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ABSTRACT We introduce a consistent and efficient method to construct self-dual codes over GF (g) using
symmetric matrices and eigenvectors from a self-dual code over GF(gq) of smaller length where g = 1
(mod 4). Using this method, which is called a ‘symmetric building-up’ construction, we improve the bounds
of the best-known minimum weights of self-dual codes with lengths up to 40, which have not significantly
improved for almost two decades. We focus on a class of self-dual codes, which includes double circulant
codes. We obtain 2967 new self-dual codes over GF(13) and GF(17) up to equivalence. We also compute
the minimum weights of quadratic residue(QR) codes that were previously unknown. These are a [20,10,10]
QR self-dual code over GF(23), [24,12,12] QR self-dual codes over GF'(29) and GF'(41), and a [32,16,14]
QR self-dual code over GF(19). They have the highest minimum weights so far.

INDEX TERMS Eigenvectors, optimal codes, quadratic residue codes, self-dual codes, symmetric matrix,

symmetric self-dual codes.

I. INTRODUCTION

The theory of error-correcting codes, which was born with
the invention of computers, has been an interesting topic
in mathematics as well as in industry, such as satellites,
CD players, and cellular phones. Recently, with the advent of
machine learning and artificial intelligence, there have been
some studies on the relationship between error-correcting
codes and these areas [2], [22], [30], [31]. Especially, self-
dual codes have been an important class of linear codes
for both practical and theoretical reasons and have received
an enormous research effort since the beginning of coding
theory.

Due to their algebraic or combinatorial structures, self-
dual codes have been studied by coding or cryptography
researchers. For example, self-dual codes have been useful
in secret-sharing schemes [9]. Moreover, many of the best-
known codes are actually self-dual codes. It is well-known
that self-dual codes are asymptotically good [28]. Self-dual
codes also have close connections to other mathematical
structures such as designs, lattices, graph theory, and modular

The associate editor coordinating the review of this manuscript and
approving it for publication was Zilong Liu.

104294

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

forms [1], [4], [5]. It is also reported that self-dual codes have
applications in quantum information theory [32, Chap. 13].
Recently, self-duality for some classes of quasi-cyclic codes
has been studied in [10].

On the other hand, coding theorists are interested in finding
an optimal code, which has the best capability to correct as
many errors as possible with a given length. The minimum
distance of code is the parameter determining the error-
correction capability of a code. In particular, extremal self-
dual codes and maximal distance separable (MDS) self-dual
codes are optimal codes that meet some upper bounds on the
minimum distances. There is a close relationship between
optimal codes and self-dual or self-orthogonal codes [26].
The effort to find optimal codes has lasted for decades,
and is still ongoing. To see the whole history, we refer
to [3], [11]-[14], [37], [39].

As a summary, we present all of the up-to-date results
concerning minimum weight bounds and the existence of
optimal self-dual codes in Tables 1, 2, and 3. In the tables,
the best-known minimum weights are listed. The superscript
‘e’ indicates the minimum distance of an extremal code when
g = 2,3,4, and ‘%’ indicates the minimum distance of
an MDS code. The superscript ‘o’ indicates the minimum
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TABLE 1. The best-known minimum weights of self-dual codes of length
n over GF(q) where n < 40 and 2 < q < 4 [12], [15], [19], [23].

2 4eucl herm
" type I type IT 3 dr, dg 4
2 2F - - 2 2% 2
4 2° - 3" 2 3" 2
6 2° - - 4 3° 4
8 2° 4° 3¢ 4 4° 4
10 2° - - 4 4° 4
12 4° - 6° 6 6° 4
14 4° - - 6 6° 6
16 4°¢ 4° 6° 6 6° 6
18 4° - - 8 6—7 8
20 4° - 6° 8 8¢ 8
22 6° - - 8 8¢ 8
24 6° 8¢ 9° ? 8 — 10 8
26 6° - - ? 8 — 10 8,10
28 6° 9° ? 9—11 10
30 6° - - ? 10 — 12 12
32 8¢ 8¢ 9°¢ ? 11 — 12 10,12
34 6° - - 12 10 — 12 10,12
36 8¢ - 12° ? 11 — 14 12,14
38 8¢ - - ? 11 —15 12,14
40 8¢ 8¢ 12° ? 12 — 16 12,14

TABLE 2. The best-known minimum weights of self-dual codes of length
n over GF(q) where n < 40 and 5 < q < 19 [3], [7], [12], [14]. [15], [18],
[20], [27], [36]. New results from this article are written in bold.

[n]] 5 T 7 T 9 T 11 7] 13 [ 17 [ 19 |
2 2% - 2% - 2% 2" -

4 2° 3" 3" 3 3" 3 3"

6 4% - 4% - 47 4" -

8 4° 5% 5% 5% 5% 5" 5%

10 4° - 6" - 6" 6"

12 6° 6° 6° 7 6° T s

14 6° - 6—7 - 8" 7—8 -

16 7° 7—8 87 87 87 8—9 8—9
18 7° - 8—9 - 8—-9 10" -

20 8¢ 9 — 10 10° 10° 10° 10° 11°
22 8¢ - 9 —11 - 10 —11 | 10 — 11 -
241/9—-10{9—-11|10—-11|9—-12 | 10—-12 | 10 —12 | 10 — 12

- 10—12 - 10—-13 10— 13 -
28(|10—11(11-13|12—-13|10—14 |11 —-14 |11 —-14| 11 — 14

30(| 10—-12 - 12—14 - 11 -15 |12 - 15 -
32(|11-13 | 13—14 | 12—15 ? 12 -16 |12 -16 | 14 — 16
34[111—-14 - 12—16 - 12 —-17 |13 — 17 -
36(| 12—15 | 13—17 | 13—17 ? 13 -18 |13 - 18 ?
38| 12—16 - 14—18 - 13 —-19 |14 - 19 -
40([13—17|13—18 | 14—18 ? 14 — 20 |14 — 20 ?

distance of an optimal code with given parameters. If the
bound is not determined yet, we put ‘?’ and if there does not
exist a self-dual code with a given length, we put ‘—’. If the
bound of the best minimum weight is reported, we indicate
the lower and upper bound together.

In Table 1, we list the best-known Lee distances(dy) and
Hamming distances(dy) of Euclidean self-dual codes over
GF (4)(denoted by 4°“!) and best-known Hamming distances
of Hermitian self-dual codes over GF'(4)(denoted by ghermy

Gleason-Pierce-Ward theorem states that self-dual codes
over GF(q) have weights divisible by § > 1 only if ¢ =
2, 3, 4. This motivates many researchers to study self-dual
codes over small fields. Table 1 gives an updated status of
the highest minimum weights of such self-dual codes.

However, these tables also tell that there remain many
unknown bounds. Most cases of length < 24 are completely
known. However, when 5 < g < 20, most highest minimum
weights of self-dual codes over GF'(q) are not known if length
> 24, as we can see in Tables 2 and 3. However, in general,
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TABLE 3. The best-known minimum weights of self-dual codes of length
n over GF(q) where n < 40 and 23 < q < 41 [3], [7], [13], [14], [16], [17],
[25], [36], [37], [38]. New results from this article are written in bold.

[n][ 23 [ 25 [ 27 [ 29 [ 31 [ 37 [ 4 |
2 B 2F B 2F B 2F 27

4 3% 3* 3* 3* 3% 3% 3%

6 - 3% - 47 - 4F 4F

8 5% 5 5 5% 5% 5% 5%
10 - 6~ - 6~ - 6™ 6™

12 I 7 7 i IS s IS

14 - 8% - 8* - 8% 8%

16 9* 9% 9% 9% 9 9 9

18 - 107 - 107 - 107 107
20[[10—11] 117 ? 10 —11 | 117 ? 117
22 - 7 ? - ? 127
24 13% 12—13 7 12 — 13| 137 7 12 — 13
26 - 147 - ? 147 ?

28| 11 — 14 ? 157 14 — 15 ? ? ?

30 - 7 - 16™ - 7 7

32 7 7 7 7 17" 7 17"
34 7 7 - 7 7

36 ? ? ? ? ? 18—19 ?

38 ? - 7 207 ?

40 7 ? ? 7 ? ? 20 — 21

many self-dual codes over larger finite fields have better
minimum weights than those of self-dual codes over smaller
fields. This is the main motivation of this paper.

We try to improve the bounds on minimum weights by
constructing self-dual codes of longer lengths as many as pos-
sible. To this end, we investigate the consistent and efficient
method to construct self-dual codes. Consequently, we find
a construction method of self-dual codes over GF(g) having
a symmetric generator matrix where ¢ = 1 (mod 4). This
method can be regarded as a special case of the well-known
‘building-up’ construction method [25]. However, the method
in this paper has significant differences: we improve the effi-
ciency to find the best self-dual code from a self-dual code of
a given length and we also focus our concern on one subclass
of self-dual codes which have a certain automorphism in
their automorphism group. Using this construction method,
we obtain 2967 new self-dual codes over GF' (13) and GF(17)
and improve the lower bounds of best self-dual codes of
length up to 40 (Table 4 and 5). We also want to point out
that our new construction method includes well-known pure
double circulant and bordered double circulant construction;
for example, optimal and MDS self-dual codes obtained in [3]
and [16] can be obtained equivalently by using our method.

In addition, we construct four new self-dual codes from
quadratic residue codes which improve the unknown bound:
a[20,10,10] code over GF'(23), [24,12,12] codes over GF' (29)
and GF(41), and a [32,16,14] code over GF(19). We also
point out that the [18,9,9] quadratic residue code over
GF(13), which has been reported previously as an optimal
self-dual code [3], is not actually a self-dual code. How-
ever, since we obtain [18,9,8] self-dual codes over GF(13),
the bound of the highest minimum distance of self-dual code
over GF(13) of length 18 is turned to 8-9. Our new results are
written in bold in Tables 2, 3 and 4. In particular, the highest
minimum distances of our results in Table 4 are all of the self-
dual codes having symmetric generator matrices. The number
of inequivalent codes we obtain is given in Table 5.
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TABLE 4. Highest minimum weights of self-dual codes constructed by
Theorem 8 vs. previously known highest minimum weights. New results
are written in bold.

" Over GF'(13) Over GF(17)
Our results | Prev. best | Our results | Prev. best
2 2 2 2 2
4 3 3 3 3
6 4 4 4 4
8 5 5 5 5
10 6 6 6 6
12 6 6 7 7
14 8 8 7 7
16 8 8 8 8
18 8 9? 10 10
20 10 10 9 10
22 10 10 10 10
24 10 10 10 10
26 10 - 10
28 11 10 11 10
30 11 - 12
32 12 12
34 12 12
36 13 13
38 13 14
40 14 14

TABLE 5. Number of inequivalent self-dual codes newly obtained by
using Theorem 8.

n Over GF'(13) Over GF'(17)
min. wt. | # of codes | min. wt. | # of codes
26 10 > 1098 10 > 352
28 11 >1 11 > 106
30 11 > 380 12 > 2
32 12 > 164 12 > 2
34 2 > 710 2 >2
36 13 >7 13 > 64
38 13 > 66 14 > 2
40 14 >4 14 > 7

The paper is organized as follows. Section 2 gives pre-
liminaries and background for self-dual codes over GF(q).
In Section 3, we present a construction method of symmetric
self-dual codes over GF(q) where g = 1 (mod 4). We show
that every symmetric self-dual code of length 2n + 2 is
constructed from a symmetric self-dual code of length 2n by
using this construction method. In Section 4, we present the
computational results of the best codes obtained by using our
method. All computations in this paper were done with the
computer algebra system Magma [6].

Il. PRELIMINARIES

Let n be a positive integer and g be a power of a prime.
A linear code C of length n and dimension k over a finite field
GF(q) is a k-dimensional subspace of GF'(¢)". An element of
C is called a codeword. A generator matrix of C is a matrix
whose rows form a basis of C. For vectors x = (x;) and
y = (i), we define the inner product x -y = | x;y;. The
dual code C* is defined by

Ct ={xeGF(@)"|x-c=0forallce C}.

A linear code C is called self-dual if C = C* and self-
orthogonal if C C C*.

The weight of a codeword ¢ is the number of non-zero
symbols in the codeword and it is denoted by wz(c). The
Hamming distance between two codewords x and y is defined
by d(x,y) = wt(x —y). The minimum distance of C, denoted
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by d(C), is the smallest Hamming distance between distinct
codewords in C. If a linear code C over GF(q) of length n
and dimension k has the minimum weight d, we denote C an
[n, k, d], code.

The error-capability of a code is determined by the mini-
mum distance, thus the minimum distance is the most impor-
tant parameter of a code. For a linear code, its minimum
distance equals the minimum weight of all the non-zero code-
words. It is well-known [21, Chapter 2.4.] that a linear code
of length n and dimension k satisfies the Singleton bound,

d(C) <n—k +1.

A code that achieves the equality in the Singleton bound
is called a maximum distance separable(MDS) code. A self-
dual code of length 2n over a field is MDS if the minimum
weight equals n + 1.

Let S, be a symmetric group of order n and D" be the set
of diagonal matrices over GF(q) of order n,

D" = {diag(y;) | vi € GF(q), y} = 1}.

The group of all y-monomial transformations of length n,
M is defined by

M ={psy |y €D",0 €84}

where p, is the permutation matrix corresponding o € S,,.
We only consider y-monomial transformation in this paper
since y-monomial transformation does preserve the self-
duality(see [21, Theorem 1.7.6]). Let Ct = {ct | ¢ € C}
for an element 7 in M?" and a code C of length 2n. If there
exists an element . € M?" such that Cpe = C’ for two distinct
self-dual codes C and C’, then C and C’ are called equivalent
and denoted by C =~ C’. An automorphism of C is an element
w € M?" satisfying Ciu = C. The set of all automorphisms
of C forms the automorphism group Aut(C) as a subgroup
of M?".

Let AT denote the transpose of a matrix A and I, be the
identity matrix of order n. A self-dual code C of length 2n
over GF(q) is equivalent to a code with a standard generator
matrix

(IVl A) ’ (1)
where A is a n x n matrix satisfying AAT = —1I,.

Proposition 1: Let C be a self-dual code of length 2n over
GF(q) with a standard generator matrix G = (I, | A). Then

ATG =@AT | -1,

is also a generator matrix of C.

Proof: Since C is self-dual, AAT = —J andA~! = —AT.
Thus A7 is non-singular. This implies that the rank of the
rows of AT G is equal to the rank n of G. Therefore, by the
definition of a linear code, the rows of the matrix AT G form
another basis of the code C. It is obvious that

ATG =T, | ATA) = AT | —1).
0
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Corollary2: Let G = (I, | A)and G’ = (I, | AT) be
generator matrices of self-dual codes C and C’, respectively.
Then C and C’ are equivalent.

Proof: By Proposition 1, it is clear that G’ is equal
to (AT G)py, y1 for the permutation 7y = (1,n + 1)(2,n +
2)---(n,2n) € S», and y; = diag(—1,,1,) € D> where
1,, denotes all one-vector of length n. Hence, C and C’ are
equivalent. 0

Proposition 3: Let G = (I, | A)and G = (I, | B) be
generator matrices of self-dual codes C and C’, respectively.
If A = uy Buy for some uy, uo € M", then C and C’ are
equivalent.

-1
Proof: For . = <M5 0 ) e M,
142

Un | A) = (Un | B

Thus, C and C’ are equivalent. O

Definition 4: A square matrix A is called symmetric if
AT = A. If the matrix A in a standard generator matrix
G = (I, | A) of a self-dual code C of length 2n over GF(q) is
symmetric, we call G a symmetric generator matrix of C. If a
self-dual code C has a symmetric generator matrix, we call C
a symmectric self-dual code.

Definition 5: Let Cy, C; be self-dual codes of length 2/ and
2m whose standard generator matrices are (I; | A1) and (1, |
A»), respectively. The direct sum of two codes, C; & C3 is
defined by the code having the generator matrix,

I1|O|A1| O
O\l | O|A;
Corollary 6: Let I,, be the identity matrix of order n, A be

an n X n circulant matrix, and B be an (n — 1) x (n — 1)
circulant matrix. Then,

(Lo | 11 Bua) = (uy' | Buo) =

U1 1A @ U | A2) = <

(i) a pure double circulant code over GF(q) with a gener-
ator matrix of the form (I, | A) is equivalent to a code
with symmetric generator matrix, and

(ii) a bordered double circulant code over GF(q) with a

a BB

p

5 A

o and B are elements in GF(q), is equivalent to a code

with symmetric generator matrix.

generator matrix of the form I , Where
n

Proof: Tt is clear that a column reversed matrix of a
circulant matrix A is symmetric. Thus, the corollary follows
directly from Proposition 3. 0

We remark that many MDS and optimal self-dual codes
are obtained by using the construction method of pure double
circulant codes and bordered double circulant codes in [3],
[16]. These codes are all equivalent to codes with symmetric
generator matrices.

Ill. CONSTRUCTION OF SYMMETRIC SELF-DUAL CODES

In this section, we introduce a construction method for sym-
metric self-dual codes over GF(g) where ¢ = 1 (mod 4).
We also show that any symmetric self-dual code of length
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2n + 2 is obtained from a symmetric self-dual code of length
2n by using this method. Thus, this is a complete method
to obtain all symmetric self-dual codes. Our construction
requires a square root of -1 in GF(g); it is well-known that
the equation x> = —1 has roots in GF(g) if and only if ¢ = 1
(mod 4). Thus, from now on, we assume that g is a power
of an odd prime such that ¢ = 1 (mod 4). We note that all
arguments in this section can be also applicable even if g is a
power of 2. We omit the details.

Lemma 7: Let o be a root of -1 in GF(q). If C is a self-
dual code of length 2n over GF (q) with symmetric generator

matrix G = (I, | A), then A has an eigenvector x! with
eigenvalue o or —a.
Proof: Since C is self-dual, AAT = —I. With the

assumption that A is symmetric, we have that A? = —I, and

A—aDA+al)=A>+1=—1+1=0.

This implies that any non-zero vector x/ generated by col-
umn vectors of A+ «l, is an eigenvector of A with eigenvalue
o if A # —al. On the contrary, if A = —al, then it is
obvious that any vector x’ in GF(g)" is an eigenvector of
A with eigenvalue —c«. Thus, the result follows. O

Theorem 8: Let (I, | A) be generator matrix of a symmet-
ric self-dual code of length 2n over GF (q) forq = 1 (mod 4).
Let o be a square root of —1.

Suppose that X! is a non-zero (column) eigenvector of A
corresponding eigenvalue o, where xx! + 1 is a non-zero
square in GF (q) Take y be an element of GF(q) sansfymg
v2=—-1—-xx"andy # a. Andlet p = (y —a)™" and
E = Bx'x. Then

’_ n_( 1]0]y X
G—(1n+1|A)—(O T

is a generator matrix of a symmetric self-dual code of length
2n 4 2.
On the other hand, suppose that X is a zero vector, then

)

is a generator matrix of a symmetric self-dual code of length
2n + 2 with minimum weight two.
Proof: Since the row rank of G’ is n + 1, we have only

to show that A’(A") is equal to —I,,; 1.

By the assumption, we have that AA” = —I, and Ax! =

x!, thus AET = A(Bx'x) = BAx")x = ofx'x and
EAT = AETT = (@px"x)T = apx"x. Note that if
g = 1 (mod 4), then —1 is a square. Furthermore, since we
have assumed that xx” + 1 is a non-zero square in GF(g),
there always exists y € GF(g) such that y? = —1 — xx”.
Therefore,

T
oant _ (v ] X v| x
AA) _(XTA+E)<XTA+E>
_ -1 ‘ YX + ax + ,BX(XTX)T
~ \yxT + AxT + ExT|—1, + xTx + 208x" x + EET

1

G/=(1|a>ea(1n|A>=<0T 0l

1,107
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T:

Since xx —y? — 1, we simplify the (1,2)-block matrix

as
YX + ox + ,BX(XTX)T
= yx+ox+ -y’ — Dx
= +a— B+ Dx
= BBy +a0)— (2 + 1)
=By —)y +@) = (> + 1)
=B+ D - +1)
= 01><n.

The (2,1)-block matrix yx! + Ax" + Ex! = 0,
since this is the transpose of the (1,2)-block matrix. Finally,
it remains to show that the (2,2)-block matrix is equal
to —I,. Recall that «> = —l and B = (y — a)” .
Thus,

x'x + 2aﬂxTx +EET

=x'x+ 2(X,3XTX + ﬂz(xTx)(xTx)T

= x"x+ 208x x + /327(T(—y2 —Dx

= (14+2aB — B>y — pHx'x

= BB+ 207 -y — Dx'x

= By — )’ +2a(y —a) —y* = Dx'x

= ,32()/2 —2ya—14+2ya+2— )/2 — Dx'x

= Ouxn
and the (2,2)-block matrix is equal to —1,,. This completes the
proof of the first part.

The ‘on the other hand’ part is trivial. g

By the construction method of Theorem 8 called the sym-
metric building-up construction, we obtain symmetric self-
dual codes of length 2n + 2 from a symmetric self-dual
code of length 2n. From now on, we discuss the converse of
Theorem 8.

Lemma 9: Suppose that C is a symmetric self-dual code
over GF(q) with generator matrix in the form:

10y |x
o' |I,|x" A )’

where x is a non-zero vector. Let o be a square root of -1
over a finite field GF(g) which is not equal to y and let
B = (y —a)~'. Then x” is an eigenvector of A — Ax!x with
eigenvalue «.

Proof: Since C is a symmetric self-dual code,

(35) () e

y2+xx! = —1
yx+xAT =0
yxI +AxT =07
xI'x + AAT = —1,.

Thus,

(©))
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By using these equalities, we show that

A - gx'x)x! = Ax” — pxT (xx7)
= —yx’ = gx' (=1 —y?)
= BBy + 1+ x"
= B(—(y —a)y + 1+ yHx"

= Blay + Dx’
=@ —a) ay —a®x"
= ax’.
Thus the result follows. O

Theorem 10: Any symmetric self-dual code C of length
2n + 2 over GF(q) for a prime q = 4k + 1 and a positive
integer n can be constructed from some symmetric self-dual
code C' of length 2n by the construction method in Theorem 8.

Proof: We may assume that C is a symmetric self-dual
code with a symmetric generator matrix

_( 1|0]y|x
G_<07 I, X A)

where A is an n X n symmetric matrix, y € GF(g), and
X is a vector in GF(g)". If x is a zero vector, G (or C) is
decomposable and gives the second case of Theorem 8.

Therefore, we suppose that x is a non-zero vector. Since
there are two square roots of —1, we can take « as a square
root of —1 which is not equal to y. Let 8 = (y — a)~! and
A’ = A— BxTx.Ttis clear that A’ is symmetric. By Lemma 9,
x! is an eigenvector of A’ with eigenvalue «. Consider a
symmetric self-dual code C’ of length 2n with the generator
matrix

G = (1]A").

Applying the construction method in Theorem 8 on G/,
we recover the matrix G as follows.

G— 10|y X
0T [xT|A” + BxTx

110
= <0T i r 2) because A’ + Bx’ x = A.

n|X

Therefore, C can be constructed from a symmetric self-
dual code C’ of length 2n with the generator matrix G’ as
wanted. |

Remark 11: Theorems 8 and 10 might be regarded as a
special case of the well-known ‘building-up’ construction
method [25, Propositions 2.1, 2.2]. But Theorems 8 and 10
have a significant difference. We only have to choose vectors
from an eigenspace of A with an eigenvalue of a root of —1.
This improves the efficiency to find a best self-dual code from
a self-dual code of smaller length. We also point out that all
of the self-dual codes used in this method have symmetric
generator matrices. Thus, we can focus our concern in one
subclass of self-dual codes that have a certain automorphism
in their automorphism group.
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Example 12: Let 0516 be a symmetric self-dual [16,8,6]
code over GF(5) with generator matrix

1000000014332402
0100000042024321
000100003210%001
G=Us1A)=16000100024324130 |-
0000010043301122
0000001002303232
0000000121410223

—

which is optimal. Then, the eigenspace of A with eigen-
value « = 2 is a subspace of GF (5)® of dimension four
10000302
generated by the row vectors of the matrix (8 (1) (1) 8 i ‘3‘ % %) .
00011020
Among these 5% = 625 eigenvectors, if we choose a vector

x = 43411113, then using the construction method in Theo-
rem 8 withy = Oand 8 = (y — «)~! = 2, we obtain an
‘optimal’ symmetric self-dual [18,9,7] code with generator

matrix

G/

O»—A
o
+
)

]

A WEO | P

I
coocococococo~—
cocococococo~o
coocococo~oo
coococo~ocoo
cococo—ocooo ¥l
coo~oococoo
—cococoocooo
—WNO— O WL A
ALWROWAOWW
We——h WA OA
PO DI R B DO A 0 s
—OW— A —OO—
[USTE SLUSRONY S N SN S Iy
WORON—WL—
— LW N W A — W

We close this section by comparing the complexity of our
method with that of the well-known ‘building-up’ method
in [25, Proposition 2.1]. If we apply the ‘building-up’
method in [25, Proposition 2.1] to the self-dual code C’516
of length 16 in Example 12 to construct self-dual codes
of length 18, a vector is typically chosen from GF(5)!3,
i.e., there are 5! possible choices. In contrast, as we have
already seen in Example 12, the number of possible choices of
vectors is reduced only to 5% when our new method is applied.

In general, according to our computational experience
to obtain several best self-dual codes in Table 4, we only
need about qL%J choices of eigenvectors when a given
length is 2n. Due to this reduced complexity, we have suc-
ceeded in constructing self-dual codes of lengths greater
than 22.

We remark that the building-up method in [25] will gen-
erate much more self-dual codes than our method based on
symmetric matrices. However, many of them will have low
minimum distances as well. Therefore, the result in this paper
is justifying that symmetric matrices are efficient samples to
derive best known minimum distances of self-dual codes over
large finite fields.

IV. COMPUTATIONAL RESULTS OF OPTIMAL OR
BEST-KNOWN SELF-DUAL CODES

In this section, we construct optimal self-dual codes over
GF(13) and GF(17) by using the method in the previous
section. From now on, for the brevity, we denote a symmetric
[2n, k, d] self-dual code over GF (p) as CI%" and its generator
matrix as ([, | AIZ,”). All the computations are done in
Magma [6].
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TABLE 6. Constuction of a chain of best-known self-dual codes over
GF(13).

Code o v x min. wt.
cooT 10
Cfg’l 8 4 (2,10,8,6,3,1,12,1,11,8,9,11,2) 11
C?g’l 8 11 (10,8,9,2,1,4,12,12,7,12,2,2,6,6) 11
Cfg*l 8 11 (5,8,5,2,7,11,11,10,12,2,11,12,3,4,7) 12
Cf;l*l 5 1 (0,3,7,5,1,10,11,3,7,2,10,12,2,6,12,10) 12
Cfg*l 8 6 (3,1,1,5,8,1,6,3,1,4,1,1,3,11,8,2,4) 13
Ci‘S*l 5 3 (8,0,8,2,11,6,8,3,9,3,7,1,7,2,8,11,9,2 ) 13
Ci9" 5 8 (5,10,54,1,81,2,3,4,11,5,8,6,3,2,12,9.3) 14

A. OPTIMAL SELF-DUAL CODES OVER GF(13)

In [3], the optimal minimum weights of self-dual codes
over GF(13) are determined for lengths up to 20 except 12,
and the minimum optimal weight of length 12 is deter-
mined in [14]. However, we pointed out that the existence
of optimal self-dual codes of length 18 turns out to be
unknown. This is to be discussed in Remark 14. We obtain
a [18,9,8] self-dual code with a symmetric generator matrix
G }g which is now known to have the best-known minimum
weight.

100000000105 5 0 1 9122 3
0100000005 7 11104 4126 5
0010000005115 353765

18 0001000000103 5 6 6 0 6 2
GB:: 0000100001 456 0105 1 9
0000010009 4 3 610129 4 6
0000001001212 7 0 5 9 3121
0000000102 6 6 6 1 412410
0000000013 55 296 11011

In Table 6, we illustrate the chain of self-dual codes con-
structed by using Theorem 8, successively from [26,13,10]
code (31236’ to [40,20,14] code Cfg’l. These self-dual codes
are all new and have the best-known minimum weights. The
[26,13,10] self-dual code C1236 ‘! has a generator matrix (/13 |

A?g’l) where

77 1836381010100 9
781087 578811704
1101111109 5 7104 8 7 11

§ 8 11127 113124 1211 8 11
37107100 812127 1010 1

26.1 659110857 311848
A3 =|375385341156116
§ 8 712127 4804319
108104 123 110 4 8 3107
10114127 1154850914

107 §11108 6 3 3 9110 8
0078104111101 05 4

9 411111 8 697 48 410

We give generator matrices of new symmetric self-dual
codes over GF'(13) of lengths up to 40.

o A symmetric self-dual [28,14,11] code
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o A symmetric self-dual [40,20,14] code

o A symmetric self-dual [30,15,11] code
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o A symmetric self-dual [32,16,12] code
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o A symmetric self-dual [34,17,12] code
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o A symmetric self-dual [36,18,13] code
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o A symmetric self-dual [38,19,13] code

28,2
17

+ 0t T ooooin o0
cwvlfmololimSorm
I b P L P Rt
LTSt O~ n
Vo tonovnlto o
SNNoN—neSnTne
cw—08CNcoo+No
CZooaielnole2n
Z220ml D8 —nonold
ShE S st iaShomtoly
Aol omwotm @O
00 S =0t O~
Tenen2 88000l ao?
44120““0025104

——— — el —

28,1
17
In Table 7, we illustrate a chain of self-dual codes con-

structed by using Theorem 8, successively from a [28,14,10]
code to a [40,20,14] code. The [28,14,10] self-dual code C
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TABLE 7. Constuction of a chain of best-known self-dual codes over

GF(17).

o A symmetric self-dual [36,18,13] code
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o A symmetric self-dual [38,19,14] code
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o A symmetric self-dual [40,20,14] code
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Additionally, we constructed a best [34,17,13] self-dual

) where

with generator matrix (/17 | A?;"z

34,2
17

code C
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In addition to our results on self-dual codes over GF(13)

and GF(17), we want to construct self-dual codes over other
finite fields. In [3], it is reported that some optimal self-dual
codes are obtained from quadratic residue codes following

C. QUADRATIC RESIDUE CODES OVER GF(q)
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o A symmetric self-dual [34,17,12] code
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[7, Theorem 15]. We also obtain new quadratic residue codes
in the following theorem. Among them, a [32, 16, 14] code
over GF(19), a [20, 10, 10] code over GF(23), a [24, 12, 12]
code over GF(29), and a [24, 12, 12] code over GF'(41) give
the best-known minimum weights which were unknown so
far.

Theorem 13: The following quadratic residue codes are
self-dual:

a[24, 12, 10] code over GF(13),

a[32, 16, 14] code over GF(19),

a [20, 10, 10] code over GF(23),

a [24, 12, 12] code over GF(29),

a 24,12, 12] code over GF(31),

a[24, 12, 12] code over GF (41),

a [32, 16, 14] code over GF (41).
Remark 14: The [18, 9, 9] linear code, quadratic residue
code over GF(13) of length 18, is reported as an optimal
self-dual code of that parameter in [3] referring to [7, Theo-

rem 15]. But we point out that the quadratic residue code over
GF(13) of length 18 is not self-dual, which has generator

1 81011 4 1110 8 4
52605 7 91111
2892811126
1105 7 6 6119 10

A= 4 711101011 7 4 0
9116 6 7 5101 10
1211829826
119 7506 2 511
81011 41110 8 1 4

For the details of the self-duality of quadratic residue
codes, we refer to [21, Chap. 6.6]. Theorem 6.6.18 in [21]
implies that quadratic residue code over GF(13) of length
18 is an iso-dual code, i.e., the code is equivalent to its dual.
Therefore, the existence of an optimal self-dual code over
GF(13) of length 18 turns out unknown, and that is the reason
why we put ‘?” in Table 4.

Remark 15: We also point out that the quadratic residue
code over GF(17) of length 14 is MDS and isodual code with
generator matrix in the standard form (I | A) where

2 510
1111 11
6 8 52117 3
A=]1105 11115101
7112 5 8 6 3
111116 1210 12 11
52425110

The new results are updated in Tables 2 and 3, and their
generator matrices are as follows.

o A[32,16, 14] code over GF(19)

181317 11101515 8 3 12 4 12 0 10 14 18
147 3154 914174 6 13 7 1212 4 13
4 01516131 6 1 5139 3 7 101317
136 75 0815160 1185 3 101811
187 41815154 4 0125 11 5 13 5 10
51017 6 6 1616 2 8 1611 2 1112 0 15
051017 6 6 1616 2 8 1611 2 111215
121510111116 16 1518 10 17 5 11 1514 8
141 5 8 410151811 2 111 5 4 9 3
9110 1132 8 01017 4 17 1 101112
111814125 0 8 155 1111 5175 8 4
8§ 2152 81813 1 104 1710 5 13 7 12
7 121614 8 17 8 1418 2 14 9 101110 O
1010131 9100 4 3120 8 9 5 410
41518 7186 7 6 1112159 8 7 6 14
6 2894411167 157 0 9 5181

104302

o A 20,10, 10] code over GF(23)
22122 91015 12%

N
—
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Pl Sre g
NN 3
)t o R
—OoVOEREID
—0 — N
N a S FNY- N
B eRm—
Nf=Y et ocirg e

o A[24,12,12] code over GF(29)

281821 4 142319 7 251619 1
19 525 3281210 2 2511 3 11
323013191713 1814 6 12 8
1219 3 1019 4 21 16 8 251025
10 6 1221152117 9 2722 9 15
92220 5 111124121628 25 6
252319 7 3 16 0 23252217 10
17 9 14 9 1 181226 4 14 18 22
1812 8 0 182224 2 11 6 20 4
20 6 2715102219 0 2410 3 13
3241 152 28232712 5 1110
11 8 2515 6 1022 4 13 10 28 28
« A[24, 12, 12] code over GF(41)
40 25 28 4 19 33 29 12 37 23 26 40
26 5356 22217 4 3413 3 25
333 3233126172216 6 1728
1729 8 1728 3 2518 8 3515 4
15111930192519 9 373214 19
143429 4 10 8 29 1524 2 37 33
373223 4 3919 1 3640 34 24 29
241116 9 402620 0 9 212512
2514 8 39263539 7 18 8 27 37
27 6 3723183731 2 3312 3 23
3344257 1323614 5 1626
16 133722 8 1229 4 181540 1

V. CONCLUSION

In this paper, we have introduced a new construction
method of symmetric self-dual codes. Using this construction
method, we have constructed many new self-dual codes.
We have also obtained new quadratic residue codes. Conse-
quently, we have improved the bounds of the highest mini-
mum weights of self-dual codes over some finite fields, which
stayed unknown for almost two decades because of their
computational complexity issue. Our computational results
give twenty new highest minimum weights of self-dual codes
and 2967 new self-dual codes up to equivalence.

As future work, we will work on the highest minimum
weights of self-dual codes over GF(gq) where g = 3 (mod 4).
Furthermore, we will focus on ¢ even or ¢g*> = 1 (mod 4)
so that Hermitian self-dual or self-orthogonal codes over
GF (¢?) will result in quantum codes as well.
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