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ABSTRACT For scenarios of coherent underwater sources at low signal-to-noise ratio (SNR), a novel
quaternion-based DOA algorithm without eigendecomposition is proposed using a linear vector-hydrophone
array. We construct four quaternion models by judiciously arranging the received data to fully utilize the
statistical information of the incident signals. To avoid the high computational complexity caused by the
eigenvalue decomposition (EVD), we introduce the computationally efficient propagator method (PM) to
estimate the elevation angles of the observed signals. In the quaternion algebra framework, we statistically
eliminate the additive noise, which makes the PMmethod exhibit a robust performance in low SNR. By fully
exploiting the direction information embedded in the velocity components, we achieve a high-resolution
two-dimensional (2-D) DOA estimation result with a linear vector-hydrophone array. The simulations
demonstrate that the proposed method offers stable estimation performance compared with the existing
non-quaternion schemes without the need for any pair matching between the estimated azimuth and elevation
angles.

INDEX TERMS Quaternion, direction-of-arrival estimation, vector hydrophone, coherent signals, propaga-
tor method.

I. INTRODUCTION
The two-dimensional (2-D) direction-of-arrival (DOA) esti-
mation for multiple underwater signals is an unfailing topic
in array processing [1]–[5]. Vector hydrophones have played
an important part in underwater signal processing because
they show significant advantages in acquiring and utilizing
acoustic information [2], [6]. In the past decades, many
subspace-based methods (e.g., MUSIC [7] and ESPRIT [8])
have been applied in the field of vector hydrophones
to estimate 2-D DOAs of underwater acoustic sources
[2], [9]–[12]. In traditional algorithms, the outputs of an
acoustic vector sensor (AVS) are modeled by a complex

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

vector and then concatenated into a long vector [13].
However, the long-vector approach ignores the array’s
structure information and destroys AVS’s vector character-
istics. Therefore, the approach does not fully use the avail-
able information in the array data and limit performance.
In recent years, quaternion-based subspace algorithms are
proposed to maintain the vector nature of vector-hydrophone
array outputs within a hypercomplex algebra framework
[14]–[18]. In the field of electromagnetic vector sensors,
quaternion-based algorithms have proved their performance
superiority over the long-vector algorithms [19], [20]. How-
ever, quaternion-based algorithms for vector hydrophones
have not been studied very extensively. Moreover, the cor-
related noise between vector hydrophones is also a practical
issue in DOA estimation of underwater sources [21], which
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will seriously degrade the performance of traditional sub-
space methods. Therefore, DOA algorithms based on vector
hydrophones that fully consider underwater noise characteris-
tics can attract much attention in many practical applications.

Traditional subspace methods are based on either the
singular value decomposition (SVD) or the eigenvalue
decomposition (EVD). However, EVD or SVD of a
high-dimensional matrix is computationally intensive and
time-consuming. Therefore, the algorithms that require nei-
ther EVD nor SVD but use linear operators to obtain the
signal or noise subspace are proposed in the literature [22]
(i.e., the propagator method (PM) and the orthonormal prop-
agator method (OPM)). The DOAs of incident signals are
then estimated in a way similar to that of MUSIC or ESPRIT
[23]–[26]. OPM has stable performance at a medium or
high signal-to-noise ratio (SNR) with low computational
complexity, but the performance will severely degrade in
low SNR [22]. Since cross-correlations of array data can
eliminate the spatially independent noise [23], [27], many
PM-like schemes based on cross-correlations have been pro-
posed, e.g., the subspace-based method without eigende-
composition (SUMWE) [27] and other methods [2], [23],
[28]–[31]. However, these algorithms only consider some
cross-correlation information to obtain the DOA estimation
results and do not make sufficient use of the array data.
In [32], the authors applied the SUMWE algorithm to a uni-
form linear array (ULA) of vector hydrophones and proposed
the V-SUMWE algorithm, which can be considered as an
improved SUMWE by replacing pressure hydrophones in
the array with vector hydrophones. However, the V-SUMWE
algorithm still faces the following problems:

1) For alleviating the effect of additive noise, the authors
only consider the cross-correlations between some sen-
sor data.

2) The algorithm extracts the incident signals’ angles from
the direction information embedded in the velocity
components while ignoring the arrival angle informa-
tion in the spatial phase difference between adjacent
sensors.

The underutilization of array data will seriously limit
V-SUMWE’s performance.

This paper proposes a SUMWE-type algorithm based on
quaternion theory, namely augmented quaternion SUMWE
(AQ-SUMWE), for DOA estimation of coherent underwater
acoustic signals with a uniform linear vector-hydrophone
array. Firstly, we construct four quaternion-based models by
judiciously arranging the received signals. Two correlation
matrices are then formed between the models, where the
additive noise is statistically eliminated by using quater-
nion algebras. We achieve decoherence by using the corre-
lation matrix smoothing technique [31], [33]. Subsequently,
the computationally efficient PM algorithm is introduced to
estimate the elevation angles of coherent sources. To obtain
the azimuth angle estimates, we form the cross-correlation
matrix between the received data from pressure and veloc-
ity hydrophones and use the estimated elevation angles

to reconstruct the array response matrix [24]. Finally,
the azimuth angles are extracted from the direction informa-
tion in the velocity components. The proposed AQ-SUMWE
algorithm does not need the pair-matching step of 2-D DOA
parameters and has the following three contributions:

1) The quaternion model provides an elegant and com-
pact way for dealing with the received data of vector
sensors [14]. The quaternion modeling approach is
fully utilized, and multiple quaternion-based models
are constructed judiciously in the proposed method
to obtain the statistical information of incoming sig-
nals. As a result, the proposed method exhibits a
high-resolution performance.

2) In the quaternion algebra framework, we construct two
noise-free correlation matrices at the statistical level to
obtain the DOA angles. Consequently, the estimation
results show robustness at low SNR.

3) In contrast to SUMWE-typemethods, ourmethod expl-
oits not only cross-correlations but auto-correlations of
the array data. Both the direction information inherent
in velocity components and the spatial phase informa-
tion between adjacent sensors are used to obtain 2-D
directions of underwater sources. Fuller utilization of
the array data enhances the accuracy performance for
2-D DOA estimation.

This article is arranged as follows. The necessary proper-
ties of quaternions and quaternion algebras are introduced in
Section 2. Section 3 formulates mathematical models based
on quaternions and proposes the novel AQ-SUMWE algo-
rithm. Simulations are shown in Section 4. Section 5 sum-
marizes the whole work.

In this paper, scalar quantities and vectors are represented
in regular lowercase typefaces and lowercase boldface let-
ters, respectively, and uppercase boldface letters are used to
denote matrices. The notations (·)T , (·)∗, (·)H , (·)−1, and (·)†

represent transpose, conjugate, conjugate transpose, inverse,
and pseudo inverse, respectively. diag{·} denotes the diagonal
matrix; E{·} is the expectation operation; arg(·) is the phase
operation; arccos(·) is the inverse cosine function; 0 denotes
the zero vector or zero matrix; Ip denotes the p-dimensional
identity matrix. R, C(l), and H represent real numbers, com-
plex numbers with an imaginary unit of l, l = i, j, k , and
quaternions, respectively.

II. QUATERNIONS AND QUATERNION ALGEBRA
A quaternion q ∈ H consists of one real part q0 ∈ R and three
imaginary parts q1, q2, q3 ∈ R, which is defined as

q = q0 + q1i+ q2j+ q3k, (1)

where the units i, j, k possess the following relations:

ii = jj = kk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j. (2)
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The Cayley-Dickson form of a quaternion q is expressed as

q = q0 + q1i︸ ︷︷ ︸
b0

+ (q2 + q3i)︸ ︷︷ ︸
b1

j, (3)

where b0, b1 ∈ C(i) can be considered as the complex-valued
real and imaginary parts of the quaternion q, denoted as
Re{q} and Im{q}, respectively.

Some necessary properties required for this work are listed
as follows:

1) The conjugate operation of a quaternion q is denoted
by

q∗ = q0 − q1i− q2j− q3k. (4)

2) For quaternions q1 and q2, the conjugate of their prod-
uct satisfies the following relation:

(q1q2)∗ = q2∗q1∗. (5)

3) Quaternion multiplications are noncommutative,
i.e., considering two quaternions q1 and q2, we have

q1q2 6= q2q1. (6)

4) The modulus of a quaternion q, denoted as |q|, is given

by |q| =
√
qq∗ =

√
q∗q =

√
q20 + q

2
1 + q

2
2 + q

2
3. The

inverse of a quaternion q is given as

q−1 =
q∗

|q|2
. (7)

5) For any complex number x ∈ C(i), we have

jx = x∗j. (8)

A matrix with quaternionic entries Q ∈ HM×N can be
represented as

Q = Q0 +Q1i︸ ︷︷ ︸
C0

+ (Q2 +Q3i)︸ ︷︷ ︸
C1

j, (9)

where Qn ∈ RM×N , n = 0, 1, . . . , 3, and C0,C1 ∈

(C(i))M×N can be denoted asRe{Q} and Im{Q}, respectively.
The conjugate transposition of Q is defined as

QH
= QT

0 −QT
1 i−QT

2 j−QT
3 k, (10)

or

QH
= CH

0 − jC
H
1 . (11)

Above, we have introduced some necessary definitions and
properties of quaternions. More details can be found in [15].

III. ALGORITHM DEVELOPMENT
A. QUATERNION DATA MODEL
Consider that K far-field narrowband signals {sk (t) ∈
C(i), k = 1, 2, . . . ,K } with the center frequency f0 present
in a homogeneous isotropic medium and impinge upon a
ULA with M vector hydrophones. The presence of the kth
source with the DOA angles {φk , θk} is shown in Fig. 1,
where φk denotes the elevation angle, and θk represents the

FIGURE 1. The geometrical configuration of the ULA composed of M
vector hydrophones.

azimuth angle. Each vector hydrophone used is equipped
with three sensors, i.e., two orthogonally oriented velocity
hydrophones and a pressure hydrophonewhich are co-located
at the same point. We set the interval between adjacent vector
hydrophones as a half-wavelength. The 3×1 manifold vector
of a vector hydrophone about the kth source can be expressed
as [34]

ck =

 1
u(θk , φk )
v(θk , φk )

 =
 1
cos θk sinφk
sin θk sinφk

 , (12)

where uk and vk denote the direction cosines along the x-axis
and y-axis, respectively. The first row of (12) corresponds
to the pressure hydrophone, and u(θk , φk ), v(θk , φk ) in (12)
correspond to the velocity hydrophones Vx ,Vy in Fig. 1,
respectively. Two velocity hydrophones Vx ,Vy are aligned
along the x-axis and y-axis, respectively.

Let the vector-hydrophone array be located along the
z-axis, and the array response matrix can be given as

A(φ) = [a(φ1), a(φ2), . . . , a(φK )] , (13)

where a(φk ) = [1, ξk , . . . , ξ
M−1
k ]T is the steering vec-

tor of the kth signal. ξk = ei2πd cosφk/λ ∈ C(i) is the
inter-hydrophone spatial phase factor corresponding to the
kth signal, where d refers to the inter-hydrophone spacing,
and λ is the signal wavelength.

Assuming a total of K fully coherent signals, the M × 1
output vector with complex envelope observed by the
pressure-hydrophone array at time t is expressed as

p(t) =
K∑
k=1

a (φk) sk (t)+ np(t) = As(t)+ np(t). (14)

Next, let x(t) and y(t) be the outputs of two subarrays
constituted by the velocity hydrophones aligned along the
x-axis and y-axis, respectively. x(t) and y(t) can be given by

x(t) =
K∑
k=1

a (φk) u(θk , φk )sk (t)+ nx(t)

= A0xs(t)+ nx(t), (15)
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y(t) =
K∑
k=1

a (φk) v(θk , φk )sk (t)+ ny(t)

= A0ys(t)+ ny(t), (16)

where s(t) = [s1(t), . . . , sK (t)]T is the K × 1 zero-mean
complex signal vector, nl(t) = [nl,1(t), . . . , nl,M (t)]T , l =
p, x, y represents the M × 1 additive zero-mean complex
noise vector. 0x = diag{u(θ1, φ1), . . . , u(θK , φK )}, and 0y =
diag{v(θ1, φ1), . . . , v(θK , φK )}.

For general scenarios, the following assumptions about the
data model are valid.

1) The noise vectors {np(t),nx(t),ny(t)} are white Gaus-
sian random processes in time and spatial domain and
satisfy
E{nl1 (t)n

H
l2 (t)} = σ

2
n IK δl1,l2 , l1, l2 = p, x, y, (17)

E{nl1 (t)n
T
l2 (t)} = 0, l1, l2 = p, x, y, (18)

where δ denote Kronecker delta. (18) implies that
we can eliminate the additive noise by forming the
pseudo-covariance matrices of noise vectors.

2) The signals {s1(t), . . . , sK (t)} are temporally white
Gaussian random processes, and we have [35], [36]

E{s(t)sH (t)} = σ 2
s IK , (19)

E{s(t)sT (t)} = 0. (20)

3) The noise vectors {np(t),nx(t),ny(t)} are independent
of all signals, i.e.,

E{s(t)nHl (t)} = 0, l = p, x, y. (21)

Next, our goal is to estimate the DOA parameters
{θk , φk , k = 1, 2, . . . ,K } from the observations p (tn), x (tn),
and y (tn) for n = 1, 2, . . . ,N , where N denotes the number
of snapshots.

We introduce four quaternion-based models to better uti-
lize the statistical information in the received signals. Four
quaternion-based output vectors can be given as

u(t) = p(t)+ x(t)j+ y(t)j

= A
(
s(t)+ 0xs(t)j+ 0ys(t)j

)
+ n1(t)

= Aq1(t)+ n1(t), (22)

v(t) = p(t)j+ x(t)+ y(t)

= A
(
s(t)j+ 0xs(t)+ 0ys(t)

)
+ n2(t)

= Aq2(t)+ n2(t), (23)

ũ(t) = p∗(t)+ x∗(t)j+ y∗(t)j

= A∗
(
s∗(t)+ 0xs∗(t)j+ 0ys∗(t)j

)
+ n3(t)

= A∗q3(t)+ n3(t), (24)

ṽ(t) = p∗(t)j+ x∗(t)+ y∗(t)

= A∗
(
s∗(t)j+ 0xs∗(t)+ 0ys∗(t)

)
+ n4(t)

= A∗q4(t)+ n4(t), (25)

where {nl(t), l = 1, 2, . . . , 4} are four quaternion-based
noise vectors and hold the following form:

n1(t) = np(t)+ nx(t)j+ ny(t)j,

n2(t) = np(t)j+ nx(t)+ ny(t),

n3(t) = n∗p(t)+ n∗x (t)j+ n∗y (t)j,

n4(t) = n∗p(t)j+ n∗x (t)+ n∗y (t). (26)

B. CONSTRUCTION OF CORRELATION MATRIX
Two correlation matrices R1 and R2 between the quaternion
models can be formed as

R1 = E
{
u(t)vH (t)

}
= ARq,1AH

+ E
{
n1(t)nH2 (t)

}
, (27)

R2 = E
{
ũ(t)ṽH (t)

}
= A∗Rq,2AT

+ E
{
n3(t)nH4 (t)

}
, (28)

where Rq,1 = E
{
q1(t)qH2 (t)

}
, Rq,2 = E

{
q3(t)qH4 (t)

}
. The

detailed form of Rq,1 is given in (32), as shown at the bottom
of the next page. Under the assumption of (20), we can derive
the following relation according to (8):

E{s(t)jsH (t)} = E{s(t)sT (t)}j = 0. (29)

Thus, Rq,1 can be further simplified as

Rq,1 = Rs
(
0x + 0y

)
+
(
0x + 0y

)
Rs, (30)

where Rs = E{s(t)sH (t)} is the signal covariance matrix.
Similarly, we have

Rq,2 = R∗s
(
0x + 0y

)
+
(
0x + 0y

)
R∗s . (31)

The calculation result of E
{
n1(t)nH2 (t)

}
is given by (34),

as shown at the bottom of the next page. Consider the assump-
tion of spatially white noise (17), the cross-correlations
between noise received from different sensors should be zero.
That is, for l1, l2 = p, x, y, we have

E{nl1 (t)n
H
l2 (t)} = 0, l1 6= l2. (33)

On the basis of the hypothesis of (18), the following rela-
tion also holds in the quaternion algebra framework:

E
{
nl(t)jnHl (t)

}
= E

{
nl(t)nTl (t)

}
j = 0, l = p, x, y. (35)

Note that we statistically eliminate the auto-correlation
noise through the rational use of the quaternion algebraic
property (8). However, V-SUMWE is powerless to eliminate
the extra additive noise generated by the auto-correlations.

Based on the above derivation, the theoretical expectation
of n1(t)nH2 (t) should be a zero matrix. Substituting (30)
into (27), we can obtain the final expression of R1:

R1 = A
(
Rs
(
0x + 0y

)
+
(
0x + 0y

)
Rs
)
AH

= A91. (36)

Similarly, the final form of R2 can be derived as

R2 = A∗
(
R∗s
(
0x + 0y

)
+
(
0x + 0y

)
R∗s
)
AT

= A∗92. (37)

Here, R1 and R2 are two noise-free matrices. Hence,
the PM method based on the matrix partitioning shows a
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TABLE 1. Data utilization of V-SUMWE.

TABLE 2. Data utilization of AQ-SUMWE.

stable performance even in low SNR. Andwe can find thatR1

and R2 are two complex matrices, i.e., R1,R2 ∈
(
C(i)

)M×M
.

Consequently, subsequent steps can be performed in the
complex number field to alleviate the computational burden.
However, due to the limited number of snapshots in practice,
the imaginary parts with the imaginary unit of j and k are
not zero, and the information contained in them is redundant
for the AQ-SUMWE algorithm. Therefore, the two imagi-
nary parts of R1 and R2 can be discarded, thus significantly
improving the proposed algorithm’s data utilization. Note that
the approach presented in this paper can be easily extended
to full-component vector sensors.
Remark 1: From the inspection of (27) and (28), both the

cross-correlations and the auto-correlations of array data are
exploited to enhance the AQ-SUMWE’s performance. How-
ever, only some cross-correlations are utilized in V-SUMWE.
Based on a 5-element vector-hydrophone array, we compared
the data utilization between the two algorithms, as shown
in TABLE 1 and TABLE 2. In V-SUMWE, the output of
each vector sensor is modeled by a complex vector zl ∈
(C(i))3×1, l = 1, 2, . . . , 5. But the AQ-SUMWE method
models every outputs as multiple quaternions ql and q̃l, l =
1, 2, . . . , 5 via different mapping methods. The symbol ‘‘◦’’
indicates that the data correlation between two sensors has

been utilized, and the additive noise is eliminated by (17).
The symbol ‘‘•’’ denotes the correlation information used,
where the noise is eliminated by (17) and (18). Obviously,
the AQ-SUMWE algorithm makes better use of array data
and achieves significant performance improvement in the
simulations compared with V-SUMWE.
Remark 2: Considering the practical application scenar-

ios of vector hydrophones, the correlation structure of the
ambient noise is a noteworthy issue [21]. If the noise field is
azimuthally independent (a general assumption used widely
[37], [38]), for a vertical AVS array consisting of pressure
and orthogonal horizontal velocity components, the noise in
different components is independent of each other. But the
underwater acoustic noise in the same components will be
correlated, i.e., the matrix E

{
nl(t)nHl (t)

}
, l = p, x, y is

no longer a diagonal-noise covariance matrix. V-SUMWE
can alleviate the noise correlation effect using a sparsely
distributed array. However, in some practical applications
with a fixed space range, one cannot significantly increase
array element spacing to eliminate the effect of spatially
correlated noise. In this case, the performance of V-SUMWE
will be degraded. But in our method, under the assump-
tion of (18) (a reasonable assumption [39]), the result of
E
{
nl(t)nTl (t)

}
, l = p, x, y should still be 0. That is, the rela-

tion E
{
n1(t)nH2 (t)

}
= E

{
n3(t)nH4 (t)

}
= 0 still holds even

in the scenario of correlated noise, which implies that our
method has a robust performance against additive noise in our
scenario. Note that the stable performance is attributed to the
judicious use of the quaternion algebra.

C. CORRELATION MATRIX SMOOTHING
Considering K coherent signals, we construct a matrix R1 by
smoothing the correlation matrix R1. The matrix R1 can be
expressed as

R1 = [J1R1, J2R1, . . . , JKR1]

= A0

[
8091,8

191, . . . , 8
K−191

]
= A0�1, (38)

Rq,1 = E
{(
s(t)+ 0xs(t)j+ 0ys(t)j

)
·

(
−jsH (t)+ sH (t)0x + sH (t)0y

)}
= E

{(
−s(t)jsH (t)+ s(t)sH (t)0x + s(t)sH (t)0y

+0xs(t)sH (t)+ 0xs(t)jsH (t)0x + 0xs(t)jsH (t)0y

+ 0ys(t)sH (t)+ 0ys(t)jsH (t)0x + 0ys(t)jsH (t)0y
)}
. (32)

E
{
n1(t)nH2 (t)

}
= E

{(
np(t)+ nx(t)j+ ny(t)j

)
·

(
−jnpH (t)+ nxH (t)+ nyH (t)

)}
= E

{
−np(t)jnpH (t)+ np(t)nxH (t)+ np(t)nyH (t)

+nx(t)npH (t)+ nx(t)jnxH (t)+ nx(t)jnyH (t)

+ny(t)npH (t)+ ny(t)jnxH (t)+ ny(t)jnyH (t)
}
. (34)
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where Jk =
[
01,k

...IM−K+1
...02,k

]
is a selection matrix, where

01,k ∈ R(M−K+1)×(k−1) and 02,k ∈ R(M−K+1)×(K−k) are two
zero matrices. A0 consists of the firstM − K + 1 rows of A,
8k
= diag

{
ξ k1 , ξ

k
2 , . . . , ξ

k
K

}
, k = 0, 1, . . . ,K − 1. And we

can use R1 to obtain the estimated elevation angles of the K
coherent signals (see Appendix A for the proof).

Define the matrix R↓2 as

R↓2 = JR2 = A
(
8∗
)M−1

92, (39)

where J is an exchange matrix (i.e., every entry on the
cross-correlation line of J equals 1, whereas all other entries
are equal to zero.) Then, the smoothed matrix R

↓

2 can be
expressed as follows:

R
↓

2 =

[
J1R
↓

2 , . . . , JKR
↓

2

]
= A0

[(
8∗
)M−1

92, . . . ,
(
8∗
)M−K

92

]
= A0�2. (40)

For further processing, we construct an augmented corre-
lation matrix in the following form:

R =
[
R1,R

↓

2

]
= A0�, (41)

where � = [�1, �2].

D. ESTIMATING ELEVATION ANGLES
In this section, the propagator method is introduced to obtain
the signal subspace through linear operations, and then, ele-
vation angle estimates are obtained in a similar way to that of
ESPRIT.

First, we partition A0 into

A0 =

[
A1
A2

] }
K}

M − 2K + 1,
(42)

where A1 and A2 consist of the first K rows and the last
M −2K +1 rows of A0, respectively. A1 is a full rank square
matrix because of the Vandermonde structure. Therefore, A2
can be expressed linearly by A1. Define a propagator matrix
P0, and the relationship between A1, A2, and P0 exists as
follows [22]:

A2 = P0A1. (43)

Then, it follows from (43) that

PA1 =

[
A1
A2

]
= A0, (44)

where P ,
[
IK ,PT0

]T . Since A1 is a full rank matrix, it is
obvious that the column vectors in matrix P span the column
space (i.e., the signal subspace) of A0.
Use Pa, Pb to represent the first M − K rows and the last

M −K rows of P, respectively, and similarly, the relationship
between Aa, Ab, and A is also defined in the above manner.
According to (44), we can obtain[

Pa
Pb

]
A1 =

[
Aa
Ab

]
=

[
Aa
Aa8

]
. (45)

The matrices Pa, Pb, and 8 are related as

P†aPb = A18A−11 , (46)

where P†a =
(
PHa Pa

)−1 PHa . Based on (46), P†aPb and 8 are
similar matrices. Hence, we can perform EVD on P†aPb to
obtain the diagonal elements of8, i.e., {ξk , k = 1, 2, . . . ,K }.
Finally, the elevation angle estimation results φk can be
obtained from

φk = arccos
(
arg (ξk)
2πd/λ

)
, k = 1, 2, . . . ,K . (47)

Here, we estimate the elevation angle φk from the
inter-sensor spatial phase factor ξk , which is not available
in the V-SUMWE algorithm. Therefore, our approach makes
fuller use of the spatial phase information.

We partition R into the following form to estimate the
propagator:

R =
[
Ra
Rb

]
= A0� =

[
A1
A2

]
� =

[
A1

P0A1

]
�, (48)

where Ra and Rb denote the first K and the lastM − 2K + 1
rows of R, respectively. From (48), we have

Rb = P0Ra. (49)

Hence, the propagator can be found from Ra and Rb as

P0 = RbR†
a = RbRH

a

(
RaRH

a

)−1
. (50)

Assuming that we have estimated the propagator P̂0 from
the sample data, the elevation angles φ̂k , k = 1, 2, . . . ,K can
be extracted from the K eigenvalues {ξ̂k , k = 1, 2, . . . ,K }
of P̂†aP̂b:

φ̂k = arccos

(
arg(ξ̂k )
2πd/λ

)
, k = 1, 2, . . . ,K . (51)

In the presence of noise, we can still perform the partition

R =
[
RT
a
...RT

b

]T . But the relation (49) no longer holds [22].
Therefore, the noise in R will reduce the estimation accu-
racy of the propagator P0 obtained by (50). However, in the
AQ-SUMWEalgorithm, the additive noise inR is statistically
eliminated by making rational use of the properties of quater-
nion algebra. Hence, a more accurate propagator estimation
result can be obtained in our approach than in the noisy case.

E. ESTIMATING AZIMUTH ANGLES
In this subsection, we obtain the azimuth angle estimates
by using the direction information embedded in the veloc-
ity components. The cross-correlation matrix R′ is formed
between the received data from pressure and velocity
hydrophones.

First, an array output vector z(t) can be formed by concate-
nating x(t) and y(t) given in (15) (16):

z(t) =
[
x(t)
y(t)

]
. (52)
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Subsequently, a 2M × M cross-correlation matrix R′ can
be estimated as:

R′ = E
{
z(t)pH (t)

}
= E

{[
A0xs(t)
A0ys(t)

]
sH (t)AH

}
+ E

{[
nx(t)
ny(t)

]
nHp (t)

}
=

[
A0xRsAH

A0yRsAH

]
. (53)

Note that
[
nTx (t)

...nTy (t)
]T and np(t) are spatially indepen-

dent of each other, i.e., E
{[
nTx (t)

...nTy (t)
]TnHp (t)} = 0. Hence,

the noise in R′ has been eliminated statistically. We denote
the first M rows and the last M rows of R′ by R′(1:M ,:) and

R′(M+1:2M ,:). Substituting R′ =
[
R′(1:M ,:)

T ...R′(M+1:2M ,:)
T
]T

into (53) yields

A†R′(1:M ,:) = 0xRsAH
=Wx ,

A†R′(M+1:2M ,:) = 0yRsAH
=Wy. (54)

Letwx,k andwy,k , k = 1, 2, . . . ,K signify the kth rows of
Wx andWy, respectively. Consider that the0x and0y contain
the direction information provided by the particle-velocity
components, i.e., the kth diagonal elements of 0x and 0y
correspond to the kth signal’s direction cosines {uk , vk},
respectively. Based on the relation uk tan θk = vk , we can
establish the relationship between wx,k and wy,k as follows:

tan θk wx,k = wy,k . (55)

To estimate the array response matrix A, we can refer
to (13) and use the estimated elevation angles in (51) to
reconstruct A, i.e., Â =

[
a(φ̂1), . . . , a(φ̂K )

]
. Therefore,

the estimates ofWx andWy can be obtained by

Ŵx = Â†R̂′(1:M ,:),

Ŵy = Â†R̂′(M+1:2M ,:). (56)

Then, following from (55) and (56), the kth signal’s
azimuth angle can be estimated as

θ̂k = arctan
(
ŵy,k ŵ

†
x,k

)
, k = 1, 2, . . . ,K . (57)

Note that the elevation angles estimated from (51) are
automatically matched with the azimuth angles obtained
from (57) in our method (see Appendix B for the proof).
Remark 3: This paper constructs two correlation matri-

ces R and R′ to obtain the 2-D directions of the coherent
underwater acoustic signals. In more detail, the correlation
matrix introduced in (41) exploits the spatial phase informa-
tion between adjacent array elements. The correlation matrix
formed in (53) utilizes the direction information inherent in
the velocity components. Furthermore, the additive noise is
statistically eliminated in both correlation matrices.
Remark 4: The AQ-SUMWE method reduces the compu-

tational complexity in three ways. (1) When estimating the
elevation angles, we use the computationally efficient PM

method instead of the EVD that is computationally intensive
and time-consuming. (2) An ESPRIT-like method is used
to achieve the DOA estimation after obtaining signal sub-
space, thus avoiding the heavy computational burden caused
by searching a multidimensional spectrum in the SUMWE
algorithm. (3) The correlation matrices R1 and R2 between
different quaternion models should be complex matrices.
Therefore, after estimating the matrices R1 and R2, we can
perform subsequent steps in the complex number field to
alleviate the computational burden.

F. IMPLEMENTATION OF THE AQ-SUMWE ALGORITHM
Based on the above analysis, assuming that N snapshots of
received data {p(tn), x(tn), y(tn), n = 1, . . . ,N } are available,
we summarize the AQ-SUMWE algorithm as follows:

1) According to (22), (23), (24) and (25), construct four
quaternion-based array output vectors u(t), v(t), ũ(t)
and ṽ(t), n = 1, 2, . . . ,N .

2) Estimate the correlation matrices R1 and R2 as

R̂1 = Re
{
1
N

N∑
n=1

u(tn)vH (tn)

}
,

R̂2 = Re
{
1
N

N∑
n=1

ũ(tn)ṽH (tn)

}
. (58)

3) Perform the correlation matrix smoothing follow-
ing (38), (39), and (40), then construct the matrix R as

R̂ =
[
ˆR1,
ˆR
↓

2

]
. (59)

4) Estimate the propagator P0 using (50), then, based
on (46) and (51), obtain the elevation angles of incident
signals.

5) Estimate the cross-correlation matrix R′ as

R̂′ =
1
N

N∑
n=1

z(tn)pH (tn). (60)

6) Use the estimated elevation angles to reconstruct the
array response matrix A, then, according to (56)
and (57), estimate the azimuth angles of incident
signals.

G. COMPUTATIONAL COMPLEXITY ANALYSIS
The AQ-SUMWE algorithm needs four major steps: (1)
Compute the correlation matrices R̂1 and R̂2 via (58). (2)
Estimate the propagator P0 as P̂0 = R̂bR̂

†
a. (3) Calculate

the cross-correlation matrix R̂′ using (60). (4) Obtain Ŵx
and Ŵy by (56). In the next derivation, a flop is defined as
a floating-point addition or multiplication operation.

First, mapping data from the real number field to the
quaternion field needs 2MN flops, where N is the number of
snapshots. Because of the conjugation relation between R̂1
and R̂2, estimating the two matrices requires approximately
32M2N flops. When calculating the correlation matrix R̂′

in (53), the number of flops needed is approximately 16M2N .
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TABLE 3. Complexity comparison of the three algorithms.

The computation of P̂0 in (50) takes about 16K 2M (M −
2K + 1) + 16K 3M + 8K 2(M − 2K + 1) + O(K 3) flops,
and the calculation of Ŵx and Ŵy in (56) requires roughly
16M2K + 32K 2M +O(K 3) flops, where the computational
complexity required for the inversion of a K × K Hermitian
matrix is O(K 3) [27]. Accordingly, the total number of flops
required in the proposed scheme is nearly 48M2N + 2MN +
16M2(K 2

+ K ) when N � M � K .
The approximate computational complexity of AQ-

SUMWE,V-SUMWE [32], and the forward-backward spatial
smoothing ESPRIT (FBSS-ESPRIT [8], [40]) algorithm is
given in TABLE 3. The proposed approach requires more
flops than the V-SUMWE method in return for a signifi-
cant improvement of the estimation performance, as shown
in the simulation part. Compared with the FBSS-ESPRIT
method, the simulations demonstrate that our approach has
advantages in both estimation performance and computa-
tional complexity.

IV. SIMULATIONS
By comparing with V-SUMWE [32], FBSS-ESPRIT [8],
[40], and other ESPRIT-type algorithms based on AVS arrays
[2], [24], we now test the performance of AQ-SUMWE. In the
FBSS-ESPRIT algorithm, the azimuth angles are estimated
in a similar way as [20]. For AQ-SUMWE and V-SUMWE,
We apply a 12-element ULA composed of three-component
vector hydrophones. Because the methods in [2], [24] employ
four-component vector hydrophones to form arrays, we set
the number of array elements as 9 to ensure that the hardware
costs of the algorithms are comparable. For the L-shaped
array-based approach in [2], we consider an array geome-
try with two ULAs in the x − z plane, where each ULA
has 5 vector sensors. For the method in [24], a 9-element
uniform linear AVS array placed along the z-axis is used.
Because the V-SUMWE method can improve the estima-
tion performance by increasing the array element spacing,
the estimated results with the inter-sensor spacings of half
and triple wavelengths are given in the simulations. In the
other algorithms, the inter-sensor spacing is set to a half
wavelength. For simplicity, we assume that all signals are of
equal power σ 2

s , and the SNR is defined as 10 log10
(
σ 2
s /σ

2
n
)
,

where σ 2
n denotes the power of noise.

A. ANGULAR RESOLUTION PERFORMANCE COMPARISON
In this subsection, we consider the scenarios in which two
closely spaced coherent underwater signals impinge upon the
array at low SNR (SNR = 3 dB) to verify the resolution
performance of our method. In the simulations, two signals

FIGURE 2. Angular resolution comparison in low SNR (SNR = 3 dB). The
snapshot number N = 1000. Two narrowband coherent signals impinge
on the array with the azimuth angles θ1 = θ2 = 40◦ in Fig. 2(a), and
θ1 = θ2 = 60◦ in Fig. 2(b).

with varying elevation angles share the same azimuth angle.
Every figure in Figs. 2(a) and 2(b) displays 200 estimation
results and proves the effectiveness and feasibility of the
AQ-SUMWE algorithm. Obviously, AQ-SUMWE exhibits
better estimation performance. Both estimation results of our
method are concentrated in the true direction even with a
small angle interval in low SNR.

B. ESTIMATION ACCURACY EVALUATION
In this subsection, we test the estimation accuracy of the algo-
rithms versus different parameters. The performance metric
used is the root-mean-square error (RMSE), defined as

RMSE =

√√√√ 1
M

M∑
m=1

{(
θ̂k,m − θk

)2
+

(
φ̂k,m − φk

)2}
(61)

where K is the number of observed signals, M denotes the
number of Monte Carlo trials, which is set to 5000 in the fol-
lowing experiments. θ̂k,m and φ̂k,m are the estimation results
of θk and φk for the mth Monte Carlo trial, respectively.
In the following simulations, we assume that two coherent
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FIGURE 3. RMSEs of the three algorithms versus SNRs. The number of
snapshots is fixed at 1000. The SNRs corresponding to adjacent points
in Fig. 3 differ by 4 dB, and the SNR varies from −10 dB to 30 dB.

sources are located at {θ1, φ1, θ2, φ2} = {20◦, 30◦, 60◦, 50◦}
in Figs. 3 and 4, and {θ1, φ1, θ2, φ2} = {30◦, 40◦, 40◦, 60◦}
in Fig. 5. The estimation results for each source will be
given separately in different figures. CRB in [39] is used as a
performance benchmark in the next simulations.

Figs. 3 and 4 plot the RMSEs of three algorithms ver-
sus SNRs and snapshot numbers, respectively. The snapshot
number equals 1000 in Fig. 3, and the SNR is set to 3 dB
in Fig. 4. The simulation results in these figures indicate
that AQ-SUMWE performs better than other schemes in
terms of estimation precision. Compared with V-SUMWE,
the improvement of performance can be explained as a fuller
utilization of the array data. In Fig. 5, we investigate the
estimation performance of AQ-SUMWE versus the number
of array elements. In this experiment, the number of snapshots
is set to 1000, and the SNR is 3 dB. From Fig. 5, one
can observe that AQ-SUMWE can still offer performance
superior to V-SUMWE.

C. PERFORMANCE VERSUS CORRELATED NOISE
In Fig. 6, the effect of correlated noise on the algorithm
performance is explored. According to [21], we assume that

FIGURE 4. RMSEs of the three algorithms at different snapshot numbers.
SNR = 3 dB, and the snapshot number varies from 100 to 1000 with a
number interval of 100.

the noise in the different components of vector hydrophones
is independent of each other. And the mathematical models
of the received noise vectors by different components are
expressed as

nl(t) =
√
ρnl,0(t)1M +

√
1− ρn′l(t), l = p, x, y (62)

where n′l(t) =
[
nl,1(t), nl,2(t), . . . , nl,M (t)

]
, and 1 denotes an

all-one M × 1 row vector. nl,0(t), n1(t), n2(t), . . . , nM (t) are
independent of each other and with equal power. The corre-
lation factor ρ is varied between 0 and 1, which measures the
noise correlation across the sensors.

When the element spacing d is set as triple wavelength,
the correlation of the noise between different sensors has
been ignored [21], and the performance of V-SUMWE (d =
3λ) can be used as a performance reference in the sim-
ulation. In Fig. 6, as the correlation factor ρ increases,
the performance of FBSS-ESPRIT and V-SUMWE (d =
0.5λ) will significantly degrade. However, thanks to the
quaternion algebra framework, the proposed AQ-SUMWE
algorithm shows robustness to spatially correlated noise and
provides more accurate DOA estimates compared with other
methods.
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FIGURE 5. RMSEs of the three algorithms versus the number of array
elements, where the number of array elements is increased from 5 to
30 with an interval of 5.

FIGURE 6. RMSEs versus the correlation factor ρ, where SNR = 3 dB,
the number of snapshots L = 1000.

V. CONCLUSION
A novel quaternion-based DOA estimation algorithm called
AQ-SUMWE has been proposed. We integrate multiple sig-
nal models based on quaternion frameworks to fully uti-
lize the array data. And the additive noise is statistically
eliminated by rational use of the quaternion algebra prop-
erties. As a result, the computationally efficient PM method
offers performance superiority in elevation angle estimation.
By exploiting the spatial phase difference between adja-
cent sensors and the directional information embedded in
the velocity components, we achieve high-resolution 2-D
DOA estimation for coherent underwater sources. Simulation
results demonstrate that the fuller data utilization and noise
elimination provide stable estimation performance for the
proposed algorithm.

APPENDIX A
We now prove that the matrix R1 in (38) can be used to
estimate the DOAs of K coherent signals. We have known
that R1 = A0�1, where

�1 =

[
IK ,81, . . . , 8K−1

]
91. (63)

Denote the mth column of 91 as ψ1,m, and let

�1,m =

[
IK ,81, . . . , 8K−1

]
ψ1,m. (64)

Naturally, we have

R1 =

[
R1,1, . . . ,R1,M

]
= A0

[
�1,1, . . . , �1,M

]
. (65)

Considering that ψ1,m =
[
ψ1,m,1, ψ1,m,2, . . . , ψ1,m,K

]T is
a K ×1 vector, and8k

= diag
{
ξ k1 , ξ

k
2 , . . . , ξ

k
K

}
is a diagonal

matrix of order K , we can derive that
�1,m

=


ψ1,m,1 ψ1,m,1ξ1 · · · ψ1,m,1ξ

K−1
1

ψ1,m,2 ψ1,m,2ξ2 · · · ψ1,m,2ξ
K−1
2

...
...

. . .
...

ψ1,m,K ψ1,m,K ξK · · · ψ1,m,K ξ
K−1
K



=


ψ1,m,1

ψ1,m,2
. . .

ψ1,m,K



1 ξ1 · · · ξK−11
1 ξ2 · · · ξK−12
...

...
. . .

...

1 ξK · · · ξK−1K


= DV (66)

where D = diag{ψ1,m,1, ψ1,m,2, . . . , ψ1,m,K } is a diagonal
matrix whose diagonal entries are not zero, V is a square
matrix with the Vandermonde structure. Therefore,D,V, and
�1,m are all full rank matrices.
A0 ∈ C(M−K+1)×K is the Vandermonde matrix consisting

of the first M − K + 1 rows of the array response matrix A.
WhenM−K+1 > K , the rank ofA0 isK . Therefore,R1,m =

A0�1,m is a full rankmatrix, andR1 =

[
R1,1, . . . ,R1,M

]
can

deal with K coherent signals.

APPENDIX B
We now prove that the estimated elevation and azimuth
angles are automatically matched in our method. In prac-
tice, the reconstructed array response matrix Â =[
a(φ̂e1 ), a(φ̂e2 ), . . . , a(φ̂eK )

]
can be formed according to (13),

where {φ̂e1 , φ̂e2 , . . . , φ̂eK } are estimated elevation angles
by (51), {e1, e2, . . . , eK } is an arbitrary arrangement of
{1, 2, . . . ,K }. We assume that 1, 2, . . . ,K are the p1th, p2th,
. . ., pK th elements in {e1, e2, . . . , eK }, respectively. A in (13)
and Â are related as

Â
[
ip1 , ip2 , . . . , ipK

]
= A,

Â = A
[
ip1 , ip2 , . . . , ipK

]T (67)

where ip is a column vector of all zeros except for the
pth element which equals 1, and

[
ip1 , ip2 , . . . , ipK

]T
=[

ie1 , ie2 , . . . , ieK
]
. Denote

[
ie1 , ie2 , . . . , ieK

]
by E. Naturally,

E−1 = ET , and we have
Â†
= {AE}†

=

{
{AE}H {AE}

}−1
{AE}H

= ET {AHA}
−1

EETAH

= ETA†. (68)
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Substitution of (68) into (56) yields

Â†R̂′(1:M ,:) = ET0xRsAH
= Ŵx ,

Â†R̂′(M+1:2M ,:) = ET0yRsAH
= Ŵy. (69)

Let ŵx,k and ŵy,k are the kth rows in Ŵx and Ŵy, respec-
tively. Note that ET =

[
ie1 , ie2 , . . . , ieK

]T , then we have the
following equation:

tan θek ŵx,k = ŵy,k , k = 1, 2, . . . ,K . (70)

We can see that the arrangement of the azimuth angles
extracted from (70) also follows {e1, e2, . . . , eK }. Hence,
the azimuth angles obtained from (57) are automati-
cally matched with {φ̂e1 , φ̂e2 , . . . , φ̂eK } which are estimated
by (51).
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