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ABSTRACT In this article, a robust H∞ fault tolerant control law is addressed for a class of the uncertain
dynamical systems represented via linear fractional transformation. To this objective, a state-feedback con-
troller law is utilized for achieving the control objective. Thus, a linear matrix inequality based performance
condition would be derived to guarantee that the disturbance suppression is accomplished in the uncertain
system.Hence, the gains of the robustH∞ controller would be suitably determined by checking the feasibility
of such a linear matrix inequality problem. The proposed control technique is numerically simulated in two
dynamical uncertain systems (i.e., a typical control system and a mechanical robotic arm). Considering the
disturbance rejections and transient responses, the results illustrate the efficiency of the recommended robust
technique compared with the existing control methods.

INDEX TERMS Robust H∞ fault tolerant controller, uncertain control systems, linear fractional transfor-
mation, linear matrix inequality.

I. INTRODUCTION
Usually, in a typical control problem, the performance and
stability of the closed-loop system would be destroyed due to
the existence of unknown and uncertain expressions. How-
ever, many mathematical formulations and models have been
developed to describe the system’s uncertainty like addi-
tive type, multiplicative form, polytopic set, linear fractional
transformation (LFT), and the others [1]. The key advantages
of the LFTmodel over the other types are itemized as follows:

a) The uncertainties raised by the multiple sources can be
easily handled as well.

b) The fractional and inverse expressions are formulated
via a suitable selection of the LFT parameters.

c) Some types of uncertainties, as well as the additive
and multiplicative, would be treated as a special form of the
LFT model.
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d) All system’s uncertainties could be excluded into a
single uncertain block.

Thus, in some control applications like the robotic manip-
ulators [2], [3], the uncertainty can be emerged in the inverse
form. Hence, such difficulty is effectively overcome using
the LFT model. Firstly, the LFT mapping has been presented
to formulate the uncertainties of the linear time-invariant
systems (LTI) described by the transfer function. Then the
stability and performance criterion is numerically checked via
the µ-method [1].

The standard control problems can be studied in the
uncertain systems like the regulation, tracking, stabilization,
H∞ control, and so on. Lately, the robust H2 and H∞ control
(or fault-tolerant control) have attracted the attention of many
researchers [4], [5]. An H∞ robust predictive control is sug-
gested to the linear systems under disturbances [6]. In these
control methods, the initial conditions are ignored, and the
effects of the external signals (like the disturbance rejection)
would only be concerned on the closed-loop performance.
Thus, the control parameters would be determined while
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the H2 or H∞ norm of the closed-loop system is minimized.
In the robust H∞ fault tolerant control, the robust perfor-
mance of the closed-loop system is guaranteed in the presence
of some fault signals. Moreover, the control law is determined
in the worst case of the fault signal. Hence, a numerical
optimization problem has been solved to compute the gains
of the control law.

In the uncertain systems, the linear matrix inequality (LMI)
would be a systematic and powerful tool for the stability
analysis and robust controller synthesis [7]. Some system’s
properties like H2 and H∞ norms can be directly determined
by an LMI problem. Furthermore, the H2 and H∞ control
design may also be formulated via the LMI solution [8], [9].
Similarly, the H2 sampled-data control is designed for the
uncertain linear system [10].

Nowadays, numerous robust H∞ control laws have been
suggested for some classes of uncertain systems. These
briefly include stochastic systems [11], [12], switched sys-
tems [13]–[15], Markovian jump systems [16]–[18], implicit
and fuzzy degenerate jump systems [19], [20], singular sys-
tems [21]–[23], uncertain linear systems with time-varying
delays [24], nonlinear systems with time-delays [25], [26],
networked control systems [27], [28], observer-based
repetitive control systems [29], Takagi-Sugeno (TS) fuzzy
systems [30], [31], synchronization of complex dynam-
ical networks [32], stochastic systems [33], and so on.
In these methods, the uncertainties are usually modeled as
either additive or multiplicative or polytopic. As a result,
the above-mentioned methods may destabilize the control
system. Hence, they cannot be applied to the general types
of uncertainty.

The controllers with disturbance rejection property
are very interesting in practice. In the past years, the
H∞ controllers have been implemented in some industrial
applications like the granulation process [34], islandedmicro-
grid [35], energy internet [36], quadrotor UAV [37], active
suspension system [38], double support balance system [39],
horizontal wind turbine under various operating modes [40],
multi-vehicle control system [41] and the others.

The LFT models would effectively cover the variations of
the uncertain terms. So, they could be preferred in many con-
trol issues like regulation, tracking, and disturbance rejection.
Quite recently, utilizing the LFT model, a robust predictive
controller is designed based on the LMI [42], [43]. Based
on the LFT framework, a tuning method is proposed for
an impedance matching network [44]. Considering polytopic
uncertainty, robust H2 and H∞ filters are designed for uncer-
tain LFT systems [45]. The output-feedback controller of
LFT system is studied in the presence of actuator satura-
tions [46]. Then robust H∞ output regulation of an uncertain
LFT system is investigated in [47]. Lately, employing the
additive uncertainties, an LMI method is addressed to the
H∞ control design [48]. But such a method would not be
effective in the presence of other types of uncertainties. For
example, an inverse uncertain term may emerge in the mass
matrix of the robotics systems [2]. So, the features of system,

as well as the stability property and performance index cannot
be preserved or may not be preserved in presence of the
uncertain terms. This point motivates the authors to use the
LFT model by considering the other sources and forms of
the uncertainties. Thus, a category of the uncertain control
dynamics defined by LFT model is considered in this study.
Therefore, an LMI condition would be derived to obtain
the robust fault tolerant control law in the presence of the
mentioned uncertainties. The main novelties of the paper in
comparison to similar works can be listed as follows:

a) An LMI based approach is suggested to the robust fault
tolerant H∞ controller design in the uncertain nonlinear sys-
tems. The disturbance rejection could be theoretically proved
by the proposed scheme.

b) The system uncertainties and unknown parameters are
well-managed using the LFT model, as illustrated in the
simulation.

The remainder of this paper is prepared as follows: in
Section 2, some notations and preliminaries are briefly intro-
duced. In Section 3, the robust H∞ fault tolerant control
synthesis is formulated in the uncertain systems. The main
results of the research are addressed in Section 4. In Section 5,
some control examples are simulated to show the applicabil-
ity of the suggested technique. The concluding remarks are
summarized in the last section.

II. NOTATIONS AND DEFINITIONS
Throughout the paper, In is n × n identity matrix, and the
star symbol (∗) means symmetric property of a matrix. The
two-norm of a vector ν ∈ Rn is defined as ‖ν‖ def

=
√
νT ν

and also the two-norm of a signal w (t) ∈ Rn is defined

as ‖w (t)‖
def
=

√∫
+∞

0 wT (t)w (t) dt . The two-norm of a

matrix 2 ∈ Rq×p is defined as ‖2‖ def
= σ (2) where

σ (2) =

√
λmax

(
2T2

)
and λmax (.) signifies the maximum

eigenvalues of matrix.
Consider the following mathematical model:

[
z
φ

]
=

[
M11 M12

M21 M22

][
d
ω

]
ω = 1φ

(1)

where d ∈ Rp, ω ∈ Rs are inputs, and z ∈ Rq, φ ∈ Rr are
outputs of Eq. (1). The term1 ∈ Rs×r would be an uncertain
matrix. A block diagram of the Eq. (1) is depicted as Fig.1.

Define the lower LFT FL (M,1) as follows:

FL (M,1)
def
= M11 +M121(Ir −M221)

−1M21 (2)

Here M11 is nominal value while FL (M,1) is uncer-
tain. It is clear that the matrices M12,M21, and M22 reveal
the deviations of FL (M,1) about M11. In a similar way,
the upper LFT can also be defined as well [1]. Eq. (1) is
written as:

z = FL (M,1) d (3)
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FIGURE 1. The representation of lower LFT.

where the matrixM is partitioned as follows:

M =

[
M11 M12
M21 M22

]
The LFT model (3) is well-posed when det

(
Ir −

M221
)
6= 0. Otherwise, the LFT term tends to infinity.

The structured singular value (SSV) or simply the µ oper-
ator is defined for given matrices N ∈ Rr×s and 1 ∈ Rs×r ,
as the following form:

µ1 (N)
def
=

1
min {σ (1) , det(Ir −N1) = 0}

(4)

and µ1 (N) = 0 if det(Ir − N1) 6= 0. It can be shown that
µ1 (N) ≤ σ (N) [1].
In the next section, in order to design a robust H∞ con-

troller, the control problem will be formulated for a category
of the uncertain systems.

III. PROBLEM DESCRIPTION
Consider the uncertain nonlinear systems as follow:

[
ẋ
φ

]
=

[
A11 A12

A21 A22

][
x
ω

]
+

[
B1

B2

]
u

+

[
E1
E2

]
d +

[
f1 (x)
f2 (x)

]
ω = 1φ

z = Hx + Huu

(5)

where x (t) ∈ Rn denotes the states vector, and u (t) ∈ Rm

signifies the input vector of uncertain system (5). The vector
d (t) ∈ Rp is an exogenous signal. It can be an external input,
fault signals, disturbance, noise, or any norm bounded signals
(i.e., ‖d (t)‖ is finite). The term z (t) ∈ Rq would be a linear
combination of the states and control inputs chosen as the
system’s output. An overall view of uncertain system (5) is
illustrated as Fig. 2. So, a large class of uncertain dynamics
are expressed by Eq. (5) as well.

The uncertain term 1 ∈ Rs×r would be extracted by a
suitable selection of some internal signals φ (t) ∈ Rr and
ω (t) ∈ Rs. Compared to the existing studies [8], [48], [49],
the differential equation (5) would be a more general form
to represent the uncertainty. Thus many uncertain systems
(for instants [8], [48]) can be described via Eq. (5).
Assumption 1: The nonlinear functions f1 (.) and f2 (.)

are supposed to be unknown terms and satisfy the

FIGURE 2. Schematic of uncertain system (5).

subsequent inequalities:{
‖f1 (x)‖ ≤ ‖M1x‖
‖f2 (x)‖ ≤ ‖M2x‖

(6)

Furthermore, the mappings f1 (.) and f2 (.) would be zero
at zero (i.e., f1 (0) = 0, f2 (0) = 0).
Assumption 2: The uncertain nonlinear system (5) is sup-

posed to be stabilized. Additionally, the state trajectories of
uncertain system (5) are completely available for control
objective.

The stabilizability is a necessary condition for the con-
troller synthesis. So, it is supposed that a control law exists to
stabilize the uncertain system (5).

Utilizing the LFT definition, the dynamical system (5) is
rewritten as{

ẋ = A (1) x +B (1) u+ E (1) d + f1 (x)
z = Hx + Huu

(7)

where
A (1) = A11 +A121(Ir −A221)

−1A21

B (1) = B1 +A121(Ir −A221)
−1B2

E (1) = E1 +A121(Ir −A221)
−1 E2

f1 (x) = f1 (x)+A121(Ir −A221)
−1 f2 (x)

(8)

The above expressions are well-posed and bounded LFT
terms. Then, throughAssumption 1, it can be shown that there
exists matrixM such that the following inequality is satisfied:

‖f1 (x)‖ ≤
∥∥Mx

∥∥ (9)

To design H∞ fault tolerant controller, the control law is
taken as the following feedback form:

u = Fx (10)

The controller input u (t) is designed when the matrix F
is found. A simplified schematic of the uncertain system (7)
with control law (10) is exposed in Fig. 3.

The uncertain matrices A (1), B (1), E (1), and f1 (x)
would be well-posed if the following condition holds:

det (Ir −A221) 6= 0 (11)

The equation (11) is a necessary condition for the well-
posedness [1]. It is strongly dependent on the structure of the
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FIGURE 3. Simplified schematic of the control problem.

uncertain term 1. Hence, a sufficient condition is found for
the well-posedness via the small gain theorem as:

‖A22‖ . ‖1‖ < 1 (12)

and a less-conservative sufficient condition can be found by
the µ analysis as the following:

µ1 (A22) . ‖1‖ < 1 (13)

Consequently, the following inequality would hold when
the LFT terms are well-defined:

‖1‖ <
1
‖A22‖

≤
1

µ1 (A22)
(14)

Assumption 3: The uncertain matrix 1 is supposed to be
norm bounded as follows:

‖1‖ ≤ δ (15)

where the positive constant δ is satisfying the inequality:
δ ‖A22‖ < 1.
Fact 1: The overall gain (from the input d (t) to the output

z (t)) of the uncertain system (7) can be defined as γ0 =
‖z‖ / ‖d‖. The system’s gain is less than or equal to γ if
there exists a Lyapunov functionV (x) such that the following
inequality holds for given γ > 0 [50]:

V̇ (x)+ ‖z‖2 − γ 2
‖d‖2 ≤ 0 (16)

The constant γ would be an upper-bound of the system’s
gain γ0. Hence, it is associated with the worst possible cases
(i.e., γ0 ≤ γ ).
Fact 2: Consider the matrices X ∈ Rn1×n2 , H ∈ Rn2×n2

and Y ∈ Rn2×n1 . For any ρ > 0, the subsequent inequality
holds:

XHY+ YTHTXT
≤ ρXXT

+
1
ρ
YTHTHY (17)

Fact 3: For given matrices X ∈ Rn1×n2 , and H ∈ Rn1×n1 ,
the following inequality holds:

XTHX ≤ ‖H‖XTX (18)

Next, the control law (10) will be designed to remove the
impacts of the exogenous signals on the uncertain system (7)
with the gain of less than or equal to γ .

IV. MAIN RESULTS
In the present part, an LMI condition is derived to guarantee
that the system’s gain meets the control goals. Then, a robust
H∞ fault tolerant controller is determined by the LMI feasi-
bility checking.
Theorem 1: The uncertain nonlinear system (7) and

Assumptions 1-3 are considered. For given γ > 0 and ε > 0,
if there exists a positive-definite (PD) matrix Y ∈ Rn×n,
a rectangular matrix G ∈ Rm×n and the positive coeffi-
cients ρ, β such that following LMI is feasible:

�11 YM
T
�13 E1 �15 E1ET2 αA12 �18

∗ −βIn 0 0 0 0 0 0
∗ ∗ −ρIr 0 0 0 0 0
∗ ∗ ∗ −γ Ip 0 0 0 0
∗ ∗ ∗ ∗ −γ Iq 0 0 0
∗ ∗ ∗ ∗ ∗ −

1
ε
γ Ir 0 0

∗ ∗ ∗ ∗ ∗ ∗ −εγ Is 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ Is


≤ 0 (19)

where

�11 = A11Y+B1G+ YAT
11 + G

TBT
1 +βIn + ρα

2A12A
T
12,

�13 = YAT
21 + G

TBT
2 ,

�15 = YHT
+ GTHT

u ,

�18 = α ‖E2‖A12,

α = δ (1− ‖A22‖ δ)
−1 ,

then anH∞ controller would be found by the control law (10)
with F = GY−1. Additionally, the infinite norm of the
uncertain system (7) would also be less than or equal to γ .

Proof: The quadratic Lyapunov functional V (x) =
xTPx with P = PT > 0 is considered. The inequality (16)
is expressed as

xTP (A (1)+B (1)F) x + xT
(
AT (1)+ FTBT (1)

)
Px

+xTPE (1) d + dTET (1)Px + xTPf1 (x)+ f T1 (x)Px

+ xT (H + HuF)T (H + HuF) x − γ 2dT d ≤ 0 (20)

Using Fact 2 and Assumption 1, the following inequality
is implied:

xTPf1 (x)+ f T1 (x)Px ≤ β0x
TP2x +

1
β0
f T1 (x) f1 (x)

≤ xT
(
β0P2 +

1
β0
M

T
M
)
x (21)

where β0 is a positive constant. Thus, Eq. (20) would hold if
the subsequent matrix inequality is fulfilled:[

� PE (1)
∗ −γ 2Ip

]
≤ 0 (22)

where

� = P (A (1)+B (1)F)+AT (1)P+ FTBT (1)P

+β0P2 +
1
β0
M

T
M + (H + HuF)T (H + HuF) .
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Let pre-post-multiply (22) by the symmetric matrix
diag

{
γ

1
2P−1, γ

−1
2 Ip

}
.[
�̃ E (1)
∗ −γ Ip

]
≤ 0 (23)

where

�̃ = γA (1)P−1 + P−1γFTBT (1)+ γB (1)FP−1

+ γP−1AT (1)+ β0γ In +
γ

β0
P−1M

T
MP−1

+ γP−1 (H + HuF)T (H + HuF)P−1.

Now define Y def
= γP−1,G def

= γFP−1, and β = β0γ . Then
the inequality (23) is modified as:[

�̂ E (1)
∗ −γ Ip

]
≤ 0 (24)

where

�̂ = A (1)Y +B (1)G+ YAT (1)+ GTBT (1)+ βIn

+
1
β
YM

T
MY +

1
γ
(HY + HuG)T (HY + HuG) .

From the definitions above, the controller gain is computed
as F = GY−1. The inequality (24) is rewritten as:[
5̃ E (1)
∗ −γ Ip

]
+

1
β
YM

T
MY +

1
γ

[
YHT
+ GTHT

u
0

]
×
[
HY + HuG 0

]
≤ 0 (25)

where 5̃ = A (1)Y + B (1)G + YAT (1) + GT

BT (1)+ βIn.
Applying the Schur complement lemma [7], the

inequality (25) is equivalent to the subsequent LMI:
5̃ YM

T
E (1) YHT

+ GTHT
u

∗ − βIn 0 0
∗ ∗ − γ Ip 0
∗ ∗ ∗ − γ Iq

 ≤ 0 (26)

It is trivial that, if there exist Y ∈ Rn×n, G ∈ Rm×n and
β > 0 so that LMI (26) is feasible for all admissible 1, then
the control law (10) with F = GY−1 would guarantee that the
system’s gain would be less than or equal to γ . The inequality
(26) depends on the uncertain term 1. Thus (26) cannot be
checked via the usual tools.

The inequality (26) is modified via the Schur’s comple-
ment lemma [7] as:

A (1)Y +B (1)G+ YAT (1)+ GTBT (1)+ βIn

+
1
β
YM

T
MY +

1
γ
E (1)ET (1)

+
1
γ
(HY + HuG)T (HY + HuG) ≤ 0 (27)

Then

A11Y +B1G+ YAT
11 + G

TBT
1 + βIn+

1
β
YM

T
MY +A12

×1(Ir −A221)
−1 (A21Y +B2G)+

(
YAT

21 + G
TBT

2

)T
× (Ir −A221)

−T 1TAT
12 +

1
γ
E1ET1 +

1
γ
E1ET2

× (Ir−A221)
−T 1TAT

12 +
1
γ
A121(Ir −A221)

−1 E2ET1

+
1
γ
A121(Ir −A221)

−1 E2ET2 (Ir −A221)
−T 1TAT

12

+
1
γ
(HY + HuG)T (HY + HuG) ≤ 0 (28)

The uncertain terms of inequality (28) may also be
bounded utilizing Assumption 2 and Facts 2-3. By means of
Fact 2, for any ρ > 0, the following condition holds:

A121(Ir −A221)
−1 (A21Y +B2G)+

(
YAT

21 + G
TBT

2

)T
× (Ir−A221)

−T 1TAT
12

≤
1
ρ
(A21Y+B2G)T (A21Y+B2G)

+ ρA121(Ir −A221)
−1 (Ir −A221)

−T 1TAT
12, (29)

Similarly, the following inequality holds for any ε > 0:

E1ET2 (Ir −A221)
−T 1TAT

12 +A121(Ir −A221)
−1 E2ET1

≤ εE1ET2 E2E
T
1 +

1
ε
A121(Ir −A221)

−1 (Ir −A221)
−T

×1TAT
12, (30)

Fact 3 implies that the following inequality holds:

A121(Ir −A221)
−1 E2ET2 (Ir −A221)

−T 1TAT
12

≤

∥∥∥E2ET2 ∥∥∥A121(Ir −A221)
−1 (Ir −A221)

−T 1TAT
12

(31)

Thus, the inequality (28) is modified as:

A11Y +B1G+ YAT
11 + G

TBT
1 + βIn +

1
β
YM

T
MY +

1
ρ

× (A21Y +B2G)T (A21Y +B2G)+
1
γ
E1ET1 +

1
γ
εE1ET2

×E2ET1 +
1
γ
(HY + HuG)T (HY + HuG)

+

(
ρ +

1
γ

1
ε
+

1
γ

∥∥∥E2ET2 ∥∥∥)A121(Ir −A221)
−1

× (Ir −A221)
−T 1TAT

12 ≤ 0 (32)

The following condition is deduced by Assumption 2:

(Ir −A221) ≥ (1− ‖A22‖ δ) Ir (33)

Then

(Ir −A221)
−1 (Ir −A221)

−T
≤ (1− ‖A22‖ δ)

−2 Ir (34)

Hence the uncertainty in (32) can be a bounded term as

A121(Ir −A221)
−1 (Ir −A221)

−T 1TAT
12

≤ (1− ‖A22‖ δ)
−2A1211

TAT
12

≤ (1− ‖A22‖ δ)
−2 δ2A12A

T
12 (35)
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Defining α
def
= δ (1− ‖A22‖ δ)

−1, then Eq. (32) is
expressed as

A11Y +B1G+ YAT
11 + G

TBT
1 + βIn +

1
β
YM

T
MY +

1
ρ

× (A21Y +B2G)T (A21Y +B2G)+
1
γ
E1ET1 +

1
γ
εE1ET2

×E2ET1 +
1
γ
(HY + HuG)T (HY + HuG)

+

(
ρ +

1
γ

1
ε
+

1
γ

∥∥∥E2ET2 ∥∥∥)α2A12A
T
12 ≤ 0 (36)

Applying the Schur complement lemma [7], Eq. (36)
would be equivalent to the LMI (19). It completes the proof.
Corollary 1: The nominal system of the differential equa-

tion (5) would be found by substituting A12 = 0, A21 = 0,
A22 = 0, B2 = 0, E2 = 0, and f2 (x) = 0 as follows:{

ẋ = A11x +B1u+ E1d + f1 (x)
z = Hx + Huu

(37)

Thus, for given γ > 0, if there exist a PD matrix
Y ∈ Rn×n, the rectangular matrix G ∈ Rm×n and β > 0
such that following LMI is feasible:

5 YM
T

E1 YHT
+ GTHT

u
∗ −βIn 0 0
∗ ∗ −γ Ip 0
∗ ∗ ∗ −γ Iq

 ≤ 0 (38)

where 5 = A11Y + B1G + YAT
11 + G

TBT
1 + βIn, then an

H∞ fault tolerant controller would be found by the control
law (10) with F = GY−1. Additionally, the gain of the
uncertain system (7) would be less than or equal to γ .

As seen, ignoring the nonlinear term of Eq. (37),
the presented method reduced to the standard H∞ control
problem [8].
Corollary 2: The proposed approach is employed to

design a stabilizing control signal in the following uncertain
dynamics:

ẋ = A (1) x +B (1) u+ f1 (x) (39)

Thus, if there exist a PD matrix Y ∈ Rn×n, a rectangular
matrix G ∈ Rm×n and positive coefficients ρ, β so that the
subsequent LMI has a feasible solution:5 YM

T
YAT

21 + G
TBT

2
∗ −βIn 0
∗ ∗ −ρIr

 ≤ 0 (40)

where 5 = A11Y + B1G + YAT
11 + GTBT

1 + βIn +
ρα2A12A

T
12, then the system is asymptotically stable via the

controller signal (10) with F = GY−1.
Remark 1: The previous work [48] is a special case of the

uncertain system (5) with A22 = 0, B2 = 0, E2 = 0, and

f2 (x) = 0. Thus, it is considered as follows:

[
ẋ
φ

]
=

[
A11 A12

A21 0

][
x
ω

]
+

[
B1

0

]
u

+

[
E1
0

]
d +

[
f1
0

]
ω = 1φ

z = Hx + Huu

(41)

It is modified to the following additive uncertain system:{
ẋ = (A11 +A121A21) x +B1u+ E1d + f1 (x)
z = Hx + Huu

(42)

For given γ > 0 and ρ > 0, it can be shown that if there
exist a PD matrix Y ∈ Rn×n, rectangular matrix G ∈ Rm×n

and positive coefficients ρ, β such that following LMI is
feasible:

5 YM
T

A12 YAT
21 YHT

+ GTHT
u E1

∗ − βIn 0 0 0 0
∗ ∗ −

1
ρ
Is 0 0 0

∗ ∗ ∗ − ρIr 0 0
∗ ∗ ∗ ∗ − Iq 0
∗ ∗ ∗ ∗ ∗ − γ 2Ip


≤ 0

(43)

where 5 = A11Y + B1G + YAT
11 + GTBT

1 , then an
H∞ fault tolerant controller would be determined by the con-
trol law (10) with F = GY−1. Additionally, it is guaranteed
that the infinite gain of the uncertain system (7) would be
less than or equal to γ . Consequently, ignoring the nonlinear
function, the results are reduced to the existing method [48].

V. NUMERICAL SIMULATION
In the present part, two instances are given to display the
applicability of the proposed controller approach. Hence, a
typical uncertain control system and a translational robotic
manipulator are considered as control benchmarks to prove
the efficacy of the suggested controller scheme.
Example 1: Consider an uncertain system (5) with the

subsequent parameters:

A11=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 − 2 1 0 − 5

 , A12=


0 0.1 0
0 − 0.1 0
0 0.1 0
0.3 0 0.1
0.2 0 0.1

,

A21 =

0 1 0 0 − 2
0 0 1 0 0
2 1 0 − 1 1

, A22=

−0.1 0.2 0.1
−0.1 0.3 0.2
0.1 0 0.1

 ,

B1 =


0 0
0 0
0 − 1
0 − 1
5 3

 , B2 =

 0 0
−1 0
0 1

 , E1 =

0 0
0 0
0 0
1 0
3 5

 ,
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E2 =

 0 0
−1 0
2 1

 , H =
[
1 3 1 0 − 1
1 0 − 1 0 1

]
,

Hu =
[
0 0
0 0

]
, f1 (x) =

1

10+ ‖x‖2


sin (x1)

0
cos (2x3)

0
x5

 ,

f2 (x) =

 0
0
0

 .
The uncertain matrix is taken as follows:

1 =

 0.5 0 0.5
0 0.5 − 0.5
0 0.5 0.5


It is checked that ‖1‖ = 0.9239 and ‖A22‖ = 0.4460.

Hence δ = 0.95 would be a reasonable upper-bound of the
uncertain matrix 1. The constant α can be calculated as α =
δ (1− ‖A22‖ δ)

−1
= 1.6483. The well-posedness condition

is satisfied as follows:

‖A22‖ . ‖1‖ ≤ ‖A22‖ δ = 0.4237 < 1 (44)

The disturbance signals are taken as:

d1 (t) =

{
1− e−0.3t , 0 ≤ t < 50
0, 50 ≤ t ≤ 100,

d2 (t) =

{
−1+ e−0.3t , 0 ≤ t < 50
0, 50 ≤ t ≤ 100.

In numerical simulation, the initial conditions are set to
zero, and the integration time is 1 millisecond. Applying the
proposed control method with ε = 1 and γ = 1, the matrix
variables Y and G are found as:

Y =


64.3825 −41.1316 21.3301 −28.1454 −39.1270
−41.1316 27.1019 −17.1142 17.3906 22.7823
21.3301 −17.1142 30.4299 −4.7661 2.6337
−28.1454 17.3906 −4.7661 241.6484 19.2295
−39.1270 22.7823 2.6337 19.2295 42.5997


G=

[
−38.4926 22.3234 −72.2243 −94.0433 −18.4328
−58.2924 37.1284 101.4939 201.8884 58.5818

]
Then the controller gain matrix is calculated as:

F =
[
−21.3819 −36.6113 −8.0590 −0.4193 0.1957
27.6992 61.6033 19.3200 0.6142 −7.6008

]
The gain of the closed-loop system is computed and com-

pared in Table 1. The simulations are displayed in Figs. 4-12,
and the outcomes are compared with the existing proce-
dures. The state trajectories of uncertain system are seen
in Figs. 4-8. The applied controller signals are depicted
in Figs. 9-10. The outputs of uncertain system are
seen in figs. 11-12.
The numerical and simulation outcomes verify that the

proposed H∞ control technique outperforms over similar

TABLE 1. Comparison of the system’s gain.

FIGURE 4. Time trajectory x1
(
t
)
.

FIGURE 5. Time trajectory x2
(
t
)
.

FIGURE 6. Time trajectory x3
(
t
)
.

control methods regarding the transient response, disturbance
rejection, and the computed system’s gain.
Example 2: Consider an uncertain translational robotic

system described by the subsequent mass-spring-damper
model [3]: {

M ξ̈ + C ξ̇ + Kξ + 0d = u
z = H1ξ + H2ξ̇

(45)

where M , C , and K are some uncertain terms. The vectors
ξ (t) and ξ̇ (t) are the positions and velocities of the robot
in each robot axis. The vector u (t) denotes the applied force
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FIGURE 7. Time trajectory x4
(
t
)
.

FIGURE 8. Time trajectory x5
(
t
)
.

FIGURE 9. Time history of controller signal u1
(
t
)
.

to each robot axis. The vector z (t) is taken as the system’s
outputs. The external signal d (t) is supposed to be norm
bounded as ‖d (t)‖ ≤ 1. The uncertain matrices is con-
structed as follows:

M = M0 +ML1MMR

C = C0 + CL1CCR

K = K0 + KL1KKR

(46)

where ML , MR, CL , CR,KL , and KR are some compatible
matrices of weights. Furthermore, it is assumed that M0 and
MR are non-singular matrices. Let define x def

=
[
x1 x2

]T ,
where x1 = ξ and x2 = ξ̇ , then the uncertain system (45)
is written as:

ẋ =
[

0 In
−M−1K −M−1C

]
x +

[
0

M−1

]
u−

[
0

M−10

]
d

(47)

FIGURE 10. Time history of controller signal u2
(
t
)
.

FIGURE 11. The system’s response z1
(
t
)
.

FIGURE 12. The system’s response z2
(
t
)
.

The uncertain inverse term M−1 would had an adverse
effect on the closed-loop performance. It can be represented
as the LFT form as follows:

M−1 = FL (N ,1M ) (48)

where

N =
[

M−10 −M−10 ML

MRM
−1
0 −MRM

−1
0 ML

]
Here, the uncertain matrix 1, the vectors ω and φ take the

following forms:

1 =

1M 0 0
0 1C 0
0 0 1K

 , ω =

ωMωC
ωK

 , φ =
φMφC
φK

 ,
ω = 1φ. (49)

A simple block diagram of a mass-spring-damper
system (45) is illustrated as Fig. 13.
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Therefore, an LFT representation of the uncertain
system (45) is found as the following:[

ẋ
φ

]
=

[
A11 A12
A21 A22

] [
x
ω

]
+

[
B1
B2

]
u+

[
E1
E2

]
d (50)

where

A11 =

[
0 In

−M−10 K0 −M
−1
0 C0

]
,

A12 =

[
0 0 0

−M−10 ML −M
−1
0 CL −M

−1
0 KL

]
,

A21 =

−MRM
−1
0 K 0 −MRM

−1
0 C0

0 CR
KR 0

 ,
A22 =

−MRM
−1
0 ML −MRM

−1
0 CL −MRM

−1
0 KL

0 0 0
0 0 0

 ,
B1 =

[
0

M−10

]
, B2 =

MRM
−1
0

0
0

 , E1 = [ 0
−M−10 0

]
,

E2 =

−MRM
−1
0 0

0
0

 .
The well-posedness of the LFT terms would be checked

when the following condition is satisfied:

det (I6 +A221) 6= 0 (51)

Applying the well-known small-gain theorem [50], a suf-
ficient well-posedness condition would be presented by

σ (1) σ (A22) < 1 (52)

where σ (1) = max {σ (1M ) , σ (1C ) , σ (1K )}. The con-
dition (51) is reduced to the following form:

det (I2 +MRM
−1
0 ML1M ) 6= 0 (53)

Similarly, a sufficient condition to the well-posedness of
the LFT terms would be found by the small gain theorem as:

σ (1M ) σ
(
MRM

−1
0 ML

)
< 1 (54)

However, a less-conservativewell-posedness condition can
be found by applying the µ concept as follows:

σ (1M ) µ1M

(
MRM

−1
0 ML

)
< 1 (55)

Therefore, the allowable variations of the uncertain matrix
1 is found as the following:

σ (1M ) <
1

σ
(
MRM

−1
0 ML

) ≤ 1

µ1M

(
MRM

−1
0 ML

) (56)

It is assumed σ (1M ) < δ where σ
(
MRM

−1
0 ML

)
.

δ < 1. The parameters of the nominal system are taken as
follows [3]:

M0 =

[
10 0
0 5

]
, C0 =

[
10 0
0 10

]
, K0 =

[
20 0
0 20

]
,

TABLE 2. Comparison of the system’s gain.

FIGURE 13. Block diagram of an uncertain mass-spring-damper system.

FIGURE 14. The position ξ1
(
t
)

in the robotic system.

0 =

[
10 0
0 10

]
, H =

[
1 0 0 0
0 1 0 0

]
.

The weight matrices are selected as:

ML =

[
2 0
0 2

]
, MR =

[
1 0
0 1

]
, CL =

[
1 0
0 1

]
,

CR =
[
2 0
0 2

]
, KL =

[
1 0
0 1

]
, KR =

[
2 0
0 2

]
.

The disturbance signals are applied with the following
profiles:

d1 (t) =

{
1, 0 ≤ t < 10

0, 10 ≤ t < 20,

d2 (t) =

{
−1, 0 ≤ t < 10

0, 10 ≤ t < 20.

The uncertain terms are considered as follows:

1M =

[
1 0
0 − 1

]
, 1C =

[
−1 0
0 1

]
, 1K =

[
−0.5 0
0 1

]
.
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FIGURE 15. The position ξ2
(
t
)

in the robotic system.

FIGURE 16. The velocity ξ̇1
(
t
)

in the robotic system.

Calculating ‖A22‖ =
√
0.24 = 0.4899,µ1M

(
MRM

−1
0 ML

)
=

0.2 and σ
(
MRM

−1
0 ML

)
= 0.4, the inequality (56) would be

satisfied with the upper-bound δ = 1 (i.e. σ (1M ) ≤ 1).
The initial conditions are set to zero. The integration time is
1 millisecond. The proposed control method is implemented
with γ = 1 and ε = 0.05. The decision variables are
calculated as:

Y =


6.3574 0 − 30.0780 0

0 3.3431 0 − 9.5279
−30.0780 0 259.9260 0

0 − 9.5279 0 47.5456

 ,
G = 104

[
−0.0968 0 − 1.4329 0

0 − 0.0129 0 − 1.3073

]
.

Then the controller gains are found as:

F = 103
[
−0.9127 0 − 0.1607 0

0 − 1.9172 0 − 0.6592

]
.

The gain of the closed-loop system is computed and com-
pared in Table 2.

The simulation results are plotted in Figs. 14-18. The
robot positions are demonstrated in Figs. 14-15. The robot
velocities are seen in figs. 16-17.

The applied control inputs are depicted in Figs. 18-19.
The numerical and simulation results would verify that the
suggested H∞ control method outperforms similar methods
regarding the disturbance rejection, transient response, and
the computed system’s gain.

FIGURE 17. The velocity ξ̇2
(
t
)

in the robotic system.

FIGURE 18. The applied input u1
(
t
)

in the robotic system.

FIGURE 19. The applied input u2
(
t
)

in the robotic system.

VI. CONCLUSION AND FUTURE WORKS
A robust H∞ fault tolerant controller (i.e., control law with
disturbance rejection property) is obtained for a class of
the nonlinear uncertain systems. For this purpose, the sys-
tem’s uncertainties are described via the LFT model. Hence,
an LMI condition would be derived to guarantee the con-
trol objectives. Then, the robust H∞ controller would be
found by solving a convex LMI optimization problem. The
suggested technique is successfully implemented in some
uncertain control systems as well as a robotic manipulator.
The simulation and quantitative outcomes validate the use-
fulness of the planned H∞ control approaches compared to
similar control methods in terms of the disturbance rejec-
tion, transient response, and the computed system’s gain.
As seen in Examples 1-2, the disturbance suppression would
be the main control objective of this paper. Thus the other
performances, as well as the extremum points of the system’s
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output and actuator limitations, are not taken into account
in the control problem. Some categories of the uncertain
dynamic systems, as well as nonlinear and fuzzy, Markovian
jump, time-delayed systems, can be described via the LFT
tool. In future works, it is recommended that the control
method is extended to such uncertain systems. The physical
limitations, actuator nonlinearities, observer-based schemes,
and multi-objective control policy may also be considered in
the control problem. Consequently, effective and systematic
control policy would be found to handle the system’s uncer-
tainties.
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