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ABSTRACT Recently, the design of sparse linear array for direction of arrival (DOA) estimation of
non-circular (NC) signals has attracted great attention because the difference and sum co-array offered by
non-circularity increases the aperture of virtual linear array. In this paper, we present a coprime array with
shifted and flipped sub-array for the DOA of non-circular signals. By shifting one sub-array, the proposed
array structure achieves a higher number of consecutive lags than the prototype coprime array with the same
number of sensors. Then, through flipping the shifted sub-array with the zero point as the symmetry point, the
number of sensor pairs with small separation is significantly reduced, making the resulting structure much
sparser. For the proposed array structure, we derive the closed-form expression for the number of consecutive
lags, the optimal distribution of two sub-arrays with a given number of sensors and the weight function.
Numerical simulations are conducted to verify the superiority of the proposed array over the existing sparse
arrays.

INDEX TERMS Coprime arrays, direction of arrival (DOA), non-circular signal, degree of freedom, mutual
coupling.

I. INTRODUCTION
Direction-Of-Arrival (DOA) estimation is one of the impor-
tant research fields in array signal processing [1]–[3]. For
uniform linear array (ULA), the traditional estimationmethod
such as multiple signal classification (MUSIC) [4] and esti-
mation of signal parameters via rotational invariance tech-
niques (ESPRIT) [5] can only resolveM−1 sources under the
condition of M physical sensors. However, the underdeter-
mined conditions where the number of target sources is larger
than that of array sensors are very common in the real world.

To solve this problem, many sparse array structures have
been proposed to increase the degrees of freedom (DOFs).
The minimum redundant array (MRA) [6] is a well-known
sparse array that maximizes the number of consecutive lags
based on difference co-array. However, as the closed-form
expression of the configuration of MRA does not exist,
it is difficult for array design. The nested arrays (NA)
[7] and coprime arrays (CPA) [8] are the most notable
sparse arrays presented recently. They both consist of two
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uniform linear arrays, making it possible to express their
structures analytically. Based on them, many underdeter-
mined DOA estimation approaches have been proposed,
such as spatial smoothing subspace MUSIC (SS-MUSIC)
[9] and compressed sensing algorithm [10], [11] [12].
In [13], coprime arrays with compressed inter-element spac-
ing (CACIS) and coprime arrays with displaced sub-arrays
(CADiS) are proposed, which reveals that the proper
displacement of subarrays and inter-element spacing can
increase the DOFs and improve estimation accuracy.

However, many of the sparse array design schemes do
not consider the effect of mutual coupling. Therefore,
the DOA estimation performance will drop sharply when
this effect is strong. To tackle this problem, the super nested
arrays (SPNA) are designed by rearranging the dense ULA
part of a nested array in [14]. In this way, the number
of small inter-element spacing can be decreased to reduce
the mutual coupling effect, while the key advantages of
the nested array can be maintained. In [15], the augmented
nested array (ANA) is introduced. It is obtained by split-
ting the dense uniform linear array part in the nested array
and placing them on both sides of the sparse uniform array
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of the nested array. Compared with SPNA, it can pro-
vide a higher DOFs and reduce the mutual coupling effect.
In [16], a new sparse array named themaximum inter-element
spacing constraint (MISC) is proposed, consisting of three
sparse ULAs plus a ULA with two sensors. Comparing
to the SPNA and ANA, it has a sparser structure and a
higher DOFs.

However, the above sparse arrays are designed using the
covariance matrix without considering the NC characteristic
of signal. NC signals are frequently encountered in digital
communications, such as binary phase shift keying (BPSK)
and Unbalance Quadrature PSK (UPSK). Compared with
circular signals, NC signals can provide more information
for DOA estimation because their elliptic covariances are
not equal to zero [17]–[26]. In addition, the researchers
also introduce elliptic covariance in the process of sparse
array design to improve the performance of DOA estima-
tion. In [27], the difference and sum (diff-sum) co-array is
proposed, and the prototype coprime array [8] is taken as a
model to verify the performance advantage of the diff-sum
co-array. In [28], a diff-sum coprime array with multiperiod
sub-arrays (DsCAMpS) is designed, making a substantial
increase in DOFs. In [29], the nested array with displaced
sub-array (NADiS) is designed for NC signals by placing the
two subarrays side by side. It has a similar array structure
to the nested array but provides larger physical and virtual
array aperture. In [30], the transformed nested array (TNA-I)
is designed by swapping positions of the two sub-arrays of
the nested array. Then, TNA-II is proposed by splitting the
dense sub-array of TNA-I into two parts, yielding a higher
DOFs than the above arrays. However, these arrays for NC
signals do not consider the mutual coupling effect, result-
ing in performance degradation when this effect is strong.
Hence, in [31], the improved coprime array is designed by
flipping one sub-array of a coprime array with zero point.
It reduces mutual coupling for the DOA estimation of NC
signals. However, it does not increase the DOFs compared
with the prototype coprime array, so that further improvement
is possible.

In this paper, we propose a shifted coprime array by
shifting one sub-array of the coprime array to increase the
DOFs for the DOA estimation of NC signals. Then, flipping
it with zero-point as a symmetry point, the coprime array
with shifted and flipped sub-array (CASFS) is obtained. Our
contributions are summarised as follows:

1) The closed-form expressions for the physical sensor
location and the number of consecutive lags are derived, and
the optimal distribution of sensors to each sparse ULA is
also given. Compared with the existing coprime array family,
the proposed array can provide a higher DOFs and a larger
physical array aperture.

2) For the proposed array, we derive the weight functions
and prove that the weight functions with small values are less
than the existing sparse arrays and even zero, which shows
that the CASFS has a much sparser structure and can tolerate
severer mutual coupling.

The rest of this paper is organized as follows: in Section II,
the signal model is presented. Section III describes the novel
sparse array structure and its properties. Section IV presents
numerical examples; Section V summarises this paper.

Throughout this paper, we make use of the following nota-
tions. Matrices and vectors are represented by capital letters
and lower letters in boldface, respectively. Given a matrix A,
we useAT ,AH , andA∗ to denote the transpose, the Hermitian
transpose, and the conjugate of A, respectively. We use ⊗
and � to denote the Kronecker product and the Khatri-Rao
product, respectively. The statistical expectation is denoted
by E{·}, and vec{·} is the vectorization operation. gcd(m, n)
represents the greatest common divisor between m and n.
For two given sets of integers X and Y, the summation set
between X and Y is given by sum(X,Y) = {x+ y|x ∈ X, y ∈
Y} and their difference set is diff(X,Y) = {x − y|x ∈ X, y ∈
Y}. In addition, X + a represents {x + a|x ∈ X}, where a is
an integer.

II. PRELIMINARIES
A. SIGNAL MODEL
Considering a sparse linear array with Q physical sensors,
the unit spacing equals half wavelength λ/2, denoted by d .
The set of sensor positions is given by

L = {d1, d2, . . . , dQ}d, (1)

where dq is an integer. Supposing there are K far-field
uncorrelated, narrow-band sources denoted by s(t) =

[s1(t), s2(t), . . . , sK (t)]T impinging on the array from direc-
tions θ = [θ1, θ2, . . . , θK ], the steering vector at angle θk is,

a(θk ) = [ejβkd1 , ejβkd2 , . . . , ejβkdQ ]T , (2)

where βk = π sin θk . We further assume that all signals are
strictly non-circular and quasi-stationary with F frames and
frame length T . t ∈ {1, 2, . . . ,T }.
Then the received data of the sparse array is given by

x(t) =
K∑
k=1

a(θk )s̄k (t)ejφk + n(t) = A8s̄(t)+ n(t), (3)

where A = [a(θ1), a(θ2), . . . , a(θk )] is the Q × K array
manifold matrix, s̄(t) = [s̄1(t), s̄2(t), . . . , s̄K (t)]T is the K ×
1 real-valued signal vector, 8 = diag{ejφ1 , ejφ2 , . . . , ejφK }
and φk is the NC phase of the k-th signal. n(t) =
[n1(t), n2(t), . . . , nQ(t)]T represents the Q × 1 noise vec-
tor corresponding to the t-th snapshot, where nq(t) is inde-
pendent and identically distributed (i.i.d.) additive Gaussian
noise with power σ 2

n and it is independent of the sources.
Then, the covariance matrix of the received signals can be
expressed as

Rx = E{x(t)x(t)H } =
K∑
k=1

pka(θk )aH (θk )+ σ 2
n I, (4)

where pk = E{s̄k (t)s̄k (t)} represents the power of the k-th
signal, and the elliptic covariance matrix for the received
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signals, due to the characteristic of NC signals, is not zero
and given by

R′x = E{x(t)x(t)T } =
K∑
k=1

p̄ka(θk )aT (θk ), (5)

where p̄k = E{s̄k (t)s̄k (t)ej2φk }. In order to make use of the
benefits associatedwithNC signals, we construct an extended
observation, given by

y(t) =
[
x(t)
x∗(t)

]
=

[
A8
A∗8∗

]
s̄(t)+

[
n(t)
n∗(t)

]
. (6)

Then the covariance matrix of y(t) can be expressed as

Ry =

[
Rx R′x
R
′
∗
x R∗x

]
= ÃPÃH

+ σ 2
n I2Q, (7)

where Ã = [(A8)T , (A8)H ]T , P = diag{p1, p2, . . . , pk}.
Vectorizing Ry yields

z = vec{Ry} = Bp+ σ 2
n i, (8)

where

B = Ã∗ � Ã (9)

is called the equivalent array manifold of difference and sum
co-array, p = [p1, p2, . . . , pk ]T and i = vec(I2Q).

B. DIFFERENCE AND SUM CO-ARRAY
Now, we focus on B to get more insight into it. From (9),
we can obtain the k-th column of matrix B, given by

b(θk ) = ã∗(θk )⊗ ã(θk )

=

[
a∗(θk )e−jφk
a(θk )ejφk

]
⊗

[
a(θk )ejφk

a∗(θk )e−jφk

]
= K2Q,2 ⊗ IM b̄(θk ), (10)

where K2Q,2 denotes a commutation matrix defined in [32]
and b̄(θk ) is given by [30]

b̄(θk ) =


a∗(θk )⊗ a(θk )

a(θk )⊗ a(θk )ej2φk
a∗(θk )⊗ a∗(θk )e−j2φk

a(θk )⊗ a∗(θk )

 , (11)

indicating that b(θk ) and b̄(θk ) have the same elements, but
the order is different. By analyzing (11), we find that a∗(θk )⊗
a(θk ) corresponds to the steering vector of a virtual array
whose sensor positions can be written as

C−d = {−dm + dn|dm, dn ∈ L}. (12)

Similarly, the sensor positions of virtual array correspond-
ing to the steering vector a(θk )⊗ a(θk ), a∗(θk )⊗ a∗(θk ), and
a(θk )⊗ a∗(θk ) are given by

C+s = {dm + dn|dm, dn ∈ L}
C−s = {−dm − dn|dm, dn ∈ L}
C+d = {dm − dn|dm, dn ∈ L},

(13)

respectively. Therefore, B can be regarded as the steering
vector with the sensors located at

C = C−d ∪ C
+
s ∪ C

−
s ∪ C

+

d . (14)

Removing duplicated and discrete entries from z gives

zc = Bcp+ σ 2
n e0, (15)

where e0 is a column vector with middle element 1 and
other elements 0. Then, the vectorized non-circular MUSIC
algorithm [28], [30], which considers non-circular phases,
can be used for DOA estimation.

Here, we present the difference and sum co-array C,
defined as
Definition 1 (difference and sum co-array). Let L be an

integer set denoting the sensor positions. The difference and
sum co-array of L is defined as

C = ±{dm ± dn|dm, dn ∈ L}. (16)

Obviously, the difference and sum co-array is symmetric,
so we often show the non-negative part only.

C. MUTUAL COUPLING
The mutual coupling between the physical sensors is not con-
sidered in equation (3). However, the mutual coupling effect
between the sensors with close distance cannot be neglected
in practice. We incorporate it into the received signal vector
as follows,

x(t) = CA8s̄(t)+ n(t), (17)

where C represents the Q× Q mutual coupling matrix. Note
that when C is an identity matrix, equation (17) is reduced to
the coupling-free model (3).

In general, C is rather sophisticated. According to [14],
for uniform linear arrays, C can be modeled by a B-banded
symmetric Toeplitz matrix as

〈C〉dm,dn =

{
c|dm−dn|, if |dm − dn| ≤ B
0, otherwise,

(18)

where dm, dn ∈ L and c0, c1, . . . , cB are coupling coefficients
satisfying c0 = 1>|c1|>|c2|>, . . . ,>|cB|. It is assumed that the
bigger sensor separation is, the smallermagnitude of coupling
coefficient is, i.e. |ck/cl | = l/k .

III. THE PROPOSED TRANSFORMED COPRIME
ARRAY STRUCTURE
In this section, the shifted coprime array (SCA) is introduced
by shifting one sub-array to the right by L unit spacing to
yield a higher number of consecutive lags for virtual array.
Then, we propose the coprime array with shifted and flipped
sub-array (CASFS) with a much sparser structure than SCA,
reducing the effect of mutual coupling.
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FIGURE 1. Topological structure of the shifted coprime array.

A. THE SHIFTED COPRIME ARRAY
In order to further improve the virtual array aperture, we pro-
pose a shifted coprime array by shifting one sub-array to the
right and fixing another one. The novel coprime array struc-
ture provides a higher number of consecutive lags and a larger
physical array aperture. As shown in Fig.1, the SCA consists
of two sub-arrays withM + 1 and N − 1 sensors, denoted by
L1 and L2, respectively, whereM and N are coprime, and L2
is shifted Ld to the right. The sensor positions of SCA can be
expressed as 

L = L1 ∪ L2

L1 = {mNd |m ∈M}
L2 = {nMd + Ld |n ∈ N},

(19)

where M = [0,M ] and N = [1,N − 1]. Then, according to
Definition 1, the difference and sum co-array of SCA can be
expressed as

C = ±{Si,j ∪ Di,j}, i, j ∈ {1, 2}, (20)

where Si,j = sum(Li,Lj) andDi,j = diff(Li,Lj) represent the
sum set and difference set between Li and Lj, respectively.
Specifically, the sum sets of sub-arrays are given by

S1,1 = {mN |0 ≤ m ≤ 2M}

S1,2 = {mN + nM + L|m ∈M, n ∈ N}
S2,2 = {nM + 2L|2 ≤ n ≤ 2N − 2},

(21)

whereas the difference co-array of sub-arrays are given by
D1,1 = {mN |0 ≤ m ≤ M}

D1,2 = {mN − nM − L|m ∈M, n ∈ N}
D2,1 = {nM + L − mN |m ∈M, n ∈ N}
D2,2 = {nM |0 ≤ n ≤ N − 2}.

(22)

Obviously, D1,2 is the mirror of D2,1, i.e. D1,2 = −D2,1.
The following proposition summarizes the properties of

S1,2 and D2,1 of SCA.
Proposition 1: Set S1,2 and set D2,1 have the following

properties:
(A) The relationship between S1,2 and D2,1 can be

expressed as

S1,2 = D2,1 +MN . (23)

(B) In the range of D2,1, there exists holes located at

Hd
2,1 = H1 ∪ {L} ∪H2, (24)

where

H1 = {aM + bN + L|a ≥ 0, b > 0,

0 < aM + bN < M (N − 1)}, (25)

and

H2 = {L − (cM + dN )|c ≥ 0, d > 0,

0 < cM + dN < M (N − 1)}. (26)

(C) In the range of S1,2, there exists holes located at

Hs
1,2 = H3 ∪ {MN + L} ∪H4, (27)

where H3 = H1 +MN and H4 = H2 +MN .
(D) Let C1 = S1,2 ∪ D2,1, then in the range of C1, there

exists holes located at

Hds = H2 ∪Hr
1,4 ∪H3 ∪ {L,MN + L}, (28)

where

Hr
1,4 = {αN + L|L < αN + L < MN + L}. (29)

Proof: See Appendix A.
In order to facilitate the analysis of the virtual array

structure, we first exploit the virtual array generated by the
±C1∪±S1,1. According to (21) and (28), we know that, as L
changes, ±S1,1 will not change, but the position of holes in
the range of ±C1 will change. To generate a virtual array
with higher DOFs for SCA, we consider constructing ±C1
whose holes can be as much as possible filled with ±S1,1
by choosing a suitable value of L. Hence, we present the
proposition as follow:
Propositon 2:LetL be a SCAwith parametersM ,N and L.

L = b(M+1)/2cN is the optimal choice that yields the largest
number of consecutive lags for SCA, and the consecutive lags
are given by

Cc = {φ| −8+ 1 ≤ φ ≤ 8− 1}, (30)

where 8 = MN +M + N + L.
Proof: See Appendix B.

In order to illustrate Proposition 1 and Proposition 2 more
clearly, we set (M ,N ) = (5, 4) generating a SCA as an
example here. According to Proposition 2, we shift sub-array
L2 to the right by L = 12. Fig.2 shows the result, where red
squares denote the sensors of sub-array A, blue circles denote
the sensors in sub-array B, black squares represent virtual ele-
ments and crosses stand for holes. The positions of physical
sensors L can be specified as L1 = {0, 4, 8, 12, 16, 20} ∪
L2 = {17, 22, 27}. It can be observed that the holes in the
range of D2,1 are located at H2 = {−2,−1, 0, 3, 4, 8} ∪
{12} ∪ H1 = {16, 20, 21, 24, 25, 26}, and the holes in the
range of S1,2 are located at H4 = {18, 19, 20, 23, 24, 28} ∪
{32} ∪ H3 = {36, 40, 41, 44, 45, 46}. Therefore, S1,2 can be
regarded as a set generated by adding MN to each element
of D2,1, indicating that S1,2 and D2,1 possess similar virtual
array structure. By combining the ranges of S1,2 and D2,1,
we can see that, in the overlapping range [17, 27], the holes
of H4 located at {18, 19, 23} are filled by the elements
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FIGURE 2. An example of SCA configuration co-array, where M = 5,N = 4, L = 12.

in D2,1, and the holes of H1 with position {21, 25, 26} are
filled with the elements in S1,2, so that the remaining holes
in the overlapping range [17, 27] are at {20, 24}. There-
fore, the holes in the range of D2,1 ∪ S1,2 are located at
{0, 3, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40} ∪ {41, 44, 45, 46}.
In addition, the hole at {3} can be filled by D1,2 and the holes
at {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40} are integer multi-
ples of 4, making that they can be filled by S1,1. As a result,
the hole located at {41} is the first hole that cannot be filled,
so that the number of consecutive lags of the SCA is 81.

B. OPTIMAL SENSOR ALLOCATION PROBLEM
In this subsection, we will address the problem of the optimal
sensor distribution to maximize the number of consecutive
lags for a given number of physical sensors. According to
the above Propositions, the number of consecutive lags of the
SCA is 28 + 1. Hence, the optimization problem about the
number of consecutive lags can be formulated as

max (MN +M + N + b(M + 1)/2cN )

subject to M + N = Q

gcd(M ,N ) = 1

M ,N ≥ 2. (31)

In other words, what we are interested in is how to config-
ure (M ,N ) to make virtual ULA largest under a fixed number
of sensors. The solution to (31) can then be given by the
following proposition.
Proposition 3:One solution to the optimization problem in

(31) can be expressed as

Mopt =



Q
2
− 1, if Q is even,

Q
2
is even

Q
2
− 2, if Q is even,

Q
2
is odd

Q− 1
2

, if Q is odd,
Q+ 1
2

is even

Q+ 1
2

, if Q is odd,
Q+ 1
2

is odd,

(32)

then Nopt = Q−Mopt .

According to (32), we can obtainMopt is an odd and Lopt =
(M + 1)/2. The length of the corresponding consecutive lags
of one-side virtual uniform linear array can be written as

8 =



3
8
Q2
+

5
4
Q− 2, if Q is even,

Q
2
is even

3
8
Q2
+

5
4
Q− 6, if Q is even,

Q
2
is odd

3
8
Q2
+

5
4
Q−

9
8
, if Q is odd,

Q+ 1
2

is even

3
8
Q2
+

5
4
Q−

13
8
, if Q is odd,

Q+ 1
2

is odd.

(33)

Proof: See Appendix C.
For comparison, the one-side uniform DOFs for proto-

type coprime array (PCA) and diff-sum improved coprime
array (DSICA) are also given by
prototype coprime array [27]:

8 =



1
4
Q2
+

3
2
Q, if Q is even

1
4
Q2
+

3
2
Q−

15
4
, if Q is odd,

Q− 1
2

is even

1
4
Q2
+

3
2
Q−

3
4
, if Q is odd,

Q− 1
2

is odd,

(34)

diff-sum improved coprime array [31]:

8 =



1
4
Q2
+

3
2
Q− 1 if Q is even,

Q
2
is even

1
4
Q2
+

3
2
Q− 3 if Q is even,

Q
2
is odd

1
4
Q2
+

3
2
Q−

3
4

if Q is odd.

(35)

From (33), (34), and (35), it is observed that the number
of consecutive lags for the SCA, PCA, and DSICA have the
same order ofmagnitude ofN 2. Moreover, the SCA possesses
a greater value than the PCA and DSICA. Therefore, we can
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TABLE 1. Comparison of the number of consecutive lags of six kinds of sparse arrays for different number of sensors.

draw a conclusion that the SCA provides a higher number
of consecutive lags than the prototype coprime array and
diff-sum improved coprime array. Table 1 exhibits the number
of consecutive lags of six kinds of sparse arrays for different
number of sensors. We observe that the PCA and the DSICA
have almost the same number of consecutive lags, and SCA
has higher DOFs than PCA, DsCAMpS, and DSICA, but
lower DOFs than TNA-I and TNA-II.

C. WEIGHT FUNCTIONS
Compared with the prototype coprime array, the shifted
coprime array has another advantage which is less affected by
mutual coupling. From [14], we know that the inter-element
spacing determines the effect of mutual coupling and the
weight function with l ∈ {1, 2, 3}, implying sensors pair
of them are separated by small inter-element spacing, has a
great influence on the mutual coupling of an array. In this
subsection, we derive the expression of weight function for
the SCA to evaluate the effect of mutual coupling.
Proposition 4: Let L be an SCA with parameters M , N ,

L, where M is optimal, defined as (32), and then L = (M +
1)N/2. The weight function of L is given by

w(l) =


M + N , l = 0
N − j, 1 ≤ j ≤ N − 2, l = ±jM
M − j, 0 ≤ j ≤ M − 1, l = ±(j+ 1)N
1, l ∈ ±D1,2,

(36)

Proof: See Appendix D.
According to Proposition 4, we obtain

w(1) = w(2) = w(3) = 1, (37)

when min(M ,N )>3. Because M is odd, it must not be 2.
Therefore, when N = 2, the weight functions for l = 1, 2, 3
is given by

w(1) = 1,w(2) = M − 1,w(3) = 1. (38)

When M = 3, the weight functions for l = 1, 2, 3 can be
expressed as

w(1) = 1,w(2) = 1,w(3) = N − 1. (39)

For comparison, the first three weight functions for PCA
are given by

w(1) = 2,w(2) = 2,w(3) = 2. (40)

Through (37) and (40), we observe that the SCA possesses
smaller values of w(1),w(2),w(3) than the PCA.

D. THE SHIFTED AND FLIPPED COPRIME ARRAY
Although the shifted coprime array has a small value of w(1),
w(2), and w(3), it is still affected by mutual coupling greatly.
In this subsection, we propose a coprime array with shifted
and flipped sub-array having the weight functions w(1) =
w(2) = w(3) = 0 and keeping the same virtual array aperture
as the SCA. It can be obtained by flipping the sub-array B of
the SCAwith the zero point as the symmetry point. Therefore,
the position sets of the CASFS are given by

L̃ = L̃1 ∪ L̃2

L̃1 = {mNd |m = 0, 1, . . . ,M}

L̃2 = {−nMd − Ld |n = 1, 2, . . . ,N − 1}.

(41)

By analyzing the virtual array of the SCA andCASFS, their
relationship can be revealed as follow:
Proposition 5: Let L̃ be a shifted and flipped coprime array

generated by flipping the sub-array B of a shifted coprime
array L. Then the diff-sum co-array of L and L̃ denoted by C
and C̃ respectively are the same, i.e.

C = C̃. (42)

Proof: The diff-sum co-array of the SCA can be rewrit-
ten as

C = ±{S1,1 ∪ D1,1 ∪ S2,2 ∪ D2,2 ∪ S1,2 ∪ D1,2}, (43)

where 

D1,1 = {dm − dn|dm, dn ∈ L1}

D1,2 = {dm − dn|dm ∈ L1, dn ∈ L2}

D2,2 = {dm − dn|dm, dn ∈ L2}

S1,1 = {dm + dn|dm, dn ∈ L1}

S1,2 = {dm + dn|dm ∈ L1, dn ∈ L2}

S2,2 = {dm + dn|dm, dn ∈ L2}.

(44)

The diff-sum co-array of the CASFS can be expressed as

C̃ = ±{̃S1,1 ∪ D̃1,1 ∪ S̃2,2 ∪ D̃2,2 ∪ S̃1,2 ∪ D̃1,2}. (45)

According to (19) and (41), we know L1 = L̃1 and L2 =

−L̃2. Therefore, the relationships between the subsets of C
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TABLE 2. Simulation conditions for the experiments.

and that of C̃ can be expressed as

D̃1,1 = D1,1

D̃1,2 = ±{dm − dn|dm ∈ L̃1, dn ∈ L̃2} = S1,2
D̃2,2 = ±{dm − dn|dm, dn ∈ L̃2} = −D2,2

S̃1,1 = S1,1
S̃1,2 = ±{dm + dn|dm ∈ L̃1, dn ∈ L̃2} = D1,2

S̃2,2 = ±{dm + dn|dm, dn ∈ L̃2} = −S2,2,

(46)

so we can obtain C = C̃. �
Next, we investigate the weight function of CASFS, which

can be expressed as

w̃(l) =


M + N , l = 0
N − j, 1 ≤ j ≤ N − 2, l = ±jM
M − j, 0 ≤ j ≤ M − 1, l = ±(j+ 1)N
1, l ∈ ±D̃1,2,

(47)

Based on (47), we conclude that the weight function of
SCA and CASFS have the same value when l is an integer
multiple ofm, n, due to±D1,1 = ±D̃1,1 and±D2,2 = ∓D̃2,2.
Remark: D̃1,2 is not equal to D1,2, but equal to the cross

sum set S1,2, indicating that the inter-element spacings of
CASFS are increased.

Moreover, when min(M ,N )>3, there is no 1, 2, 3 in
D̃ because the minimum of inter-element spacing is
min(M ,N , b(M + 1)/2cN ), i.e.

w̃(1) = w̃(2) = w̃(3) = 0. (48)

WhenN = 2, the weight functions for l = 1, 2, 3 are given
by

w̃(1) = 0, w̃(2) = M − 1, w̃(3) = 0, (49)

and whenM = 3, the weight functions for l = 1, 2, 3 can be
expressed as

w̃(1) = 0, w̃(2) = 0, w̃(3) = 1. (50)

From (37) and (48), we observe that the CASFS is less
affected by mutual coupling than SCA and PCA.

IV. SIMULATION RESULTS
In this section, simulation results are presented to illustrate
the advantages of the proposed array structure. In all DOA
estimations, we suppose that the number of sources is known
and that all incident signals have equal power. The NC phases
of signals are randomly distributed between 0 and π . To eval-
uate the performance quantitatively, we define the root mean
square error (RMSE) as

RMSE =

√√√√ 1
200K

200∑
m=1

K∑
k=1

(
θ̂k (m)− θk

)2
, (51)

whereK is the number of sources, and θ̂k (m) is the k-th source
DOA in the m-th Monte Carlo simulation. The simulation
conditions are listed in Table 2. We set Q = 11 for all
arrays, except for DsCAMpSwhich is 12, becauseDsCAMpS
configuration does not exist for Q = 11.

A. WEIGHT FUNCTION AND MUTUAL
COUPLING MATRICES
The first set of simulations compares the weight functions
and mutual coupling matrices of PCA [10], DsCAMpS [28],
DISCA [31], TNA-I [30], TNA-II [30], and CASFS. For all
these arrays, their structure configurations are listed in the
Table 2. Here, we consider the scenario with heavy mutual
coupling, where the coupling parameters are given by c1 =
0.3ejπ/3, B = 100, and cl = c1e−j(l−1)π/8/l for 2 ≤
l ≤ B. Fig.3 presents the weight functions for the six kinds
of sparse linear arrays (SLAs). As shown in Fig.3, TNA-I
has the highest weight functions with w(1) = 5,w(2) =
4,w(3) = 3, while w(1) = w(2) = w(3) = 2 for the
PCA, w(1) = 3,w(2) = 2,w(3) = 2 for the TNA-II,
w(1) = 4,w(2) = 4,w(3) = 7 for the DsCAMpS. The
DSICA possesses smaller weight functions with w(1) =
0,w(2) = 0,w(3) = 1 due to its sparser configuration. The
CASFS provides excellent set of weight functions among all
the arrays with w(1) = w(2) = w(3) = 0. Fig. 4 exhibits
the magnitudes of the mutual coupling matrices for the six
kinds of SLAs. The blue color implies less energy in the
corresponding entry. According to [14], the mutual coupling
leakage is defined as

L =
||C− diag(C)||F
||C||F

(52)

TABLE 3. A summary of mutual coupling leakage for six kinds of sparse
linear arrays.

A small value of L indicates that a mutual coupling is
weak. Table 3 lists a summary of L for the six different
sparse linear arrays. It can be observed that TNA-I and
DsCAMpS yield higher values of mutual coupling leakage
with L>0.3 than the other arrays, indicating that they suffer
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FIGURE 3. The weight functions for six kinds of SLAs. (a) PCA. (b) DsCAMpS. (c) DSICA. (d) TNA-I. (e) TNA-II. (f) CASFS.

FIGURE 4. The magnitudes of the mutual coupling matrices for six kinds of SLAs. (a) PCA. (b) DsCAMpS. (c) DSICA. (d) TNA-I. (e) TNA-II. (f) CASFS.

from serious mutual coupling effect, while the PCA and
TNA-II can moderately reduce the mutual coupling effect
and the DSICA is much less sensitive to the mutual coupling
effect. The CASFS offers the least value of L, implying
the weakest mutual coupling effect among all the six kinds
of SLAs.

B. DOA ESTIMATION IN THE PRESENCE
OF MUTUAL COUPLING
In the second set of simulations, we present the MUSIC
spectra of the six kinds of SLAs to compare the capability of
distinguishing sources in presence of heavy mutual coupling,
and then simulate the RMSE of these arrays against SNR,
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FIGURE 5. The MUSIC spectra for six kinds of SLAs when K = 33 sources are located at θk = −50◦ + 100◦(k − 1)/32, 1 ≤ k ≤ 33. (a) PCA.
(b) DsCAMpS. (c) DSICA. (d) TNA-I. (e) TNA-II. (f) CASFS.

the number of snapshots, the number of sources, and mutual
coupling intensity.
1) MUSIC Spectra: In this simulation, the SNR is fixed at

10dB and the number of frames and snapshots is F = 50 and
T = 500, while c1 = 0.3ejπ/3. Fig.6 depicts the MUSIC
Spectra for six kinds of SLAs when K = 33 sources are
located at θk = −50◦ + 100◦(k − 1)/32, 1 ≤ k ≤ 33.
FromFig.5, it can be seen that the TNA-I, TNA-II andCASFS
are capable of distinguishing all 33 sources, while the PCA,
DsCAMpS and DSICA can hardly work. This is because
TNA-I and TNA-II have a large number of consecutive lags,
while CASFS has a weaker mutual coupling effect, although
its consecutive lags number is not as large as TNA. Therefore,
we can conclude that the CASFS and TNA outperform the
remaining arrays under heavy mutual coupling and underde-
termined conditions.
2) RMSE Performance: The next simulations focus on the

RMSE performance with respect to the input SNR, the num-
ber of snapshots, the number of sources, and the modulus of
coupling coefficient c1. Themutual couplingmodel is charac-
terized by B = 100, c1 = 0.3ejπ/3 and cl = c1e−j(l−1)π/8/l
(except the case where c1 varies). The fixed parameter set-
tings are SNR = 10dB, T = 500 snapshots, F = 50
frames and K = 15 sources (except the case where K varies).
The sources are located at θk = −50◦ + 100◦(k − 1)/14,
1 ≤ k ≤ 15.

Fig. 6 shows the RMSE of the DOA estimates as a function
of the input SNR. We can observe that the RMSEs of the
TNA-I, TNA-II and DsCAMpS do not change much with the
increase of the SNR, because their dense sub-array structures

FIGURE 6. RMSE versus the input SNR, where K = 15, F = 50,
and T = 500.

make them severely affected by mutual coupling. On the
contrary, the RMSEs of the other three SLAs decrease as the
SNR increases and reach a stable level until the SNR is higher
than 10dB, while the CASFS possesses the lowest RMSE
over the entire SNR ranges among all these arrays. It implies
that the proposed array outperforms the other arrays against
mutual coupling effects due to its sparser structure.

The RMSE of the DOA estimates with respect to the
number of snapshots is presented in Fig. 7. We observe that,
along with the number of snapshots increase, the RMSE is
reduced rapidly for the CASFS and DSICA until T reaches
about 400, and the CASFS exhibits the lowest RMSE among
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FIGURE 7. RMSE versus the number of snapshots, where K = 15, SNR =
10dB, and F = 50.

FIGURE 8. CRB versus the input SNR, where F = 50, T = 500.

FIGURE 9. CRB versus the number of snapshots, where
SNR = 10dB, F = 50.

all these arrays. In contrast, the RMSEs of other arrays are
reduced rather slowly, especially for the TNA-I and TNA-II.
The Cramer-Rao lower bound (CRB) is the lower bound of

FIGURE 10. RMSE versus the number of sources, where SNR = 10dB,
F = 50, and T = 500.

FIGURE 11. RMSE versus varying modulus of mutual coupling, where
K = 22, SNR = 10dB, F = 50, and T = 500.

the unbiased estimation variance, which is used to measure
the deviation of the DOA estimation. Based on [4] and [33],
we simulate the CRB of the six kinds of sparse array. Fig. 8
and Fig. 9 show the results of the CRB of the DOA estimation
of the different sparse arrays. We see that the CRB of CASFS
is lower than that of the other arrays, and the accuracy of DOA
estimation is improved obviously.

The RMSE of the DOA estimates versus the number of
sources is illustrated in Fig. 10. When K > 23, the RMSEs
of these six kinds of array suffer from rapid deterioration
because of severemutual coupling. TheCASFS performs best
than the remaining arrays for the number of sources is less
than 23. The RMSE of the DOA estimates with varying |c1|
is plotted in Fig. 11. It can be seen that as the increase of
|c1|, the corresponding RMSE for all these arrays increases.
That is because a higher value of |c1| introduces a higher
level mutual coupling effect. When c1 = 0, the TNA-I and
TNA-II have lower RMSE than due to higher numbers of
consecutive lags than the other arrays. In the range of |c1| ≥
0.05, the RMSE of CASFS is lowest among all these arrays,
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indicating that the CASFS outperforms other arrays across a
wide range of mutual coupling coefficients.

V. CONCLUSION
In this paper, a new coprime array structure, termed as
coprime array with shifted and flipped sub-array, is proposed
which provides a higher number of consecutive lags than the
PCA with the same number of sensors by shifting the sub-
array. Moreover, it is able to tolerate severe mutual coupling
because of the sparser structure generated by flipping the
shifted sub-array with the zero point as the symmetry point.
For CASFS, the closed-form expression of the number of
consecutive lags is derived and the optimal distribution of
two sub-arrays is offered for a given number of sensors. The
theoretical analysis of weight function shows that CASFS
is less sensitive to mutual coupling effects compared to
PCA, DsCAMps, DSICA, TNA-I, and TNA-II. Numerical
simulations verify that the proposed array has a stable and
decent performance of DOA estimation in presence of mutual
coupling.

APPENDIX A
PROOF OF PROPOSITION 1
A. PROOF OF PROPERTY A
According to (22), an arbitrary element in D2,1 can be
expressed as

d2,1 = n1M − m1N + L, (53)

where 1 ≤ n1 ≤ N −1 and 0 ≤ m1 ≤ M . AddingMN to d2,1
gives

d2,1 +MN = n2M + m2N + L, (54)

where n1 = n2 and m2 = M − m1. Since 1 ≤ n2 ≤ N − 1
and 0 ≤ m2 ≤ M , we obtain {d2,1 +MN } ∈ S1,2. Similarly,
we can prove {s1,2 − MN } ∈ D2,1, where s1,2 denotes an
arbitrary element of S1,2. �

B. PROOF OF PROPERTY B
Here, contradiction is used to show that the elements in H1
denoted by h1 must not belong to D2,1. Supposing h1 ∈ D2,1,
then the equation

aM + bN + L = nM + L − mN (55)

holds, where a, b, n and m satisfy a ≥ 0, b>0, 1 ≤ n ≤ N −1
and 0 ≤ m ≤ M , respectively. Further, (55) can be rewritten
as

M
N
=
m+ b
n− a

. (56)

Since n−a < N and the coprimality ofM andN , we cannot
find an integer m that satisfies (56). Therefore, hypothesis
h1 ∈ D2,1 doesn’t hold, i.e. there are holes at H1 is the range
of D2,1. The processes of proving holes at H2 and {L} is
similar to H1. �

C. PROOF OF PROPERTY C
According to property (B), we can obtain h1 /∈ D2,1, then
{h1+MN } /∈ D2,1+MN . Since S1,2 = D2,1+MN , we obtain
{h1+MN } /∈ S1,2. Therefore, S1,2 can be seen as the set D2,1
adding MN , and the holes in the range of S1,2 can be given
by addingMN to H1, H2 and {L}. �

D. PROOF OF PROPERTY D
Based on (21) and (22), we can obtain{

M + L ≤ s1,2 ≤ MN +M (N − 1)+ L

L −M (N − 1) ≤ d2,1 ≤ M (N − 1)+ L,
(57)

where s1,2 ∈ S1,2 and d2,1 ∈ D2,1. Hence, there exists an
overlapping range between S1,2 and D2,1, given by

O1 = {o1|M + L ≤ o1 ≤ M (N − 1)+ L}. (58)

In the overlapping range, some holes inHd
2,1 may be filled

by elements of S1,2, and some holes in Hs
1,2 may be filled by

elements of D2,1. Hence, we further exploit which holes are
filled and which are still retained in the range of S1,2 ∪D2,1.
According to properties (B) and (C), we have

L < h1 < L +M (N − 1)

L −M (N − 1) < h2 < L

L +MN < h3 < L + 2MN-M

L +M < h4 < L +MN ,

(59)

where h1 ∈ H1, h2 ∈ H2, h3 ∈ H3 and h4 ∈ H4. Comparing
the range of holes to the overlapping range O1 yields

O1 ∩H1 6= ∅
O1 ∩H2 = ∅
O1 ∩H3 = ∅
O1 ∩H4 6= ∅
O1 ∩ {L,MN + L} = ∅,

(60)

indicating that some holes in H1 may be filled by S1,2 and
some holes inH4 may be filled by D2,1. Assuming that some
holes in H1 can filled by S1,2, then the equation

aM + bN + L = nM + mN + L, (61)

holds. Let’s discuss equation (61) in two cases where a > 0
and a = 0.

When a > 0, according to (25), we can obtainM+N+L <
h1 < M (N − 1) + L, indicating that all of them located at
overlapping range O1. If a 6= n, rewriting (61) gives

m− b
a− n

=
M
N
, (62)

which cannot be established due to m − b < M and the
coprimality between M and N . Similarly, if b 6= m, (61)
can not be established either. We can conclude that, for the
equation (61) to be true, both a = n and b = m must holds.
Therefore, the holes in H1 with a > 0 can be completely
filled by S1,2.
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When a = 0, (61) can be rewritten as

bN = nM + mN

⇒
b− m
n
=
M
N
, (63)

which cannot be established due to n < N and the coprimality
betweenM andN , indicating that none of the holes inH1 with
a = 0 can be all filled by S1,2.

Hence, after being filled by S1,2, H1 is reduced to

Hr
1 = {αN + L|L < αN + L < M (N − 1)}. (64)

Similarly, after being filled byD2,1, the remaining holes in
H4 is reduced to

Hr
4 = {αN + L|L +M < αN + L < MN + L}. (65)

Combining (64) and (65) yields

Hr
1 ∪H

r
4 = {αN + L|L < αN + L < MN + L}. (66)

Since the intersection of O1 and the range of H2 ∪ H3 ∪

{L,MN + L} is empty, the holes at H2 ∪H3 ∪ {L,MN + L}
haven’t changed anything. �

APPENDIX B
PROOF OF PROPOSITION 2
In the following proof, we will discuss the influence of L on
Hds and derive the optimal value of L for generating more
consecutive lags. Consider a positive integer L. According to
whether L can be divisible by N , it can be divided into two
cases, i.e. L = gN and L = gN + u, where g is a positive
integer and 1 ≤ u ≤ N − 1. We will discuss the two cases.
Case 1: Let L = gN . According to whether c is equal to

zero, H2 can be divided into two parts

H2 = H1
2 ∪H

2
2, (67)

where

H1
2 = {L − (cM + dN )|c > 0, d > 0,

0 < cM + dN < M (N − 1)}, (68)

and

H2
2 = {d̄N | −M (N − 1)+ L < d̄N < L}, (69)

where d̄ = g−d and d > 0. Then, the union ofHr
1,4,H

2
2 and

{L,MN + L} can be expressed as

Hg = {αN | −M (N − 1)+ L < αN ≤ MN + L}. (70)

Therefore, the holes in the range of C1 can be rewritten as

Hds = H1
2 ∪H3 ∪Hg. (71)

Next, we investigate Hg, H1
2 and H3 separately.

Firstly, we focus on Hg. Since ±S1,1 = {mN | − 2M ≤
m ≤ 2M}, we can conclude that all holes in Hg can be filled
by ±S1,1 when g satisfies

0 < g ≤ M . (72)

Secondly, we investigate the relationship between H1
2 and

D1,2. According to (22), the overlapping range between D1,2
and its mirror D2,1 can be expressed as

O2 = {o2|L −M (N − 1) ≤ o2 ≤ M (N − 1)− L}, (73)

indicating that the holes at the range of D2,1 may be filled by
D1,2. By comparing (68) to (73), we can obtainO2∩H1

2 6= ∅.
Therefore, we suppose that some holes inH1

2 can be filled by
D1,2, then the equation

−cM − dN + L = −nM − L + mN , (74)

holds. Since c > 0 and d > 0, according to (68), we can
obtain−M (N − 1)+ L < h12 ≤ L −M −N , where h12 ∈ H1

2.
If h12 at overlapping rangeO2 and c 6= n, substituting L = gN
to (74) gives

d + m− 2g
n− c

=
M
N
, (75)

which cannot be established due to n−c<N and the coprimal-
ity betweenM and N . Similarly, if d +M 6= 2g, (74) can not
be established. It can be concluded that, for the equation (74)
to be true, both n = c andm = 2g−d must holds. Therefore,
the holes in H1

2 can be all filled by D1,2. However, as the
increase of L, some holes of H1

2 may exceed the overlapping
range O2 such that it can not be filled by D1,2. To ensure all
holes in H1

2 can be filled, we need to make

L −M − N ≤ M (N − 1)− L (76)

be true. Since L = gN and g is a positive integer, we obtain

0 < g ≤
⌊
M + 1

2

⌋
(77)

Finally, we focus on H3. When a = 0 and b = 1,
we calculate that the minimum value of H3 denoted by h13
is MN + gN + N . To make sure the hole h13 can be filled by
S1,1, we need to make MN + gN + N ≤ 2MN be true such
that

0 < g ≤ M − 1. (78)

When a = 1, b = 1, the next hole of H3 is given by

h23 = MN +M + N + gN . (79)

We will prove that this hole cannot be filled by S1,1. If h23
can be filled by S1,1, there exists an integer n making

M + N +MN + gN = 2mN

⇒ 2m−M − 1− g =
M
N

(80)

work. As M ,N are coprime, we cannot find integer m that
satisfies (80). Hence, the hole h23 cannot be filled by S1,1.
In addition, by comparing h23 with the max value of D2,2,

we get

max(D2,2) = (N − 2)M < h23 (81)

Therefore, the hole h23 cannot be filled by D2,2. Next,
we prove that the hole h23 can be filled with S2,2 only
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when g = 1. If it can be filled with S2,2 = {nM + 2L|2 ≤
n ≤ 2N − 2}, there exists an integer n making

M + N +MN + gN = nM + 2gN (82)

work, then we can obtain
M + 1− g

1+ n
=
M
N
. (83)

As M ,N are coprime 0 ≤ n ≤ N − 1, the condition that
the equation (82) is g = 1. When g > 1, the hole h23 cannot
be filled with S2,2.

Since M and N are coprime, we obtain M ≤ 2. Hence,
we have ⌊

M + 1
2

⌋
≤ M − 1. (84)

Therefore, according to (72), (77), (78) and (84), setting
0 < g ≤ bM+12 c can ensure that all holes of Hg and H1

2
and the first hole of H3 can be filled, i.e. the holes less than
MN + M + N + L in the range of Hds are all filled, where
Hg ∪ h13 and H1

2 are filled by S1,1 and D1,2, respectively.
Therefore, we can conclude that, in the nonnegative range of
±C1 ∪±S1,1, the first hole is located atMN + gN +M +N
such that the number of consecutive lags for ±C1 ∪ ±S1,1
can be expressed as 2(MN + gN + M + N ) − 1, which
indicates that the larger value of g, the higher DOFs. Hence,
to generate a larger physical aperture and a higher DOFs for
SCA, we choose

g =
⌊
M + 1

2

⌋
, (85)

so that L = bM+12 cN is the optimal displacement of two
sub-arrays.

Case 2: Let L = gN + u, g > 0 and 1 ≤ u ≤ N − 1.
We will prove that there is at least one hole located atMN +
L or (M + 1)N + L in the difference and sum co-array of
SCA, i.e. the number of consecutive lags of SCA is less than
2(MN + gN +M + N )− 1.

Suppose that the holeMN+L can be filled by the elements
of S1,1, then the equation

mN = MN + L

⇒ m−M − g =
u
N

(86)

holds. Because u
N must not be an integer, the equation (86)

cannot be established. Moveover, comparing the min values
of D2,2, and D1,2 to MN + L gives{

MN + L −max(D2,2) = 2M + L > 0
MN + L −max(D1,2) = M + 2L > 0.

(87)

Therefore, the holeMN+L cannot be filled by the elements
of S1,1 ∪ D2,2 ∪ D1,2. Further, we prove that the elements in
S2,2 cannot fill the holes MN + L and (M + 1)N + L at the
same time. If the two holes can be filled with that, we obtain

n1M + 2gN + 2u = MN + L
n2M + 2gN + 2u = (M + 1)N + L

⇒ n2 − n1 =
N
M
. (88)

Because the coprimality of M and N , the equation (88)
doesn’t hold.

By combining the aforementioned Case 1 and Case 2 and
by analogy, we can draw a conclusion that L = bM+12 c

is the optimal choice that generates the largest number of
consecutive lags achieving 2(MN +bM+12 c+M +N )−1.�

APPENDIX C
PROOF OF PROPOSITION 3
Lemma 1:Given the odd number of sensorQ = M+N , when
M is odd and N is even, 8 defined as (30) is calculated and
denoted by81. After swappingM and N ,8 is calculated and
denoted by 82. Then,

81 > 82 (89)

Proof: According to (30), when M is odd, the num-
ber of consecutive lags of the non-negative co-array can be
expressed as

81 = Q+M (Q− N )+
1
2
(M + 1)(Q−M ). (90)

SwappingM and N , the number of consecutive lags of the
non-negative co-array is given by

82 = Q+ (Q− N )M +
1
2
M (Q−M ). (91)

Obviously, 81>82. �
When Q is even, because M and N are coprime, M and

N must be odd. Combining Lemma 1, Combining Lemma 1,
we can conclude that whether Q is odd or even, in order to
obtain a larger 8, M must be odd. Therefore, we have 8 =
MN +M + N + (M + 1)N/2.
Let N = Q −M , the optimization problem in (31) can be

rewritten as

max
(
−

3
2
M2
+

(
3
2
Q−

1
2

)
M +

3
2
Q
)
. (92)

Differentiating the above equation w.r.tM and equating to
zero, we obtain

M̃opt =
1
2
Q−

1
6
. (93)

Because M is odd and M̃opt is not an integer, we need to
find the odd number closest to M̃opt . We discuss it separately
according to the parity of Q.

When Q is even and Q/2 is odd and closest to M̃opt ,
we obtain M = N = Q/2, which is in contradiction with
the coprimality ofM and N . Therefore, the optimum value of
M ,N is given by

Mopt =
Q
2
− 2,Nopt =

Q
2
+ 2. (94)

When Q is even and Q/2 is even, the odd closest to M̃opt is
Q/2− 1. Therefore, the optimum value ofM ,N is given by

Mopt =
Q
2
− 1,Nopt =

Q
2
+ 1. (95)
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When Q is odd and (Q + 1)/2 is even, the odd closest to
M̃opt is (Q − 1)/2. Therefore, the optimum value of M ,N is
given by

Mopt =
Q− 1
2

,Nopt =
Q+ 1
2

. (96)

When Q is even and Q/2 is even, the odd closest to M̃opt is
(Q+1)/2. Therefore, the optimum value ofM ,N is given by

Mopt =
Q+ 1
2

,N =
Q− 1
2

. (97)

Submitting these (94)-(97) to (31), we get the
equation (33). �

APPENDIX D
PROOF OF PROPOSITION 4
According to [34], we obtain the w(l) easily when l /∈ ±D1,2.
Here, we give the proof of the weight function when l ∈
±D1,2 only. As described as (22),D1,2 = {mN−nM−L|0 ≤
m ≤ M , 1 ≤ n ≤ N − 1} and D1,2 = −D2,1.
First, we prove that there are (M + 1)(N − 1) unique lags

in D1,2. If there exists two the same lags, we obtain

m1N − n1M − L = m2N − n2M-L

⇒
n1 − n2
m1 − m2

=
N
M
, (98)

where 0 ≤ m1,m2 ≤ M and 1 ≤ n1, n2 ≤ N − 1. Because
of n1 − n2<N and the coprimality of M and N , the equation
(98) doesn’t hold. Therefore, there are no duplicate elements
in D1,2, i.e. (M + 1)(N − 1) unique lags.

Next, we prove that, when L = (M + 1)N/2, there not
exists the same lags betweenD1,2 andD2,1. If there exists the
same lags between the two sets, the equation

m1N − n1M − L = n2M + L − m2N (99)

holds, where 0 ≤ m1,m2 ≤ M and 1 ≤ n1, n2 ≤ N − 1.
Substituting L = (M + 1)N/2 into (99) gives

m1 + m2 −M − 1
n1 + n2

=
M
N
. (100)

Since m1 +m2 −M − 1<M and the coprimality ofM and
N , we cannot find the integers m1 that satisfies (100). �
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