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ABSTRACT Solar power forecasting with a day-ahead horizon has played an important role in the
operational planning of generating units in power system operations. We aim to develop a solar power
forecasting model suitable for a tropical climate, using Thailand as a model, and hence present a linear
recursive regression model as a post-processing step for reducing the errors obtained from the Weather
Research and Forecasting (WRF) model. This model consists of submodels, each of which predicts the
solar irradiance of a particular time of the day. By using a stepwise regression method, we found that
WRF forecasts of irradiance, temperature, relative humidity, and the solar zenith angle were selected as
highly relevant inputs of the model. The regression model coefficients are updated according to a Kalman
filtering (KF) scheme so that the model can flexibly adapt to fluctuations in the solar irradiance. We then
modify the KF update formula to accommodate the limitation in measurement availability at the time of
executing the forecasts. The proposed KF formula can be generalized to find the optimal prediction given
that the available measurements are mapped by an affine transformation. The obtained results using actual
data from a solar rooftop system located in the central region of Thailand showed that the normalized root-
mean-square error (NRMSE) of solar power prediction was about 12-13%, which was decreased from
the NRMSE of the WRF model by 7-12% on average. This improvement was the best out of similar
post-processing methods based on the model output statistics framework.

INDEX TERMS Solar irradiance forecasting, numerical weather prediction, WRF, Kalman filter, model
output statistics.

I. INTRODUCTION
Recent renewable energy research has focused on the tech-
niques of solar power forecasting to enhance the reliability
of power systems performance through a smart-grid energy
management system. Forecasting specifications can vary
upon different temporal horizons, which are related to and are
important for the different power system operations [1], [2].
Our primary focus is on the one-day-ahead horizon because
of its usage for planning and unit commitment, aligning to one
of the current goals of the Electricity Generating Authority of
Thailand (EGAT). The review [1] has described all the essen-
tial elements of forecastingmethods and common techniques,
including statistical methods, machine learning, numerical
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weather prediction (NWP), and hybrid methods [1], [3], [4].
In addition, a recent review [2] also provided an economic
assessment and specified common techniques with required
inputs for each forecasting temporal horizon. Several studies
have concluded that NWP forecasts are more beneficial and
more accurate than using cloud information from satellites
for longer time horizons (15–240 h in advance) [1], [2], [5],
[6]. For this reason, the widely-used methods for day-ahead
forecasting have mainly included a combination of NWP (as
the mainmodel) with statistical methods or machine learning.

NWP models solve partial differential equations that
explain the model dynamics of Earth’s atmosphere and pre-
dict involved weather variables. The models can be divided
into two categories. The first are global models which run
on a global domain such as GFS (Global Forecast System),
while the second is a regional model that forecasts only a
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spatial subdomain [1]. Recent regional models have been
developed by different countries, one of which is the Weather
Research and Forecasting (WRF) model, available in the
public domain [7]. Its specific configuration and design for
solar energy forecasting was upgraded to WRF-Solar by
including representation of aerosol-cloud-radiation systems
and implementing more efficient numerical approaches [8],
[9]. For solar power forecasting purposes, NWP models can
be used to predict the solar irradiance (I ) from one hour up to
several days ahead with accuracy that varies upon the NWP
schemes, grid sizes, and horizons. Various NWPmodels with
multi-day horizons were previously evaluated on locations
in the U.S. [10], where, in particular, the root-mean-square
error (RMSE) of next-day irradiance prediction from the
WRF model ranged from 107–173 W/m2, depending on
climate conditions (arid or humid continental). In southern
Spain [11], WRF models were used to make predictions 1- to
2-day ahead, resulting in RMSEs of around 101-188 W/m2.
The NWP models by SolarAnywhere combine forecasts of
the sky-cover fraction and yielded yearly RMSE of I in the
range of 139–189 W/m2 [12]. A study of NWP models
revealed that they generally bring large positive biases, which
could exceed 200 W/m2 under cloudy conditions in the
U.S. [13]. Also, as evidently seen in Singapore, which has the
same tropical climate as Thailand, WRFmodels overestimate
I with an RMSE in the range of 240-258 W/m2 [14].
The large NWP prediction bias can be reduced by applying

a forecast enhancement scheme, or a hybrid method that
combines two or more existing models to make use of their
individual advantages, whose final prediction outputs can be
I (in-direct approach) or solar power (P; direct approach).
When the NWP and another model are employed in the
cascade sense, the other model is viewed as a post-processing
step to improve the NWP forecasts. Choices for the supple-
mental model can be a linear model [15], [16], multi-linear
adaptive regression splines (MARS) [17], or nonlinear mod-
els such as artificial neural network (ANN)/recurrent neu-
ral network (RNN) [18]–[23], fuzzy [21], genetic algorithm
[24], or support vector machine (SVM) [15], [24], all of
which were shown to significantly reduce the bias from a
baseline. Among these works, the reported RMSE of I in
the Rome region amounted to 145-149 W/m2 [18] or in the
range of 96–105 W/m2 [19]. As a comparative study, NWP
outputs were used as predictors for several statistical mod-
els including linear regression, generalized additive model,
binary trees, random forest, and SVM [15]. The best model
for predicting solar power was the random forest that had at
least a one-third lower error than that of the baselines.

Integrating a model with NWP can also be employed as a
bias correction scheme. For this, let ŷnwp be an NWP predic-
tion of y with a residual error e, expressed by y = ŷnwp + e.
A new residual can be better corrected via ê1 = Ge, where G
is a model designed for characterizing the unexplained solar
dynamics that remains in e. The final prediction is then given
by ŷ = ŷnwp + ê1. Previous studies have applied the bias
correction approach using G as a linear model [25] with the

solar zenith angle and the clear sky index as predictors, or G
can be nonlinear such as an ANN or wavelets [26], [27].

These post-processing steps for improving NWP forecasts
are also known as model output statistics (MOS), as ini-
tially proposed in the context of weather predictions [28]
as a linear regression. As an extension, the regression coef-
ficients can also be recursively estimated to fit best with
recent measurements. This scheme was previously imple-
mented using Kalman filtering (KF) to remove the bias,
which obeys a linear equation explained by various predictors
such as the Global Environmental Multiscale (GEM) model’s
forecasts [29] or the set of WRF forecasts and solar zenith
angle [30]. The KF scheme, denoted as MOS+KF, reduced
the RMSE of I from NWP by around 38-40% in Reunion
Island [30] and by around 11-23% in Canada [29]. In [31],
[32], a dynamic MOS was applied to several NWP models
whose coefficient weights were adjusted to deliver an inte-
grated NWP forecast; this blended output was further used
with the observed data to perform a forward error correction.
The whole process constitutes the DICast methodology as the
main day-ahead irradiance forecasting method in the opera-
tional Kuwait Renewable Energy Prediction System.

Previously mentioned post-processing methods were
deterministic frameworks that provided point forecasts, but
improving NWP can also be performed with probabilistic
frameworks that bring more information about distribution or
uncertainty of forecast values. A few examples of techniques
in probabilistic forecasting were quantile gradient boosting
[33] and analog ensemble (AnEn) [34], [35]. In [31], [32],
the AnEn was used with DICast forecast results as the input
to forecast solar power.

Although the aforementioned studies presented several
techniques of day-ahead forecasting applied to various
climate conditions, further research is still required to explore
suitable frameworks for other locations, including Thailand.
Therefore, the first goal of this study was to identify the
important weather variables to solar irradiance using a statis-
tical framework and compare this with the literature. The sec-
ond goal was to develop a forecasting model that provide
point forecasts and can be conveniently incorporated into a
unit commitment program run by the Short-term Operation
Planning Section (SOPS) under the Generation Operation
Planning Department of EGAT. In this case, the unit com-
mitment program requires daily predictions of the next-day P
during 7:00–16:00 h, to be readily available by 13:00 h of the
current date. To the best of our knowledge, no previous stud-
ies have taken this practical constraint into account, thus they
have neglected some complications introduced by the limited
resource of local measurements at the time of forecasting.
This paper’s contribution is its presentation of forecasting
models which engage practical implementation concerns in
the modeling process.

The proposed model consists of 10 MOS+KF submodels,
each of which forecasts I of each hour during the day. The
inputs of all submodels are selected by partial correlation,
stepwise regression, and subset regression analyses. In the
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forecasting procedure, the model requires the measured data
to update the model parameter in a daily manner. As an
operational constraint, the predicted P of the next day must
be released by 13:00 h, while the ground measurement or any
model inputs obtained after 13:00 h are still not available.
We then modify the equations of the KF for updating the
parameters in the minimum-mean-square sense using only
the existing data. The best forecast I is the conditional mean
of the next-day I given the information up to present. After
the day-ahead forecasts of I are obtained, we apply a linear
photovoltaic (PV) conversion model to estimate the P using
the forecasted I .
The proposed forecasting scheme is presented in

Section III, while the background on the MOS+KF is pre-
sented in Appendix and our analytical results on themodified
KF are in Appendix . The experimental results evaluated on
data collected from lab-scale solar stations are illustrated in
Section IV.

II. FORECASTING SPECIFICATIONS
A. PROBLEM STATEMENT
This work aims to predict the PV power (P) one day in
advance to help improve the generation scheduling perfor-
mance of the SOPS by anticipating high penetration of PV
generation. The SOPS usually starts to plan the generation
for the next day after 13:00 h. Suppose that d is a day index,
t is an hour index during the day, and tf is a forecasting time
(the time when forecasts must be released) specified by users
(13:00 h in this study). Our forecasting model must provide
hourly forecasted P of day d + 1 between 7:00 to 16:00 by
tf of day d . The available inputs for the proposed model are
the (i) meteorological forecasts from NWP (I , temperature
(T), relative humidity (RH)), (ii) ground measurements from
weather stations acquired up to time tf (I , T, RH, wind speed
(WS)), and (iii) other deterministic variables such as the solar
zenith angle (cos θ ) or clear-sky irradiance (Iclr). Based on
the existing computation resources and a pre-analysis of our
NWP implementation in Section II-B, a scheme of improv-
ing NWP forecasts of I using the available inputs must be
executed during 3:00 to 13:00 h of day d .

B. WRF DATA
Next-day weather forecasts are influential inputs for a
day-ahead forecasting model as I highly depends on mete-
orological variables, whose forecasts are commonly obtained
from an NWP model [1], [2]. The NWP model used in this
study was the WRF model, developed and maintained as a
community model by the National Center for Atmospheric
Research [7]. The WRF model requires initial and lateral
boundary conditions which can be obtained from global or
regional models with a domain that encompasses the WRF
domain. In this work, we used the GFS (global model) pro-
vided by the National Oceanic and Atmospheric Administra-
tion. The WRF outputs used in this study were the predicted
T,RH, and I (global horizontal irradiance or GHI, namely

FIGURE 1. The two domains of WRF with grid spacing of 9 × 9 km2 and
3 × 3 km2. The two solar sites are located at the center of the second
domain with the latitude and longitude of (13.737 N,100.532 E).

TABLE 1. Physics options set in the WRF model [36, §5].

SWDOWN from WRF output). Fig. 1 shows the first spatial
domain set in WRF with a grid spacing of 9 × 9 km2 that
covered the western, central, and eastern regions of Thailand,
while the second domain (3 × 3 km2) focused on central
Thailand. The temporal resolution of one-day-ahead WRF
forecasts was one hour. The Weather Forecast Bureau of the
Thai Meteorological Department (TMD) suggested the WRF
physics parameterizations in Table 1 which generally worked
well for weather forecasting in Thailand (private communi-
cation, Aug 2017).

1) TIME CONSTRAINT
From Fig. 2a, the GFS model was run daily at 0:00, 6:00,
12:00, and 18:00 h Universal Time Coordinated (UTC), or at
7:00, 13:00, 19:00, and 1:00 h Thailand Standard Time (TST)
and marked in blue dots. The GFS model takes 4 h to run
the entire forecast, making the input data for WRF available
for download at 11:00, 17:00, 23:00, and 5:00 h TST (shown
in green dots). Our PC (CPU: Intel R©Xeon R©Processor
E5-2620 v4 2.10GHz 8 Cores 16 threads 20 MB SmartCache
8 GT/s QPI, DDR4-2400 RAM 32 GB) took 2 h to compute
the one-day-ahead WRF. Therefore, the WRF predictions
were available at the times marked as red dots in Fig. 2a.
It was not possible to obtain theWRF predictions of day d+1
by 13:00 h on day d unless the WRF model was run two days
in advance.
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FIGURE 2. Time schedule of input data in the WRF model.

As such, theWRFmodel was set to provide two-day-ahead
predictions twice, each computation taking 4 h, on day d−1,
using the GFS inputs of 00:00 h UTC and 12:00 h UTC.
The latter time was selected because the resulting forecast
of irradiance had a lower error. Our WRF implementation
concluded in Fig. 2b indicated the operational specification
that the post-processing scheme for improvingWRF forecasts
must take place during 3:00-13:00 h (TST).

C. MEASUREMENT DATA
Solar measurement data were collected from two rooftop-
solar stations (8 kW and 15 kW) and meteorological
sensors installed at the Electrical Engineering Building,
Chulalongkorn University, Thailand. We used I from the
pyranometer and P from the energy meter. Typical prepro-
cessing steps were required to ensure data quality, including
detecting duplicate recordings, missing values, out-of-range
values, outliers, and non-updated values. All erroneous
records were imputed differently depending on the record
length. We applied a linear interpolation to short consecutive
records (less than 1h), while for long records (more than 1h),
we implemented a moving average with a window covering
the previous and the next 10 days of imputed values.

In conclusion, we used measurements of I and P that
were downsampled to an hourly format using moving
average, and used forecasts of I ,T,RH from the WRF.
All data were collected hourly from 7:00–16:00 h (TST)

during January 1, 2017 to December 31, 2018. Data during
17:00-18:00 h were excluded due to a shading effect on the
building rooftop. The training data set were selected during
January 1, 2017 to June 30, 2018 and the test data were from
July 1 to December 31, 2018. The ratio of training to test
datasets was 3:1.

III. PROPOSED METHOD
Based on reviews of previous studies [1], [2], [4], [38], there
are three main options for methods to be considered. Firstly,
indirect solar power forecasting was performed, where I was
first predicted and then power using a PV power conversion
model. A benefit of the indirect over direct forecasting is that
we can characterize forecasting errors from the irradiance
forecasting model and power conversion model separately
since both measurements of I and P can contain outliers or
missing values to different degrees. Another reason is that
a good irradiance forecasting model can be readily applied
to other solar farm areas, while the process of training PV
power conversion models to a specific location does not
require much computational effort. Secondly, from the lit-
erature of improving NWP forecasts [13], [16], [25], [29],
[30], the common input choices for correcting NWP forecasts
are IwrfTwrf,RHwrf, wind speed (WSwrf), and deterministic
inputs including the clear sky index (kwrf), solar zenith angle
(cos θ ), and clear-sky irradiance (Iclr). While it is commonly
known that these weather variables are correlated with I ,
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FIGURE 3. Proposed scheme of one-day-ahead PV power forecasting.

TABLE 2. Selected weather variables from various methods using the
data collected from January 1, 2017 to June 30, 2018.

a feature selection should be systematically performed on the
data sets in this region in order to regard only significant
inputs. Thirdly, spatial averaging has become a common
post-processing step of NWP forecasts to reduce errors [13],
[29], [39]. From these options, we designed an entire solar
power forecasting scheme as shown in Fig. 3, where the
key result of our paper is the solar irradiance forecasting
module as a post-processing step from WRF forecasts using
the proposed modified KF scheme to accommodate for the
operational constraints.

A. SPATIAL AVERAGING
It is known that spatial averaging can reduce NWP forecast
errors. In [25], the RMSE was reduced by half when using a
spatial area of 3◦ × 3◦ in the averaging. Our WRF forecasts
were computed at a grid spacing of 3 × 3 km2. This study
applied a spatial averaging of WRF forecasts, given by

Îspatial(t) = (1/mn)
m∑
i=1

n∑
j=1

Înwp(pi, qj)(t), (1)

where Îwrf(pi, qj) is the predicted I from the WRF model
at latitudinal and longitudinal coordinates of (pi, qj), and
t is the time index. We consider using (m, n) = (3, 3),
(5, 5), (7, 7) in averaging, which correspond to spatial areas
of 6 × 6, 12 × 12, and 18× 18 km2, respectively.

B. VARIABLE SELECTION
We followed the previously reported scheme of variable
selection that used partial correlation, stepwise regression,
and subset regression [40]. The variables used to per-
form a significance test on the regression coefficients were
Îwrf, R̂Hwrf, T̂wrf, Iclr, cos θ , and k̂wrf (clear-sky index). Note
that we calculated Iclr from the Ineichen clear sky model [1]
with an estimated Linke turbidity value of 4.8597 for
Thailand, using the least-squares (LS) method.

The results in Table 2 were performed on the training data
and suggested that Iwrf,RHwrf,Twrf, and cos θ were mostly

TABLE 3. Regression coefficients, standard error, and p-values of the
coefficients of the proposed MOS model.

selected by all the methods and subsequently used as the
predictors of the proposed MOS model, given by

Îmos(t)=β1 Îwrf(t)+β2R̂Hwrf(t)+ β3T̂wrf(t)+ β4 cos θ (t).

(2)

Note that the clear-sky index, k̂wrf = Îwrf/Iclr was not
selected by any variable selection methods due to its depen-
dence on Îwrf and Iclr. The significance test of regression
coefficients in (2) was performed at a significance level of
α = 0.05 and the results are shown in Table 3, where all
of the selected variables were significant in the regression
model (2).

C. SOLAR IRRADIANCE FORECASTING MODEL
Empirical distributions of the residual errors of spatially aver-
aged WRF irradiance forecasts are shown in Fig. 4. Overall,
the WRF model tended to overestimate (shown as signif-
icant positive biases during 10:00-16:00 h), which agrees
with previous findings [13]. Relatively high degrees of error
variations were observed during 11:00 to 14:00 h, while
the error was generally smaller in the early morning. These
results suggest that an adaptive forecasting model should be
designed and customized to different bias characteristics for
each hour.

The proposed forecasting model for I was based on the
regression model: Î (t) = β1x1(t)+β2x2(t)+· · ·+βpxp(t) =
xTβ, where x = (x1, . . . , xp) are predictors (the important
variables to solar irradiance) and β is the parameter estimated
by the least-squares (LS) method. The post-processing step
applied the KF to estimate β in an online manner to compen-
sate for the estimation error when up-to-date measurements
of I arrived. This is referred to as MOS in the literature of
meteorological forecasting and recursive least-squares (RLS)
in estimation. This approach starts with assuming that β,
regarded as a state variable, obeys a random walk equation,
where I (t) is the output of a state-space system. A detailed
background is given in Appendix A.

As empirical distributions of WRF are biased depending
upon the time (Fig. 4), our main forecasting model was
proposed to consist of h submodels, each forecasting I of
a specific hour (i.e., submodels 1,2, . . . , h predicts I at
7:00, 8:00,. . . , 16:00 h, respectively, where h = 10) and
the scheme is presented in Fig. 5. From this setting, β(t)
refers to the regression coefficient of a submodel of hour
t , for t ∈ {t1, t2, . . . , th} = {7:00,8:00,. . . ,16:00 h}. The
forecasting scheme at tf starts with collecting model inputs
(WRF forecasts and solar zenith angle of the next day) and
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FIGURE 4. Histogram of residual errors of the predicted solar irradiance from the WRF model, collected at various hours of
the day. The red lines are the means of error.

FIGURE 5. The daily-step irradiance forecasting model.

then splits these inputs into different hours. Each submodel t
takes the corresponding inputs to produce the next-day Î of
time t in parallel. Consequently, the irradiance forecasts of all
hours are merged and converted to the predicted power. Each
submodel also runs KF to update its parameters by taking the
bias as the correction input.

In Appendix A, we mentioned that the KF update can
be run either in hourly or daily steps. As we aimed for a
day-ahead forecasting and each hour-specific submodel has
its own parameter, our assumption in applying KF was that
β(t) should evolve daily, i.e., the parameter of today should be
adjusted from yesterday’s value when the new measurement
is observed. Hence, the model is proposed as a daily-step
model and consists of the state-space equations: for t =
t1, . . . , th as shown in (3)-(4):

β(d+1)(t) = β(d)(t)+ w(d)(t), (3)

I (d)(t) = C (d)(t)β(d)(t)+ v(d)(t), (4)

where the output matrix, defined from the MOS model (2) is

C (d)(t) =
[
Î (d)wrf(t) R̂H

(d)
wrf(t) T̂(d)

wrf(t) cos θ(t)(d)
]
. (5)

Our notation of z(d)(t) is the variable of day d at hour
t ∈ {t1, . . . , th}, so the system (3) and (4) progresses as d =
0, 1, . . . , for each fixed hour. In the context of a stochastic
state-space system, w and v are the state and measurement
noises whose covariancematrices are required when applying
the KF.

As mentioned previously, we proposed a modified KF
scheme to update the parameters before tf = 13:00 h
when some measurements of I are not available. It is more
compactly unified to explain this idea by combining all
h submodel equations as a single vector equation. If we
define z(d+1) = (β(d+1)(t1), . . . , β(d+1)(th)) and y(d) =
(I (d)(t1), . . . , I (d)(th)) then all h models in (3) and (4) can be
grouped into a single state-space system as

z(d+1) = Az(d) + w(d), y(d) = C (d)z(d) + v(d), (6)

where z(d) ∈ Rph, y(d) ∈ Rh, A = Iph (identity matrix of size
ph) and block-diagonalC (d), given by diag(C (d)(t1),C (d)(t2),
. . . ,C (d)(th)). In a KF context, denote ẑ(d+1|d) as the state
estimate of day d + 1 using the past information up to
day d , K (d) as the Kalman gain of day d , and P(d+1|d) =
E[(z(d+1)− ẑ(d+1|d))(z(d+1)− ẑ(d+1|d))T ] as the corresponding
covariance of the state estimation error. Moreover, W and
V are covariances of w(d) and v(d), respectively. In a con-
ventional KF [41], when A is identity and C (d),W ,V ,P(0|0)

are block diagonal, then K (d),P(d |d), and P(d |d−1) are also
block diagonal. Therefore, ẑ(d |d) and ẑ(d+1|d) can be updated

105414 VOLUME 9, 2021



S. Suksamosorn et al.: Post-Processing of NWP Forecasts Using KF With Operational Constraints

in parallel for each t . The details of the initial parameters and
noise covariances are given in Appendix .

1) MODIFICATION OF KF
From the forecasting specification in Section II, the predicted
P of the next day must be provided by tf = 13.00 h of
each day, so the measurements during 13:00-16:00 h are not
available. KF scheme can only use the available chunk of
measurements, cast as Fy(d) where F =

[
Ir 0r×(h−r)

]
and r

is the number of hours between t1 and tf . To deal with this
practical constraint, we applied the result of Proposition 1
in Appendix , which explains how the optimal estimator in
the KF scheme should be modified when the measurement is
transformed by a general matrixF . Themodified KF iteration
at tf is as follows.
Measurement update at tf :

K (d)
= P(d |d−1)(C (d))TFT

×

[
FC (d)P(d |d−1)(C (d))TFT + FVFT

]−1
,

ẑ(d |d) = ẑ(d |d−1) + K (d)(Fy(d) − FC (d)x̂(d |d−1)),

P(d |d) = (I−K (d)FC (d))P(d |d−1).

If A = I , P(d |d−1) is initialized by a diagonal matrix, and
C (d) is block diagonal, then we can show that the last h− r
rows of K (d) are zero, which implies that the coefficients
β(d)(t) associated with t > tf are not updated.
Time update at tf :

ẑ(d+1|d) = Aẑ(d |d), P(d+1|d) = AP(d |d)AT +W .

The output of the KF scheme is the next-day forecasted
I , given by Î (d+1) = ŷ(d+1) = C (d+1)ẑ(d+1|d)(t) for t ∈
{t1, t2, . . . , th} where C (d+1) contains the WRF predictions
of day d + 1 as stated in (5). In more details, the KF state
estimates of t ∈ {t1, t2, . . . , tf } are updated and are used to
predict I as blue lines in Fig. 6a. The KF state estimates of t ∈
{tf + 1, tf + 2, . . . , th} are not updated and are held from the
value of day d−1 at time th as the red lines in Fig. 6a. At time
th of day d , the local measurements can all be collected as the
green lines in Fig. 6b.We then updated the KF again using the
regular procedure. All submodels’ parameters are updated but
no forecasts are delivered as outputs at this stage.

D. PV POWER CONVERSION MODEL
From a review of PV cells in [42, §3.5], the solar power
can be estimated instantly from the solar irradiance and cell
temperature, guiding us to use a static conversion model
expressed by P(t) = β1I (t)+β2T(t)+β3I (t) ·T(t). For solar
power prediction of day d + 1, all the terms on the right hand
side are replaced with the predictions of day d + 1 as

P̂(d+1)(t) = β1 Î (d+1)(t)+ β2T̂
(d+1)
wrf (t)

+β3 Î (d+1)(t) · T̂
(d+1)
wrf (t), (7)

where (β1, β2, β3) can be estimated from the linear regression
method using historical data.

FIGURE 6. Updating time of the parameters in Kalman filter.

IV. PERFORMANCE EVALUATION
This section presents the forecasting performance of the
WRFmodel, and the improvements obtained by the proposed
method. The residual error is defined as ŷ − y (prediction-
measurement), meaning that model overestimations will
result in positive average residual errors. We consider com-
mon performance indices including RMSE, mean-bias error
(MBE), mean absolute error (MAE) and their normalization
counterparts: NRMSE, NMBE andNMAE using the installed
capacity of the two solar power sites as the normalization
factor. Reported results and computer codes are available at
https://github.com/jitkomut/solarnwpmos.

A. THE WRF PREDICTIONS
Since a solar site typically is not located on an exact grid
of WRF forecasts, one can choose the nearest grid point to
represent the prediction of a point of interest. Performing a
spatial averaging (1) over the areas of 6 × 6, 12 × 12, and
18×18 km2, we observed a decreasing trend of RMSE as the
area increased in Fig. 7, consistent with [25]. Thus, we used
the spatially-averaged WRF forecasts on the area of 18× 18
km2 instead of the forecasts on the single nearest grid point.

B. SOLAR POWER FORECASTING
We consider a persistence model as a baseline and
MOS-based methods in the literature as comparisons to our
irradiance forecasting model. Applying the PV model in
Section III-D, we obtained the predicted P converted from
the predicted I from the following models.
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FIGURE 7. The RMSE of the spatial average of predicted solar irradiance
from WRF under various areas. The RMSEs (averaged over all samples)
after spatial averaging are 274.42W/m2 (no averaging), 263.15 W/m2

(6 × 6 km2), 260.99 W/m2 (12 × 12km3), and 260.34 W/m2 (18 × 18 km2).

• Persistence irradiance model produces the forecasts of
day d + 1: Î (t) = k(t)Iclr(t) for all t . If t ≤ tf ,
the clear-sky index k(t) is computed from the measured
I of day d ; otherwise, k(t) is computed from Îwrf(t) of
day d .

• Lorenz [25] appliedMOS as a bias correction by regress-
ingWRF biases (Îwrf−I ) on the 4th-order polynomial of
cos θ (t) and k(t). The predictionwas then Îlorenz = Îwrf+
B̂ias and denoted as MOSlorenz.

• Pelland [29] produced forecasts for 0 to 2-day-ahead
horizons by performing a bias correction with KF that
updated parameters in an hourly step. The bias was
regressed on Îwrf and the prediction was Îpelland =
Îwrf + B̂ias, denoted as KFpelland. The noise covariances
were frequently updated from sample errors.

• Diagne [30] developed an hour-ahead forecasting
model, applying the same hourly KF scheme as [29] but
the bias was regressed on Îwrf and cos θ (t) and the noise
covariances were V = 0.01, andW = I . The prediction
was Îdiagne = Îwrf + B̂ias and denoted as KFdiagne.

The main differences between our KF model, denoted as
KFdaily and the KF schemes of Pelland andDiagne, illustrated
in Fig. 8, are that (i) both of their models contained a single set
of regression coefficient β, while our model has h sets of β,
each corresponding to submodel parameters, and (ii) their KF
schemes updated β hourly, while our approach updated β of
each submodel daily. Both KFpelland and KFdiagne rely on the
regressionmodel with the output as Bias = Îwrf−I , then at the
forecasting time tf , the parameters updated from the previous
hour are held and used to compensate for the predicted bias.
Although KFdiagne was originally intended for an hour-ahead
forecasting, its implementation for the day-ahead forecasting
in our study can evaluate if the hourly update scheme and the
choice of predictors and KF parameter settings are suitable
for a day-ahead forecasting purpose.

We are also aware of other post-processing schemes using
complex nonlinear models, such as neural networks in recent
literature. However, we limited our comparison to be among
linear recursive models using a KF scheme because of its

FIGURE 8. Comparison of KF update schemes between our method and
those in the literature. At time tf of day d , measurements corresponding
to blue lines are used to update the model parameters and compute the
forecasts. For our scheme, the submodel parameters of 14:00-16:00 h are
held from the updates on day d − 1 (red lines).

structural simplicity and because additional features of updat-
ing parameters can be an advantage over complex models.
In the implementation of the method listed above, we used
the same parameter setting, known to affect the performance,
as in the reference. Potential factors influencing the fore-
casting accuracy of models are the (i) influential variables
included in the model, (ii) model structure, and (iii) KF
parameter settings such as noise covariances.

Fig. 9 shows the RMSE and MBE of I versus hour of
the day. All forecasting methods yielded the same trends of
errors that are generally high during 12:00-14:00 h due to
a high degree of fluctuation in weather conditions. Clearly,
from the MBE plot, the WRF model yielded positive biases
indicating overestimations. After 10:00 h, the naive persis-
tence model reduced the RMSE from WRF by 11–21%
(computed as the improved RMSE relative to the RMSE of
WRF), MOSlorenz was improved from the WRF by 24–39%
and our method greatly reduced the RMSE by 31–42%.
As recursive estimations, the Diagne and Pelland methods
unexpectedly did not perform as well as the (non-recursive)
Lorenz model, implying that it may be due to the parameter
setting in their KF schemes. The state noise covariance, W ,
known to influence the adaptation rate of parameters and
set as W = I in [30], was too high for our day-ahead
forecasting using this dataset. Unsatisfactory results of the
Pelland model [29] can be explained from the online esti-
mates of W and V that resulted in too frequent changes of
the model parameters. Our method outperformed the Lorenz
model because of our KF scheme of updating model param-
eters and the choice of model inputs. While we selected
the variables in (2) using a statistical method that favors
independent variables, highly correlated with I , the Lorenz
model used only the solar zenith angle, but not other weather
variables.
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FIGURE 9. Solar irradiance forecasting performance.

TABLE 4. The regression coefficients of PV conversion models (7) for
8 kW and 15 kW PV systems. The output is the predicted power (kW).

The ratio of Îwrf’s coefficient shown in Table 4 to the
installed capacity is around 1.18–1.19 (area−1) for the two
solar sites. Hence, a benefit of using a simple linear conver-
sion model is that in other areas, we can use this ratio factor to
estimate the potentially generated power if the area is known.
The hourly accuracy of solar power prediction in Fig. 10
indicates that our method achieved the best performance in
all hours, similar to the irradiance forecasting results.

The averaged accuracy (over all hours) are shown
in Table 5. Our method achieved the lowest RMSE in irra-
diance prediction of 156 W/m2 and the lowest NRMSE
of 12.7% and 13.7% in solar power prediction. These are
significant reductions (by around 8%) from the NRMSE of
WRF power forecasts. The second-best model, in terms of
RMSE and MAE was the adjusted Diagne model, obtained
by reducing the covariance W required in the KF update
from I to 10−5I . This supported our hypothesis that even
though Diagne’s model was intended for an hour-ahead fore-
casting, its bias correction and KF schemes are interesting
to be compared with, while tweaking W from their original
value is needed to obtain a suitable frequency update of
the day-ahead model. Our method can further reduce the
NRMSE and NMAE of P from the adjusted Diagne model
by around 0.7% and 0.45 %, respectively. As for MBE, our

TABLE 5. Solar power forecasting performances. The RMSE, MAE and
MBE of I in % are normalized by the averaged GHI of 393.2W/m2. The
NRMSE, NMAE and NMBE of P are normalized by the plant capacity.

method did not achieve the least averaged bias in all cases but
the values were in a comparable range. The p-values of the
Wilcoxon signed rank test shown in Appendix suggest that
our method yielded significant improvements of irradiance
RMSE and MAE (except MBE), over all the other compared
models.
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FIGURE 10. Solar power forecasting performance.

An example of time series plots of the predicted P of the
8 kW station is shown in Fig. 11. We selected the 10 days of
lowest (and highest) daily-averaged RMSE from our method
to illustrate the performance of measurement tracking when
fluctuations occurred. All the methods generally performed
well on the days that I fluctuated less. However, the Pelland
and (original) Diagne models tended to over adapt in the

opposite direction to the measurement trend, resulting in
overall degraded performances.

V. DISCUSSION
Comparing the prediction performance between our method
and the other techniques in the literature is not trivial, as
(i) each post-processing method used different NWP models,
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FIGURE 11. Examples of predicted solar irradiance.

TABLE 6. Examples of day-ahead solar irradiance prediction in literature. The improvement (%) is relative to the NWP.

(ii) the climate conditions vary in different regions, and
(iii) the solar sites have different capacities. For irradiance
forecasting performance, normalizing the RMSE by the aver-
aged GHI can partly compensate for climate variations in
different regions. Nevertheless, previous studies used differ-
ent considered time periods in computing the averaged GHI,
resulting in minor variations in the normalized RMSE. Here,
we used the improved RMSE of the post-processing models
relative to the RMSE of the baseline NWP, calculated as
100%×(rmse-rmsewrf)/rmsewrf, to compare the effectiveness
of the post-processing steps in the literature, while variations
in the NWP implementation are controlled. Table 6 shows
that our MOS+KF post-processing with a variable selection
improved the baseline WRF performance by 38%, a compa-
rable improvement to other methods, especially to [14], [43]
that have a tropical climate similar to that of Thailand.

For the solar power performance, most studies normalized
the RMSE with a data-dependent factor (such as the mean,
or the range) but computation details were not available. For
example, we recommend that zero-valued observations of P
from early morning or late evening should be excluded when
calculating the mean; otherwise, the RMSE can be too opti-
mistically low [2, §8.3]. Thus, the compared performances
shown in Table 7, were selected from studies that used the

TABLE 7. Examples of the one-day-ahead solar power prediction in the
literature.

installed capacity as the normalization factor. These studies
first applied a weather classification and customized each
submodel to the specified weather conditions. Whereas our
method does not require a prior classification step, it also
achieves a comparable performance to that of [44], and our
NRMSE is even 11% less than the nonlinear ANN model
of [45].

From Fig. 10, our method can reduce the NRMSE from
the WRF by around 7–12% during 10:00-16:00 h for both
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solar sites. Significant decreases were obtained from the
submodels of 12:00,13:00 and 14:00 h, implying that our
hypothesis is right. The main forecasting model should be
split into hourly submodels in order to suitably compen-
sate for errors from the WRF forecast, since the temporal
dynamics of the weather condition throughout the day can
be viewed as different hourly characteristics of solar radi-
ation. The designed structure of containing submodels also
makes the model as flexible as nonlinear ones, supported
by performances reported in Tables 6 and 7. In addition to
this structure, the parameter adjustment in our KF scheme
provides the advantage that the model can adapt to uncertain
conditions on the next day.

VI. CONCLUSION
Techniques for day-ahead forecasting of solar power gener-
ally employ an NWPmodel whose performance can typically
be improved by a post-processing method.We implemented a
KF scheme to update the parameters of the linear regression
submodels; each of which predicts I at a particular time of
the day. The modified KF scheme considers the practical
constraint that measurement data are limited at the time of
forecasting. Outperforming other post-processing methods
from the literature, our model achieved an NRMSE of solar
power in the range of 12–13%, an additional reduction of
7-12% from the WRF performance. We also achieved a com-
parable performance with those of nonlinear models from
previous studies, suggesting that employing simple linear
models can be sufficient while being computationally cheaper
for real-time implementations.

Applying our method to other solar sites or with different
forecasting configurations has some concerns and limitations.
Our KF scheme is dependent on the forecasting specifica-
tion (that forecasts must be released by 13:00 h). If users
aim to apply our method with another problem statement,
one has to carefully modify the KF update rule in different
submodels. We also recommend that some of the initial KF
parameters can be suitably tuned, or input variable selection
can be re-performed based on our methodology for other site
locations. The limitation of relying on linear models can be
extended to adaptive nonlinear models. If the nonlinearity is
represented as a linear combination of nonlinear functions,
it is possible to modify the KF scheme to update the weight
coefficients in a similar way to our approach.

APPENDIX A
BACKGROUND ON KF AS RECURSIVE ESTIMATION
Given a linear discrete-time stochastic system with the state
x ∈ Rn, output y ∈ Rm, state noise w and measurement noise
v, then:

xt+1 = Axt + wt , yt = Cxt + vt , t = 0, 1, 2, . . . (8)

This is a classical result in linear system theory that when
the noises are Gaussian, the optimal prediction of xt+1 given
the information set of measurements Yt = {yt , yt−1, . . .}
is the conditional mean E[xt+1|Yt ] and can be obtained in a

recursive fashion via the KF [48, §4.4], [41]. This involves
two important predicted sequences and their covariances:
(x̂t|t ,Pt|t ) and (x̂t|t−1,Pt|t−1), the pair of the optimal esti-
mates of xt and its covariance, conditioning on Yt and Yt−1,
respectively. At time t , the KF update consists of two update
steps. First, the measurement update utilizes the current yt
to adjust the state prediction and its covariance, where the
Kalman gain compensates the estimation error in yt .

Kt = Pt|t−1CT (CPt|t−1CT
+ V )−1,

x̂t|t = x̂t|t−1 + Kt (yt−Cx̂t|t−1),

Pt|t = (I−KtC)Pt|t−1. (9)

Second, the time update (or prediction update) suggests
that the optimal predicted state of time t+1 and its covariance
progress according to the system description (8) to give (10).

x̂t+1|t = Ax̂t|t , Pt+1|t = APt|tAT +W . (10)

The KF scheme requires the system matrices (A,C), initial
parameters: x̂0|−1 = x0,P0|−1 = P0, and noise covariances
W ,V of w and v, respectively.

The KF can be applied to recursively update the coeffi-
cients of a linear regression model. In our context, the irra-
diance, as the response variable, can be explained as a linear
function of a selected predictor x, given by I = β1 x1 +
β2 x2 + βnxn. A recursive least-squares (RLS) relies on the
assumption that β obeys the random walk equation:

βt+1 = βt + wt , It = Xtβt + vt , (11)

which is a time-varying version of (8) when β plays the
role of the state x, I is the output y, A = I and C =
Xt = (x1t , x2t , . . . , xnt ). Thus, at time t (when the current
information of It is available), one can perform KF updates
(9) and (10) for (11) to obtain the predicted state β̂t+1|t and
the predicted output Ît+1 = Xt+1β̂t+1|t . Since the regressor
matrix at t+1 is needed for Ît+1, users often select the predic-
tors whose values at time t+1 can be obtained at the forecast-
ing time t; common choices are clear-sky irradiances, solar
zenith angle, or NWP weather forecasts. The user-defined
covarianceW suggests a degree of uncertainty about β and so
its choice affects the changing rate of βt . When one believes
that the measurements are highly uncertain, V should be set
sufficiently large, so that Kt in (9) becomes small, meaning
less effect of output estimation error to compensate for x̂t|t in
the update.

We note that applying the KF as an RLS can be per-
formed in different ways. First, the time index t can evolve
daily or hourly and the choice can be justified upon the
forecasting model specification (hour-ahead or day-ahead)
that suggests about updating frequency of model coefficients.
Second, the output It in (11) can be replaced with e =
Inwp − I , meaning that the regression model is developed
for a bias correction for NWP forecasts instead of directly
explaining I .
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APPENDIX B
MODIFIED KF
We revisit the problem of deriving a KF update of a linear
time-invariant system (8), where the current measurement is
available through an affine transformation. More specifically,
the stated problem is to derive E[xt+1|Fyt ,Fyt−1,Fyt−2, . . .]
in a KF fashion with a Gaussian assumption. The transforma-
tion F can represent several practical actions on the current
measurement, e.g., (i) when a measurement sensor needs a
calibration, F can be regarded as a scaling matrix, (ii) when
sensors of some components of y are broken, F is cast as a
projection matrix, (iii) when components of y are fused, F is
a row vector containing positive entries. We state this result
in the following proposition.
Proposition 1: Consider (8) when each of wt , and vt is

i.i.d.1 Gaussian with zero mean and covariance W , and V
respectively. When {Fys}ts=0 is available, the optimal estimate
of xt and yt in an MSE sense is obtained by the modified KF
scheme.
Measurement update:

Kt = Pt|t−1CTFT (FCPt|t−1CTFT + FVFT )−1,

x̂t|t = x̂t|t−1 + Kt (Fyt − FCx̂t|t−1),

Pt|t = (I−KtFC)Pt|t−1.

Time (or prediction) update:

x̂t+1|t = Ax̂t|t , Pt+1|t = APt|tAT +W .

Proof: Firstly, we denote Yt = (Fyt ,Fyt−1,Fyt−2, . . . ,
Fy0) as the set of available information up to time t , when
we only know Fyt , and not a complete yt . Let x̂t|s = E[xt |Ys]
be the optimal estimate of xt given the measurement up to
time s, with the corresponding covariance of error, Pt|s =
E[(xt − x̂t|s)(xt − x̂t|s)T ]. When the noises w, and v are
assumed to be Gaussian, the two conditioned variables: u1 =
xt |Yt−1 and u2 = Fyt |Yt−1 are jointly Gaussian with mean:
(x̂t|t−1,FC x̂t|t−1) and covariance[

Pt|t−1 Pt|t−1CTFT

FCPt|t−1 FCPt|t−1CTFT + FVFT

]
,

[
611 612
6T

12 622

]
.

(12)

Since (u1, u2) are jointly Gaussian, the conditioned vari-
able u1|u2 is also Gaussian, with the conditional mean given
by

E[u1|u2] = x̂t|t−1 +6126
−1
22 (u2 − FCx̂t|t−1).

We can also see a convenient fact that:

u1|u2 = xt |{Fyt ,Yt−1} = xt |Yt . (13)

Therefore, the conditional mean E[xt |Yt ] is given by

x̂t|t = x̂t|t−1 + Kt (Fyt − FCx̂t|t−1),

where Kt denotes the modified Kalman gain:

Kt = Pt|t−1CTFT (FCPt|t−1CTFT + FVFT )−1.

1independent and identically distributed

From (13), the conditional covariance of u1|u2 is, in fact,
Pt|t and since u1|u2 is Gaussian, the conditional covariance
is the Schur complement of the (1, 1) block of the matrix
in (12). Hence, we arrive at the measurement update of the
covariance: Pt|t = Pt|t−1 − KtFCPt|t−1. For the prediction
(or time) update, we condition the state equation (8) on Yt :

xt+1|Yt = Axt |Yt + wt |Yt = Axt |Yt + wt ,

because wt is uncorrelated with Yt . Taking the expectation,
we obtain x̂t+1|t = Ax̂t|t because wt has zero mean. Using the
description of xt+1 from (8), we can compute

Pt+1|t = E[(x̂t+1|t − xt+1)(x̂t+1|t − xt+1)T ]

= E[(Ax̂t|t − Axt − wt )(Ax̂t|t − Axt − wt )T ]

= APt|tAT +W .

This completes the proof of the modified KF formula when
the available output is {Fys}ts=0.

�

APPENDIX C
PARAMETERS IN KALMAN FILTER
From a known result of the linear regression model: y =
Xβ + e with p predictors and a sample size of N , an estimate
of noise variance is σ̂ 2

=
1

N−p‖ê‖
2
2, where ê = y−X β̂,

and the estimated covariance of β̂ is Covβ̂ = σ̂ 2(XTX )−1.
Initialized parameters of KF applied to (6) can be explained
as follows. Firstly, when the MOS model (2) is arranged
in y = Xβ, we compute the least-squares estimate, β̂(t)ls
for each t = {t1, t2, . . . , th}, and the residual error of time
t is denoted by {e(d)(t)}Nd=1. Hence, the estimated variance
of error term is σ̂ 2(t) = 1/(N − p)

∑N
d=1[e

(d)(t)]2. Then,
the initial KF parameters are chosen as follows.

ẑ(0|−1) =
[
β̂ls(t1) β̂ls(t2) · · · β̂ls(th)

]
,

P(0|−1) = diag(cov(β̂ls(t1)), . . . , cov(β̂ls(th)),

W = 10−4diag(ẑ(0|−1)),

V = diag(σ̂ 2(t1), σ̂ 2(t2), . . . , σ̂ 2(th)).

The initial state variable is selected as the LS estimate of
the MOS model and the covariance of state estimate is the
covariance of the corresponding LS estimate. The state noise
covariance is 0.01% of the magnitude of the LS estimate,
meaning that the coefficients are intended to be adapted quite
slowly in the KF update. The sensor noise covariance is an
approximation of the residual error in the MOS model.

APPENDIX D
SIGNIFICANCE TEST ON FORECASTING METRIC
IMPROVEMENT
The irradiance forecasting performance indices: RMSE,
MAE, and MBE from all models were tested for any sig-
nificant improvement using the (non-parametric) Wilcoxon
signed rank test. The null hypothesis was that metricother −
metricours comes from a distribution with a median less than
zero (the left tail test). The bold-face p-value (of less than α)
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TABLE 8. The sign rank statistic and p-values of the wilcoxon signed rank
test with a significance level of 0.05.

in Table 8 indicates a preference for the alternative hypothesis
that the metric difference has a median greater than zero,
or loosely speaking, our method has a significant improve-
ment over the other methods.

As samples for running the test, we used 10 values of
each metric computed in the 10-fold cross validation. The
non-parametric test was adopted instead of a common t-test
since the assumed normal distribution for the t-test is not
known to be held with the forecasting metrics. We did not
perform the significance test of solar power forecasting met-
rics because all the methods used the same PV conversion
model, and so any improvement in the power prediction
solely depended on the irradiance forecasting performance.
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