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ABSTRACT Surgery is the most commonly used method of curing inverted papilloma (IP) or nasal polyp
(NP). Although accurate preoperative recognition by computed tomography (CT) is a critical aspect of
surgical planning, the minor CT imaging differences in such lesions may be a challenge. Therefore, we have
devised a deep learning framework for automatic recognition of IP and NP in CT. The proposed framework
involves two major steps: (a) use of a convolutional neural network (CNN) to preclassify lesions and
(b) automatic IP/NP recognition. The preclassify CNN enables classification of CT slices according to
anatomic structure. Separate networks are then implemented to differentiate IP and NP accordingly. Once the
framework was trained using a CT dataset (5681 slices) from 136 patients, it outperformed other methods
during evaluation, achieving 89.30% accuracy (area under the curve [AUC]=0.95) in classification. The
proposed framework has clear potential as a clinical tool, enabling effective and highly accurate preoperative
recognition of IP and NP.

INDEX TERMS Deep learning, inverted papilloma, nasal polyp, pre-classify, recognition.

I. INTRODUCTION
Inverted papilloma (IP) is a common but benign sinonasal
neoplasm that has recently drawn much attention in the
realm of otolaryngology, given its potential for local inva-
sion/recurrence or malignant transformation [1]. IP typi-
cally originates from the lateral wall of nasal cavity, middle
turbinate, or ethmoid recess [2], often signaled by maxillary
and ethmoid sinus dilatation. Frontal and sphenoidal sinuses
are rarely affected [3], [4]. As the most common benign
nasal mass, nasal polyp (NP) shares clinical symptoms of
IP [5], making it difficult for otolaryngologists to distinguish
the two. Both IP and NP are cured through surgery, albeit
by quite different means. precise preoperative differentiation
is thus critical. Although imaging studies, chiefly computed
tomography (CT) and magnetic resonance imaging (MRI),
are indispensable for preoperative assessments in this set-
ting [6], IP lacks distinctive features on CT (as does NP),
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appearing only as a soft tissue density. Partial or complete
obstruction of adjacent orifices and concavities caused by IP
may produce secondary inflammatory changes (edema and
mucosal thickening), hampering the differentiation of IP from
other nasal masses (especially NP) [7]. Its tell-tale graphic
features (ie, cerebriform pattern) are detectable by MRI [8],
but related costs and longwaiting times are prohibitive, which
is why CT remains the first option. A breakthrough of IP and
NP recognition based deep learning by using CT would be
highly beneficial.

A number of studies have explored the use of medical
imaging features for computer-aided diagnosis (CAD). Such
efforts primarily have involved either a hand-crafted feature
approach or a deep learning-based network.

A. HAND-CRAFTED FEATURE METHODS
Hand-crafted methods rely upon feature extraction for clas-
sification, which in most instances, is aimed at various nod-
ules. Haralick’s texture features [9] addresses lung nodules
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in this way, whereas texture, shape, and context are utilized
by Jacobs [10] for this purpose. Statistical distributions [11]
have also been used to classify thyroid nodules, applying the
sparse fast Fourier transform (SFFT) algorithm as a filter in
fusing of features. Similarly, fused histogram of oriented gra-
dient (HOG) and local binary pattern (LBP) descriptors have
fueled support vector machine (SVM) classifiers for detect-
ing diabetic macular edema by optical coherence tomogra-
phy [12]. In the field of breast cancer [13], an AdaBoost
classifier applied to Haar-like features has helped to identify a
preliminary set of tumor regions. Unfortunately, hand-crafted
feature methods are insufficiently robust and require highly
selective features for proper classification.

B. DEEP LEARNING BASED METHODS
In recent years, deep learning methods based on convo-
lutional neural networks (CNNs), such as AlexNet [14],
GoogleNet [15], VGG [16], residual net (ResNet) [17],
U-Net [18], Faster R-CNN [19], Single-Shot Detector
(SSD) [20], and YOLO v3 [21], have achieved outstand-
ing performance in fields of image classification, segmen-
tation, and recognition. CNNs in the realm of CAD have
been used to classify lung nodules [22], liver tumors [23],
and Alzheimer’s disease [24]; recognize melanoma [25]
and breast masses [26]; segment HEp-2 cells [27], rectal
tumors [28], and covid-19 [29]. To date, however, sinonasal
studies of this sort are still quite rare. Chang [30] has iden-
tified nasal tumors and fibrosis by a neural network, and
an automated method of segmentation for MRI radiother-
apy of nasopharyngeal carcinoma has been proposed [31].
As for recognition of nasal polyp, Wu [32] has applied
a method-based artificial method to classify phenotyping
of nasal polyp by whole-slide imaging (WSI). Kim [33],
[34] employed a deep learning method to identify maxillary
sinusitis or normal cases by Waters’ view radiographs. How-
ever, the studies of recognition of nasal polyp and inverted
papilloma are still blank. Compared with hand-crafted fea-
ture methods, the clear advantage of CNNs is the effective
extraction of highly discriminating features.

Both IP and NP vary in shape and distribution, showing a
morphologic spectrum even the same patient across CT slices.
The NP of Figure 1(a) has irregular shapes and boundaries
due to anatomic variations, and the areas of morbidity are
numerous. Figure 1(b) shows an IP with irregular shapes and
boundaries, and the morbidity areas are also varied. Irrelevant
areas (brain and eyeballs) cover parts of the CT slices, so it is
difficult to recognize NP and IP using one simple classifica-
tion network of deep learning basis.

In this publication, a novel framework, unlike any other
related works and methods, is proposed for automatic
preoperative recognition of IP and NP. This end-to-end deep
learning framework has two-component networks, one for
pre-classification of anatomic structure and the other for
recognition of IP and NP. The pre-classification network
serves to categorize sinonasal CT slices by anatomic details,
and there are two recognition networks trained for separate

FIGURE 1. Illustration of (a) NP and (b) IP (areas of NP or IP morbidity
shown for edification only, not for training or testing).

sinonasal regions. No manual preprocessing is involved, and
the pre-classification network ensures greater recognition
accuracy.

II. MATERIALS AND METHODS
The proposed end-to-end framework (Figure 2) has twomajor
steps:

(1) Classify upper (USN) and lower (LSN) sinonasal CT
slices by CNN, and (2) Extract regions of interest (ROIs) for
NP and IP recognition in USN and LSN separately

A. DATA COLLECTION
The available dataset includes 5681 slices from 136 patients
(IP, 49; NP, 87), each scanned at the First Hospital of China
Medical University (Shenyang, China) using anAquilionOne
system (Canon Medical Systems, Otawara, Tochigi, Japan)
configured as follows: voltage, 100 kV; current, 400mA; slice
thickness, 0.5 mm; and scanning range, 287 mm. The axial
pixel size of each slice was 512 × 512. Pathologic reports
supplied the ground truth for disease type, and three experi-
enced staff otolaryngologists provided ROI ground truth. The
scientific committee in the First Hospital of China Medical
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FIGURE 2. Framework of the proposed method.

University waived privacy restrictions, releasing patient data
for scientific research.

The framework dataset was allocated as follows:
4376 slices from 114 patients (IP, 39; NP, 73) for training and
1305 slices from 22 patients (IP, 8; NP, 14) for testing. In our
experiments, hyperparameters of training data were adjusted
using a 10-fold cross-validation strategy. At each fold, we
annotated the dataset by patient ID so that all cross-section
slices belonging to the same patient could be used for either
training or validation.

B. PRECLASSIFICATION ON ANATOMIC BASIS
The sinonasal region is situated roughly above nasal floor
plane and beneath base of skull. The nasal cavity sits in mid-
sinonasal region and is rimmed by four paranasal sinuses
(maxillary, ethmoid, frontal, and sphenoid). This regional
anatomy is complex, the variably shaped cavities or air cells
presenting quite different imaging features. It is difficult
to train a model in IP and NP recognition without con-
sidering these elements. We have subsequently devised a
preclassification network to categorize CT slices based on
anatomic details. The LSN region, extending from plane of
nasal floor (Figure 3, line C) to bottom of orbit (Figure 3,
line B) [35], is largely occupied by maxillary sinus (spa-
cious cavities) [36]. The USN region, extending from base
of orbit to base of skull (Figure 3, line A) [37] harbors
ethmoid, frontal, and sphenoid sinuses (small, irregular air
cells) [5], [6].

1) PREPROCESSING
Pixel values may differ somewhat among scanners or vary
due to illumination, impacting model-driven feature extrac-
tion. Ordinarily, they should be normalized. Data augmen-
tation is needed to increase sampling numbers to diversify
the dataset, thus strengthening the model’s generalizability.
Given the directional aspects of sinonasal slices, mirror flip,
random shear (parameter range, 0.2), zoom (parameter range,
0.2), and rotation (0-30◦) were utilized.

2) NETWORK ARCHITECTURE
CNNs have been used in a series of medical imaging clas-
sification tasks [22]–[25], so we opted for CNN as the pre-
classification network (depicted in Figure 4). The usual CNN
model has three blocks, including two-dimensional (2D)
convolutions and 2D pooling finishes, with fully connected
layers, to classify features extracted from convolutional

FIGURE 3. Illustration of USN and LSN regions (green circles marks USN
air cells; orange circles marks LSN cavities).

layers. The pre-classification task was simpler and expended
less time than customary procedures, so we set the layer
number at 8. To enhance convergence speeds of the train-
ing model and prevent overfitting, we converted the non-
linear CNN activation function from ReLU to leakyReLU.
We also added batch normalization (BN) layers between
conventional and max-pooling layers. Finally, we engaged
softmax to determine network predictions, assigning slices by
class.

C. IP AND NP RECOGNITION BASED ON YOLOv3 MODEL
In NP and IP recognition, otolaryngologists focus on the
sinonasal area in CT, ignoring concomitant brain and eye
contributions. Features of these irrelevant regions hinder fea-
ture extraction and training of networks. Sinonasal sizes also
visibly differ in CT slices. To detect multiscale ROIs and
classify disease types of ROIs effectively, we chose YOLO
v3 for end-to-end recognition network modeling. Because
USN and LSN slices differ substantially in lesion distribution
and shape, the two networks were thus trained to recognize IP
and NP in USN and LSN separately.

1) MULTI-SCALE RECOGNITION NETWORK
To extract multiscale ROIs in down-sampling, three feature
map sizes were set in YOLO v3, each feature map having
three corresponding prior boxes (see Table 1).

There are three components of YOLO v3, the first
being input, and feature extraction. Image input of the
network was 512 × 512, but prior to inputting slices,
pixel values were normalized. Feature extraction was
enabled by Darknet-53, without fully connected layers.
Unlike the down-sampling process of traditional CNN,
Darknet-53 holds the convolution core at a stride of 2× 2 to
replace max-pooling. Feature map sizes were then reduced
to 1/32 of originals through five down-samplings. In a
series of residual blocks, Darknet-53 achieves higher training
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FIGURE 4. The architecture of the preclassification network, including six 2D convolutional layers, two fully connected layers,
and a softmax layer.

TABLE 1. Relations between feature maps and prior differently sized boxes.

efficiency and deeper network structure than other CNNs.
The structure of the recognition network is shown
in Figure 5.

The second component is the fusion of multiscale fea-
tures. To detect and classify multiscale regions, YOLO
v3 has three scales of feature maps. Down-sampled and up-
sampled tensors are fused by concatenation method. In this
way, the network integrates multiscale contextual imaging
features.

The third component is output. According to the three
different scales of feature maps, outputs of YOLO v3 are
designed as tensors with three corresponding sizes. Nine prior
anchors are divided equally by three different scales of output
tensors according to the size of each prior anchor. The three
output tensors’ sizes are y1: 13 × 13×21, y2: 26 × 26×21,
and y3: 52× 52×21.

Among the output tensors, size was determined by the
sizing of three feature maps. Each predicted box had five
parameters (x, y, w, h, conf), where x is lower left-hand
abscissa, y is lower left-hand longitudinal coordinate, w is
width, h is height, and conf is confidence degree for classifica-
tion. The depth of the tensor was determined by the following
formula:

Tendeep = 3× (Parnum + Classnum) (1)

where Parnum is the number of each predicted box, Classnum
is the number of our classification tasks.

Finally, we used Logistic regression to score 9 prediction
boxes and ultimately selected the boxes with the highest score
as ROI.

2) MULTI-TASK LOSS
Each training image was ground-truth annotated, including
a class label y and a ground-truth bounding-box regression
target l, expressed as a 4-dimensional vector (x-position,
y-position, width, height). Multitask loss variables lB and
lC of each labeled bounding box were utilized to train
bounding-box regression and classification. In bounding-box

regression, we calculated the offset between the predicted
box and ground truth, using the L2 norm to make predicted
boxes approach their ground truth l, with LB as the loss of all
bounding-box regression as below.

LB
(
l, l∗

)
=

R∑
r=1

(
lr − l∗r

)2 (2)

with lr and l∗r representing ROI ground-truth labels and pre-
dicted outputs separately.

In ROI classification, distinction between IP and NP was
formulated as a binary problem, applying cross-entropy to
make predicted category y∗ approach its ground truth y, using
Lc to describe the loss as below.

Lc(y, y∗) =
R∑
r=1

−
(
yr
(
log

(
y∗r
))
+ (1− yr )

(
1− log

(
y∗r
)))
(3)

with yr and y∗r representing ground-truth labels and predicted
outputs of classification tasks respectively.

III. RESULTS
A. IMPLEMENTATION DETAILS
Open-source platforms were chosen as the deep learn-
ing frameworks of preclassification (Keras) and recogni-
tion (Tensorflow) networks. As for the training processes,
the pre-classification and recognition networks are separate.
The training processes of all experiments were conducted
on a workstation powered by an NVIDIA (Santa Clara, CA,
USA) GeForce GTX 1060 GPU (6 GB of memory), using
the compute unified device architecture (CUDA) toolkit 8.0.
Parameters of the Adam optimizer were set at β1 = 0.9,
β2 = 0.999, and ε = 1e − 8 to minimize the loss function.
In the training of the USN recognition network, we used
parameter files trained by LSN to fine-tune the model, with
all established layers trainable.

The basic learning rate was generally set to 0.0001 and
reduced by 90% if the validation error did not decline after
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FIGURE 5. The architecture of YOLOv3, including Darknet-53 and multiscale outputs.

10 epochs. To prevent overfitting, a patience of 20 epochs
and a minimum delta of 0.001 served as criteria for early
stopping. Batch sizes of pre-classification and recognition
networks were set to 32 and 4, respectively. The epoch for
each network was 100. The hyperparameters for each trained
network are shown in Table 2.

B. EVALUATION METRIC
We evaluated the accuracy, recall/sensitivity, and specificity
of classification results, defining IP as positive and NP as
negative. Accordingly, TP, TN,FP, andFN signified true pos-
itive, true negative, false positive, and false negative outputs,
respectively. The above metrics were calculated as shown
below.

accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

recall/sensitivity =
TP

TP+ FN
(5)

specificity =
TN

TN + FP
(6)

C. ANALYSIS OF RESULTS
First, the performance of the preclassification network is
analyzed. Moreover, a series of three experiments were per-
formed to assess the effects of feature extraction, ROI extrac-
tion, and pre-classify on recognition results. The outcomes
are discussed below.

1) PERFORMANCE OF PRECLASSIFICATION
To analyze the performance of different activation functions,
the ablation experiments were designed. Experimental results
are shown in Table 2.

As shown in Table 2, the use of leakyrelu is advantageous
to increase the performance of preclassification. Leakyrelu
can alleviate the problem of neuron death to some extent,
which can raise the network performance.

2) IMPACT OF FEATURE EXTRACTION
Feature extraction impact was explored through hand-crafted
feature experimentation. The SIFT descriptor, which is stable
in this regard, was duly implemented. We used pixels in
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TABLE 2. Comparison of Pre-classification network.

FIGURE 6. ROC curves of experimental data.

16 × 16 neighborhoods to extract features, dividing blocks
into 16 sub-blocks of 4 × 4 and generating an 8-bin orienta-
tion histogram for each sub-block. A 128-bin features vector
was thereby extracted from each slice. K-means clustering
(k = 16) was also applied, generating a 16-dimension
codebook for these 128-bin features. To adjust hyperpa-
rameters, a 10-fold cross-validation training strategy was
exercised on training data. Finally, both k-Nearest Neigh-
bor (KNN) and SVM were trained in these features for
binary classification tasks. The neighbors-num of KNN was
set to 5, with an SVM radial basis function (RBF) kernel.
As shown in Table 2 and Figure 6, the proposed method
performed considerably better by comparison. SIFT features
were extracted for classification training, collecting only low-
level features (shapes and pixel values) of images. However,
these low-level hand-crafted features are not sufficiently dis-
tinctive to classify IP and NP, both having irregular con-
tours. Deep convolutional networks are more robust than
hand-crafted descriptor methods, with greater capacity for
representation.

3) IMPACT OF ROI EXTRACTION
To investigate the impact of ROI extraction, we experimented
with deep learning classification networks VGG16 and

ResNet-50, both performing well via ImageNet. Batch sizes
were set to 32, and the epoch for training was 100. In the
training process, we applied 10-fold cross-validation to adjust
hyperparameters. Patience and minimum delta of early stop-
ping were set to 20 epochs and 0.001, respectively. Adam
was used to optimize the loss function. L2 regularization
was invoked to prevent overcomplicated parameters in fully
connected layers to discourage overfitting. BN layers were
used to normalize convolutional layer outputs, and data aug-
mentation was achieved as above (Section II.B.1). As shown
in Table 2 and Figure 6, the proposedmethod again performed
considerably better by comparison.

Otolaryngologists only focus on part of a CT slice
(ie, sinonasal region) in recognition of IP and NP. The
low signal-to-noise ratios of whole slices are problematic
for traditional deep learning classification networks, which
often perform poorly in this setting. Recognition networks
avoid features in irrelevant areas by ROI extraction. More-
over, noise features fed to training models promote over-
fitting. This underscores the need for ROI extraction in
deep learning frameworks for the recognition of IP and NP
in CT.

4) IMPACT OF PRE-CLASSIFY
We experimented with our proposed model, omitting the pre-
classification network for comparison. The batch size was set
to 4, and the epoch for training was set to 100. As for the
setting of batch size, experiments with different batch sizes
are employed. The results are shown in Table 5. Other training
details were identical to those of comparator methods. Classi-
fication outcomes appear in Table 2 and recognition outcomes
are shown in Figure 7. ROC curves across experimental sys-
tems are shown in Figure 6.

Except for specificity, the proposed method outperformed
other techniques, providing better IP recognition. It was
noted that high recall is more critical than high specificity
because IP has some malignant potential. In terms of recog-
nition results, Figure 7(a) depicts the ground truth of ROI
detection. Figures 7(b) and 7(c) illustrate the outcomes of
experimentation without pre-classification and the proposed
method respectively. Recognition results in rows 1 (LSN)
and 3 (USN) indicate that the proposed method recognizes
IP more effectively. Rows 2 (LSN) and 4 (USN) show
results of NP recognition. Although outputs of both methods
resulted in the correct classification (relative to ground truth),
the proposed method without pre-classification proved less
effective in ROI extraction. Thus, the pre-classification
network-enabled more accurate IP and NP recognition.
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FIGURE 7. Recognition outcomes in CT slices: (a) ground truth; (b) results of experimentation without
pre-classification; and (c) results of the proposed method.

TABLE 3. Comparison of Pre-classification network.

Moreover, the detection accuracy is shown in Table 6.
We applied average precision (AP) in 2 sizes of intersection
over union (IOU) to evaluate the regression of bounding
boxes. The report of situations with pre-classification and
omitting pre-classification is shown in Table 6. As shown in

Table 6, the pre-classification is beneficial to the regression
of bounding boxes.

Organ and skeletal structures within USN and LSN regions
are quite different, creating vast morphologic differences
in morphologic expressions of the same disease. These are
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TABLE 4. Comparison of binary classification methods on testing data.

TABLE 5. Comparison Of experiments on different batch sizes.

TABLE 6. Comparison of detection accuracy on testing data.

problematic in training a robust network to recognize IP and
NP. Without pre-classification, results of ROI are not quite
accurate. Such errors may then affect further classification
performance. ROC curves of Figure 6 demonstrate that the
proposed framework is more promising than other methods.
Ultimately, pre-classification heightens ROI extraction accu-
racy thereby ensuring more accurate recognition results.

IV. DISCUSSION
We have presented a novel deep learning framework for
effectively distinguishing IP and NP in CT slices. A series of
experiments were conducted to evaluate the efficacy of our
framework. To our knowledge, this is the first deep learning-
based framework for IP and NP recognition. Beyond these
results, there are several issues worthy of mention. First,
the features extracted by deep convolutional networks are
more discriminating than hand-crafted features. Our analysis
has nevertheless shown that a classification network of deep
convolutional basis is deficient. The results are inadequate,
despite a series of methods intended to alleviate overfitting.
ROI extraction thus plays an important role in the recog-
nition process. Imaging ROIs are beneficial for IP and NP
recognition results, perhaps mitigating overfitting largely due
to feature redundancy. Furthermore, anatomically based pre-
classification is crucial for accurate ROI extraction. It is an
effective means of achieving more accurate ROI extraction.

Although this proposed framework shows promise, there
are certain limitations. In Figure 8, our model gener-
ated invalid recognition results in both slices. Usually,
the bony details of sinuses are relatively symmetric by CT,

FIGURE 8. Abnormal recognition results of our model in slices from (a) IP
and (b) NP.

but gasification of sphenoid sinuses in Figure 8(a) differs
substantially (R>L), owing to disparate skeletal structures.
The near-absence of this asymmetry in the training set has
prevented accurate ROI detection by the network. The CT
slice of Figure 8(b), from a patient with NP, has leaf-like
features of IP [37]. This pattern interferes with model results,
even if ROI is extracted accurately. Differing skeletal struc-
tures of left and right sinuses and abnormal performance
in some instances of NP may therefore impact the recogni-
tion capacity of this model. Proportionate increases of such
slices in the training set would enhance the model’s gen-
eralizability, reducing these errors. Also, both IP and NP
are variably distributed in CT slices. Herein, we regarded
all possible distributions of IP and NP as the ground
truth of ROIs in our dataset. However, the ROIs of some
slices are larger than actual focus areas, impacting recog-
nition results. In the future, we will address these types of
problems.

The proposed framework is aimed at the preoperative
recognition of nasal polyp and inverted papilloma. The frame-
work is not suitable for healthy patients yet. Therefore, our
framework will be improved to support a system for nasal
polyp, inverted papilloma, and healthy patients.
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Various aspects of sinonasal diseases based on deep learn-
ing are yet to be explored. For example, recognition of other
benign or malignant sinonasal lesions and recognition/ seg-
mentation of invasiveness in malignant sinonasal tumors is
open to investigation.

V. CONCLUSION
In this study, we propose a framework for automatic recogni-
tion of NP and IP. We have compared our method with

In this study, a framework for automatic recognition of
NP and IP has been tested, comparing our proposed method
with others as follows: (1) Hand-crafted feature methods
(SVM and KNN classifiers using SIFT features); (2) Deep
learning-based classification neural networks (VGG16 and
Resnet-50); and (3) Our proposed method without preclas-
sification. The method as proposed delivered 89.30% accu-
racy, 89.03% recall, and 89.70% specificity, outperforming
all comparatormethods (with exception of specificity). To our
knowledge, this is the first deep learning solution for auto-
matic recognition of IP and NP reliant on sinonasal CT slices.
The end-to-end framework provided is easily implemented by
clinicians, enabling more definitive preoperative recognition
of IP and NP.
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