40, and 20, respectively. Further, to investigate the gain
fromM-LSTM and U-LSTM, we introduce JDML and JDUL
which only perform U-LSTM and M-LSTM, respectively
while executing the LSTMH.

Moreover, we create two benchmark models to investigate
the performance on holiday load forecasting by pure-LSTM
based approaches. Firstly, we adopt the idea of [15] to create
multi-model (MM) strategy to investigate the impact of using
LSTM to predict the nearest workday and compensatory holi-
day(s). To deal with the data insufficiency problem, we adopt
LSTM to create the augmented learning strategy (AL). AL
selects two weeks before and after the public holiday as train-
ing data, for each historical year whose nearest workday is the
same as that of the target holiday. The obtained augmented
data will be used to train a U-LSTM model predicting the
load consumption of the nearest workday, compensatory hol-
iday(s), and the public holiday itself by a recursive manner.

B. RESULTS
Fig 3 shows the obtainedMAPE of different holidays. Among
the applied methods, the proposed JDL outperforms oth-
ers, and the achieved MAPEs for all evaluated holidays are
approximately less than 4%, regardless the number of com-
pensatory holiday(s). Further, JDML obtains better results
than JDUL for most cases. JDML predicts the i-th hour of
the target holiday using the features at the same hour of the
consecutive past seven days which better captures the trends
of the load usage. JDUL takes the features in the previous day
to predict the target holiday all at once. It would better capture
the characteristics of the time series at the same day. However,
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FIGURE 3. Prediction error for holidays.

FIGURE 4. Peak prediction error for holidays.

the proposed JDL takes advantages of both U-LSTM and
M-LSTM with the assistance of ensemble layer so that its
MAPEs are low. The MAPEs of MM and AL fluctuate from
a holiday to another. MM obtains 4-6% MAPEs when no
compensatory holidays exist, but the MAPEs increase in the
presence of compensatory holidays due to data contamination
in predicting the compensatory holidays. On the other hand,
in AL, the MAPEs are low when proper features are found
for LSTM to capture the characteristic of load consumption
pattern for the corresponding holiday. But, if the number of
the same holiday occurrence pattern is insufficient, AL may
obtain large MAPEs, such as x = 1 and 7. Additionally,
the MAPE of AL is inapplicable, when w ≤ −3, because the
input data is insufficient for training due to the rare occurred
holiday patterns of the corresponding holidays.

Fig. 4 presents the peak prediction error of each holiday.
It can be found in both Fig. 3 and 4, for all methods, with the
increasing of the compensatory holidays, bothMAPE and the
peak prediction error increase. The holiday load consumption
is predicted at certain hour of the nearest workday, and the
load pattern highly relies on the past consecutive days. Thus,
the prediction error of the load consumption of the compen-
satory holiday(s) would propagate to the target holiday load
forecasting. Under this circumstance, theMAPE and the peak
prediction error increase when the number of compensatory
holiday(s) increases.

Obviously, the proposed JDL achieves the lowest error for
most holidays. Because of the careful design of DynaNC and
LSTMH to predict the load consumption of compensatory
holidays and target holiday, JDL is the most robust method.

FIGURE 5. Holiday load prediction when no compensatory holidays occur.

It not only achieves small MAPEs (2-4%) but also small peak
prediction error (1500-2500 (kW)). Further, JDL adopts the
ensemble layer to balance the time and day series correla-
tions, and thus both MAPEs and peak prediction errors are
less than 4%. Although other methods can achieve less than
4% MAPEs and 2500 (kW) peak prediction error in some
cases, they are not as robust as JDL. Existing methods are
mainly designed to perform one day ahead load forecasting.
When compensatory holidays present, additional prediction
error would be introduced, because the holiday load con-
sumption is predicted more than one days ahead.

To further investigate the behavior of holiday load forecast-
ing, we individually select a holiday for different number of
compensatory holidays and evaluate the corresponding load
usage of the chosen holiday. Fig. 5 - 8 show the twenty-four-
hour holiday load forecasting alongwith the actual load usage
under different number of compensatory holidays. As seen
in Fig. 5, the x-axis indicates the i-th hour of the holiday,
and the y-axis is the corresponding load usage when no
compensatory holidays present prior to the target holiday
(i.e., x = 1). The black line without markers is the actual
load usage, and the rests are the predicted load consumption
though different methods. The load pattern of JDL between
the 1st and the 6th hour is very close the that of actual load.
From the 10th to the 24th hour, the load prediction curve
of JDL is the closest one to the actual load. Therefore, JDL
obtains the smallest MAPE and peak prediction error. The
load forecasting curves of JDUL and MM are also close to
actual load, and thus their MAPEs and peak prediction errors
are small. Although the pattern of AL is similar to the actual
load, large load prediction offset exists between AL and the
actual load resulting in largeMAPE and peak prediction error.
JDML does not capture the pattern and the load prediction
offset properly. Because it only uses features of the same hour
for prediction, its MAPEs and peak prediction error are larger
than JDL.

Fig. 6 shows the holiday load usage for x = 7 in
which one compensatory holiday exists. As seen in Fig. 6,
the overall load forecasting curve of each method has cer-
tain offsets comparing to the actual load. In the presence
of one compensatory holiday, the prediction error increases
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FIGURE 6. Holiday load prediction when one compensatory holiday
occurs.

FIGURE 7. Holiday load prediction when two compensatory holidays
occur.

FIGURE 8. Holiday load prediction when three compensatory holidays
occur.

in comparison with the absence of compensatory holidays.
More specifically, JDL obtains the closest load forecasting
curve to the actual load which indicates the most precise load
forecasting result. The load forecasting curves of JDML and
JDUL are similar, and JDML predicts load usage better than
JDUL before the 8th hour. It may because JDML takes more
days information of the same hour for prediction, and then
the MAPE could be improved. Further, MM and AL better
predict the load consumption before the 8th hour, and the
prediction errors significantly increase since the 8th hour.
Therefore, the MAPEs and peak prediction errors are large.

Similarly, Fig. 7 and 8 present the holiday loads for
x = 8 and 9, respectively. It can be observed that in Fig. 7,
the prediction curves of all methods are close to each other.
In the presence of two or three compensatory holidays,

the prediction errors increase for both MM and JDUL
because they lack of accurate one day ahead load usage. It is
worth to notice that JDUL achieves better forecasting results
at certain hours on both holidays, and thus its performance
is better than MM. JDML consider multiple days ahead load
usage to better capture the characteristic of the load pattern
for most time intervals resulting in better performance than
JDUL. Moreover, JDL take advantages of both JDML and
JDUL to achieve the best forecasting results.

Overall, JDL is more reliable in terms of MAPE, the peak
prediction error and the twenty-four-hour load forecasting
pattern under different holiday status. The performance can
be enhanced in further by considering more complicated
ensemble layers or features to capture more characteristic of
the holiday load consumption to assist prediction.

VI. CONCLUSION
In this paper, we propose JDL to perform holiday hourly
load forecasting on the nearest workday prior to the incoming
public holiday. To react to the characteristic of different pre-
diction horizon on the nearest workday, JDL combines the
similarity-based method and deep learning. The similarity-
based method, DynaNC, utilizes DTW to predict the load
consumption of the nearest workday and compensatory hol-
iday(s), if any. The deep learning-based method, LSTMH,
utilizes LSTM to predict the load consumption of a public
holiday.

Nine holidays in Asia are applied to evaluate our proposed
JDL along with two methods from the literature. The results
show the proposed JDL ismost reliable and robust in forecast-
ing the holiday load consumption. The prediction errors of
JDL fall on the range of 4%. In the future, we will investigate
the design of temperature prediction to enhance the load
forecasting accuracy and reliability. Moreover, the design of
a better ensemble layer would also be studied to improve the
performance of load prediction.
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