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ABSTRACT Information representative of actual power system dynamics is usually buried in masses
of phasor measurement unit (PMU) data. To take full advantage of these data in early anticipation of
stability loss, we propose to implement the high dimensional stability index (HDSI). This method allows
the extraction of more than 500-labeled attributes describing generator response signals, such as speed and
rate of change of transient energy function (RoCoTE). A combined 31 functions are computed from spectrum
analysis based on the Periodogram and Welch methods, Lyapunov exponents, and wavelet transform
approaches. The test databases are built by simulating faults on each line in the IEEE 39- and 68-bus
networks. Applying comparative time-series analysis to such signal responses to disturbances then highlights
the texture matrix of the stability attributes. A 10-fold support vector machine (SVM) is used to implement a
HDSI-based stability prediction model, with its performance then compared to the artificial neural network
(ANN), decision trees (DT), random forest (RF), and adaptive boosting (AdaBoost) models available in
the statistical package R. While most methods performed similarly, with ∼100% accuracy on test cases
using the same set of HDSI-based attributes, the RF classifier with its associated Gini feature importance
allows for explicit feature ranking and interpretation, which results in prioritization of frequency-domain
over time-domain features.

INDEX TERMS Stability signal responses, time-series classification, stability attributes, wide-area severity
indices, fast Fourier transform,Welchmethod, periodogram, Lyapunov exponent, wavelet, machine learning,
dynamic state estimation, dynamic security assessment.

NOMENCLATURE
xn, ẋ State and State Derivative variable
(x0, u0) Point of equilibrium of state and input
y, ur Output and input vectors
γ, t Cut-off stability value and time

1δi, ψi Maximum deviation and stability index
1ui,1xi Small deviation of the input and state

variable
δi,Wdi Rotor angle and Rate of change of transient

energy (RoCoTE)
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λi(x) Lyapunov exponent
3(x) Matrix coefficient

T ′d0i,T
′

q0i d & q transient open circuit time
constant

�c,Nd Set of disturbances and Number of
databases

fi, gi System state and output functions
Nl,Nc,Ng Number of lines, contingencies and

generators
Nf Number of HDSI based features in

data mining
xd , xq Direct (d) & quadrature (q) reactance
PC − 1,PC − 2 First and second principal component
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e′d , e
′
q d & q axis transient electromotive

voltage
9,ω Wavelet transform and frequency

variable
x ′d , x

′
q d & q axis transient reactance

xw,R Segment samples and window size in
periodogram and Welch methods

m, k Number of blocks and available
frames in periodogram and Welch
methods

SVM Support vector machine
DT Decision trees
RF Random forest
ANN Artificial neural network
AdaBoost Adaptive boosting

I. INTRODUCTION
Time-series of post-disturbance response signals contain dor-
mant and non-transparent information that is useful for under-
standing the dynamics of power systems in real time [1]. The
analysis and rapid interpretation of the physical meaning of
these data usually requires considerable experience in elec-
trical engineering and signal processing [2]. It thus suitable
to provide artificial intelligence (AI) experts and junior engi-
neers with a simple method to extract and classify transparent
and easily interpretable stability predictor attributes. High-
lighting the physical meaning of these attributes allowsmove-
ment away from the black-box approach of dynamic stability
evaluation. The difficulty in accessing real data from power
networksmotivated [3] to propose a fast and simple algorithm
for generating stability data for different configurations of
IEEE test systems in Simscape Power System (SPS).

With advances in deep learning applied to time-series [4],
several authors have turned to this approach to assess network
stability by analyzing post-fault signals [5]. Although clas-
sifications by deep learning leads to relatively satisfactory
accuracy, the raw signal-based decision engine is opaque
and difficult to explain to experts responsible for network
planning and operation. As pointed out in [6], this opac-
ity is an important limitation to the maintenance of such
models and their adoption by the industry. In this context,
the characterization of temporal responses prior to machine
learning by physically interpretable attributes, via notions
such as the maximum of spectral energy density or maxi-
mum of Lyapunov exponents, becomes an interesting alter-
native. However, until now, time-series classification based
on transparent attributes has been limited to a small number
of possible attributes (generally from 1 to 10 according to
authors), with notable difficulty in generalizing the attributes
thus chosen to new networks and new configurations, as some
of the proposed attributes are a function of the inertia of
the machines and topology of the network [7]. This paper
proposes to overcome these limitations by adopting a highly
comparative time-series approach (HCTSA) [8] to extract a
massive number of attributes describing the network response

signals to perturbations, without making assumptions about
the network topology and parameters. The central tenet of the
proposed approach is that by increasing drastically the type
and number of physically interpretable ‘‘PMU data based
catastrophic indicators’’ [17] involved in the machine learn-
ing (i.e. moving from a low dimensional to high-dimensional
feature space), we should be able to improve performance and
transparency of the power system stability prediction model.
The goal is therefore not to outperform any machine learning
or deep-learning algorithms, as no new such algorithms is
proposed in this paper, but rather to extending consider-
ably the set of candidate features with a physical meaning
in order to improve the performance of existing machine
learning tools, while allowing physical interpretations or
reformulation of the resulting data-driven stability prediction
models into transparent fuzzy logic rules. In fact, HDSI
will simultaneously enhance classification performance of
existing machine learning and increase the transparency and
readability of the underlying algorithms decision rules.

Along similar lines, the work of [9] presents a method
to analyze the dynamic safety of disturbed power systems
by a machine learning approach that uses voltage phasors
to build a neural network model for predicting the status
(stable/unstable) of the post-fault power system. The maxi-
mum Lyapunov exponent is proposed in [10] to predict the
rotor angle stability in real time from phasor measurement
unit (PMU) data. The authors argue that, during operation,
the generators remain synchronous if the linear system asso-
ciated to the Lyapunov coefficients is asymptotically sta-
ble. In [11], classification rules for the rapid assessment
of post-disturbance stability are developed from decision
trees (DT) and fuzzy rule approaches. The authors extract and
classify stability attributes from the Hydro-Quebec database
of PMU signal responses recorded after short and long
duration disturbances under changing topologies. In [12],
the focus is on the importance of the time-frequency dis-
tribution of power system electromechanical energy oscil-
lations in network stability after a disturbance. Short-time
Fourier transform, fuzzy logic, and NN approaches are used
in [13] to extract and classify stability predictor attributes.
In [14], an algorithm based on discrete Fourier transform and
interpolation is proposed to assess the dynamics of gener-
ators in real-time using the field-programmable gate array.
DT applied to the integral square of generator angle and
integral square of bus angle indices is used in [15] to detect
events and predict loss of synchronism.

In light of the above literature, the present paper focuses
on the combined use of Lyapunov exponents, wavelet and
Fourier transforms, and spectral energy using periodograms
and Welch methods to extract stability precursor attributes
from time-series of generators rotor speeds and RoCoTE
derived fromDynamic State Estimation (DSE) utilizing PMU
data [1]. The power system dynamics information from
the Lyapunov exponents allow the extraction of attributes
related to stability or instability by quantifying the eigen-
value variations and sensitivity degree of the underlying
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FIGURE 1. Block diagram of conventional (a) and proposed HDSI (b) Feature extraction scheme.

linearized system. Similarly, the spectral analysis of generator
response signals captures disrupting energy processes driv-
ing the system towards the brink of instability. It is imple-
mented by applying rectangular and Hamming windows,
resulting in the periodogram and Welch methods. A level 2,
3, 4, 5 time-frequency decompositions, carried out on the
Daubechies and Symlet wavelets, facilitates the statistical
extraction of the energy attributes contained in stability sig-
nals when the latter are highly nonstationary. These meth-
ods enable the definition of a cluster matrix of attributes
characterizing the power system dynamic stability status in
post-disturbance stage.

Fig. 1 summarizes the differences between the con-
ventional and proposed approaches for feature extrac-
tion to enhance the effectiveness and transparency of the
data mining-based stability prediction. In one conventional
approach, Fig. 1. (a), the stability signals recorded at the
machine levels are used to calculate for each machine
the RoCoTE and Transient Energy Function (TEF) fea-
tures. Likewise, the concept of wide-area severity indices
is used in another conventional approach [7] to assess
the stability status based on ensemble decision trees fed
with 10 features characterizing the Hydro-Québec network

in post-disturbance conditions. The second conventional
approach performs instability detection based on a single
decentralized indicator per machine combined with two cen-
tralized indicators computed from global response of the
machines [18]. Both methods can be used to analyze/decide
wide-area dynamic stability with less than ten physically
interpretable features, see step 2, Fig. 1. (a). Although the
conventional approach relies on a small set of features useful
for understanding the dynamics of power systems in real time,
it does not explore the full spectrum of candidate features
which is potentially very large, and therefore, it does not
allow for a hierarchization of the complementary features
within the set (i.e. importance ranking of time-domain vs
frequency domain attributes), which is required for an in-
depth physical understanding of the predictor ability to cap-
ture stability phenomena.

By contrast, the new paradigm of HDSI based features
extraction, Fig. 1. (b), consists in applying to any available
time-response signal arising from short-time monitoring, five
complementary signal processing engines simultaneously.

Considering two basic signals responses, namely, the rotor
speed and RoCoTE, we can derive from the basic HDSI
concept, two databases each representing a different data
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mining paradigm. The implementation of Eq. 5 and
Eq. (8-15) corresponds to speed signal-based HDSI, which is
the basic HDSI in this paper due to its used of an unprocessed
raw physical signal.

The implementation of Eq. (5-7) and Eq. (8-15) corre-
sponds to yet another variant of HDSI method using decen-
tralized RoCoTE, which is a byproduct of the decentralized
DSE. Each of the two databases, obtained by implement-
ing Eq. (5) to (15), can generate 500+ attributes per sin-
gle generator rotor speed or RoCoTE signals respectively,
through HCTSA. This study compares the performances of
each HDSI method on IEEE 39- and 68-bus test systems for
which source code is available on request.

The proposed data mining approach is first built in Mat-
lab using the 10-fold SVM approach whose performance is
next compared to stability predictions from the following
learning algorithms in R: artificial neural network (ANN),
random forest (RF), adaptive boosting (AdaBoost), and deci-
sion trees (DT) [25]. The two first principal components
(PC-1 and PC-2) are also used to classify the stable and unsta-
ble attributes on a linear projection of a hyperplane to help
visualizing and understanding the stability phenomena. Fur-
thermore, using the Gini importance of attributes produced
by the random forests to rank the ∼500 candidate features,
the energy-related attributes are found to be more discrimina-
tive of the dynamic stability status than Lyapunov exponents
while the speed-based HDSI are deemed more effective than
RoCoTE based HDSI. These are few major findings from the
proposed HCTSA-based understanding, interpretation, and
classification of stability time-series responses.

The rest of the paper is organized into five sections.
Section II describes the proposed high-dimensional stability
indices. Section III presents the simulation results of high-
dimensional stability features extraction and classification
based on the IEEE 39-, 68- and 39 + 68 -bus systems.
Our methodology considers a single database consisting of
Nl × Nc × Ng time-series from these two widely different
systems to obtain more general conclusions with respect to
the physical interpretation and ranking of stability attributes.
According to [34], the former test system has mostly transient
stability issues while the second is dominated by small-signal
stability issue, and therefore, combining the two networks in
a single data base has the potential provides two complemen-
tary views of the stability phenomena in a single prediction
model. Section IV presents a comparison between the basic
HDSI using speed signal and the RoCoTE HDSI variant
across several well-known machine learning engines built in
Matlab and R. Section V presents the conclusions of the work
and future perspectives.

II. PROPOSED HIGH-DIMENSIONAL STABILITY INDICES
The analysis and interpretation of a power system dur-
ing its operation requires the resolution of electrome-
chanical equations describing the relationships between all
generators.

A. DYNAMIC STATE ESTIMATION
The differential/algebraic equations (DAE) characteristic of
power system dynamics is defined by [16]:

ẋi = fi (x1, x2, . . . , xn; u1, u2, . . . , ur ; t) (a)

0 = gi (x1, x2, . . . , xn; u1, u2, . . . , ur ; t) (b) (1)

where the first set (1a) represents the differential equations
and the second set (1b) represents the algebraic equations
which are typically associated to the network constraints in
steady-state at fundamental frequency.With some compatible
initial conditions (x0, y0), i.e.: 0 = g (x0, y0); f : Rn

×Rm
→

Rn, g : Rn
× Rm

→ Rm, equations (1) can be rewritten as:

ẋi = fi [(x0 +1x), (u0 +1u)]

0 = gi [(x0 +1x), (u0 +1u)] (2)

1ẋi =
∂fi
∂x1

1x1 + . . .+
∂fi
∂xn

1xn +
∂fi
∂u1

1u1

+ . . .+
∂fi
∂un

1un (3)

Similarly, the output variables 1yi are expressed as func-
tions of the state xi and input variables ui by:

1yi=
∂gi
∂x1

1x1 + . . .+
∂gi
∂xn

1xn+
∂gi
∂u1

1u1+. . .+
∂gi
∂un

1un

(4)

In the presence of disturbances, the linearization of
Eq. 2 makes it possible to characterize the stability of oscilla-
tion modes of electrical networks using the Lyapunov theory.
Most software (Matlab/Simulink, PSSE, PSLF, PowerWorld,
DSATools, etc.) implements Eq. (1-4) to perform an offline
analysis of the power system dynamics [1]. After fault clear-
ance, signals from the synchronous generators (directly mea-
sured or extrapolated from direct measurements) are used to
calculate decentralized stability indicators [18]. In real-time
conditions, PMU data are used in DSE to derive the internal
dynamic state of the generators from terminal measurements
for the purpose of online stability status assessment [17].

B. INSTABILITY DETECTION IN MULTIMACHINE
SIMULATION
The rotor angle δki (t) of generator k for contingency i ∈ �

c is
used to compute the maximum deviation1δi(t) between any
pair k,m ∈ �g of generators at instant t and compare it to a
cut-off value γ = π [34].

ψi(t) =
γ −1δi(t)

γ +1δi(t)
=

{
1 Stable if ψt � 0
0 Unstable if ψt ≤ 0

(5)

1δi(t) = max(
∣∣∣δki (t)− δmi (t)∣∣∣) (6)

When a disturbance affects a power system, we have two
possible status: if 1δi(t) is high, the generators will have a
tendency of falling apart and the difference between γ (which
is taken equal to π ) will be small and hence the indicator will
be close to zero [33]. Thus, at each simulation step, a binary
decision on the stability status of the sample is calculated
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and simultaneously stored in the database. During operation
of the power grid, the decentralized stability indicator called
the RoCoTE function (Wdi) is calculated using DSE for
generator i according to [18]:

Wdi =
dWi

dt

= −

 T ′d0i
(xd − x ′d )

(
de′qi
dt

)2

+
T ′q0i

(xq − x ′q)

(
de′di
dt

)2
 (7)

The collection of rotor speed signals, along with Eq. 5 and
Eq. 7, are used to extract the discriminative attributes of
the power system dynamics through application of HCTSA.
These stability status (‘‘0’’ or ‘‘1’’) is used to label the training
time-series snapshots (rotor speed and RoCoTE), i.e. a binary
number 1 or 0 is assigned as output class or categorial variable
if the signals (rotor speed and RoCoTE) correspond to an
instable or stable contingency respectively.

C. POWER ENGINEERING FEATURES EXTRACTION
The stability database consisting of rotor speeds and RoCoTE
is obtained by simulating three-phase ground fault on each
line and close to generator bars of IEEE 39 –and 68 –bus.
These sample simulations are chosen to highlight the power
system dynamics when faced with line tripping, genera-
tor loss, load switch on and load switch off. The faults
being applied at t = 1s, are eliminated after two cycles
(i.e. post-fault time: 1 + 2/60 sec) for IEEE 39-bus and after
12 cycles (i.e. post-fault time: 1+ 12/60 sec) for IEEE 68-bus,
we have essentially allocated a maximum of 250ms data win-
dow for decision making after fault clearing. Table 1 presents
the configuration of disturbance scenario simulated in the
IEEE 39- and 68-bus test systems.

It is well known that the performance of the learning
machine is not only related to the learning algorithm but
also to the quality of the input data with respect to specific
tasks. The block diagram shown in Fig. 2 summarizes to
steps for extracting such features using the characteristics
of the Lyapunov exponents, statistics of power spectrum,
and wavelet transform applied to the database of time-series
signal responses. Thus, from the selected four Lyapunov
functions, five spectral analysis functions, and 22 wavelet
transformations, more than 500 stability attributes are
extracted per signal.

The Daubechies and Symlet wavelet transforms applied to
the stability database facilitates the extraction of discriminant
information in the frequency domain. The wavelet transform
is a set of various transforms that uses functions located in
both real space and real time to describe the scaling properties
of the stability signal. The continuous wavelet transform
expression, calculated from the mother wavelet9, is defined
in [19] by:〈

x, 9a,b
〉
=

1
√
a

∫
t
x (t)9

(
t − b
a

)
dt (8)

where: a and b represent dilation and translation factors.

TABLE 1. Fault simulation scenario of the IEEE 39 - and - 68 bus.

FIGURE 2. Block diagram of HDSI-based features extraction.

These spectral features evolve over time, thus allowing to
identify common time-varying patterns in rotor speed and
RoCoTE signals, and perform accurate time-localization of
event based on low and high frequency band filters in (8). The
wavelet decomposition allows therefore to detecting change
point introduced in the power system by fault occurrence.
The periodogram,Welch method, and fast Fourier transforms
permit estimation of the spectral density of each time-series
over short-time windows following the fault clearing. The
periodogram method divides the stability feature in several
segments of precise length that are progressively shifted and
process with fast Fourier transform, X (f ) define as follows:

FFT(X (f )) ,
∫
t
x(t)e−j2π ftdt (9)

The spectrum amplitude of the stability signals from (9)
using the fast Fourier transform applied to post-fault
time-series data enables the energy introduced by the distur-
bance into the power grid to be highlighted. The periodogram
Pf ,M (ω) is defined as the squared magnitude of the discrete

VOLUME 9, 2021 104931



R. T. Dabou et al.: Time Series-Analysis Based Engineering of High-Dimensional Wide-Area Stability Indices

time Fourier transform of x divided by M, as per [20]:

xw(n) = w(n)x(n) (10)

Pf ,M (ω) =
1
M

∣∣∣∣∣
M−1∑
n=0

xw(n)e−jωn
∣∣∣∣∣
2

(11)

The implementation ofWelchWf ,M (ω) method amounts to
applying several periodograms using a sliding window [21]:

xm(n) = w(n)x(n+ mR) (12)

Wf ,M (ω) =
1
M

∣∣∣∣∣
M−1∑
n=0

xm(n)e
−j2πnk/N

∣∣∣∣∣
2

(13)

When a disturbance is applied to the power system, it is
subject to slow or brief variations in initial conditions.
The Lyapunov exponents derived from these variations can
allow the prediction of stability or instability during the
post-disturbance period, based on the trajectories of generator
variables (speed, voltage, RoCoTE, etc.). The largest Lya-
punov exponent is considered a suitable metric for stability
prediction. Referring to the dynamic system of (Eq. 14) with
x ∈ X ⊂ RN and a solution8(t, x), we define the limit matrix
using 3:

3(x) = lim
t→∞

[
∂8(t, x)T

∂x
∂8(t, x)
∂x

]1/2t
(14)

Let 3i(x) be the eigenvalues of limiting matrix 3(x) [22].
The Lyapunov exponents λi(x) are defined as:

λi(x) = log3i(x) (15)

The negative (positive) value of the maximum Lyapunov
exponent implies the power system is stable (unstable) around
a nearby equilibrium point. The characteristic nonlinear dif-
ferential equations of generator dynamics are used to deter-
mine the power system equilibrium. Then, the simulation of
each fault generates precise exponents that can be positive
(network is unstable) or negative (network is stable), accord-
ing to the electrical network sensitivity and initial conditions.

D. K-FOLD SVM BASED FEATURES CLASSIFIER
From the concepts described above in Eq. (8-15), 31 func-
tions (see Fig. 2) with various parameterizations are applied
to each time-series of rotor speeds and RoCoTE to extract
discriminative decentralized attributes associated with each
generator. Because the support vector machine (SVM) is
one of the most powerful classifiers in terms of the tradeoff
between effectiveness and complexity [26], especially in the
context of power stability prediction [31], it was selected for
implementing the basic HDSI inMatlab [8]. Its use in the pre-
dictive analysis of dynamic stability allows the signals in the
database to be separated into two classes: stable or unstable.
To enhance its generalization capability, the proposed SVM
algorithm uses K-fold cross-validation [23], [24] to ensure
that each available time-series is used in both the training
and validation sets. This approach minimizes the expected

TABLE 2. Confusion matrix configuration.

overall error in the full database by selecting the hyperplane
that best discriminates the stability signals to maximize the
distance margin between it and the nearest sample. Given a
set of models f (x, α) indexed by tuning parameter α, denote
by f −k (x, α) the αth model fit with the k th part of the data
removed. Then, for this set of models, we define:

CV (f̂ , α) =
1
N

N∑
i=1

L
(
yi, f̂ −k (xi, α)

)
(16)

where CV
(
f̂ , α

)
provides an estimate of the test error curve,

and we find the tuning parameter α̂ that minimizes it. Our
final model is f

(
x, α̂

)
, which we then fit to all data. In other

words, for K-fold learning, the signals are randomly parti-
tioned into K = 10 groups. Each in turn, one of the groups
is used as a test set for a training model and the other four
groups are used as a training set at each iteration. Therefore,
the training attribute boundaries are used to define the plau-
sible location of the test attributes in relation to the splitting
hyperplane.

E. PERFORMANCE MEASURES FROM THE CONFUSION
MATRIX
The confusion matrix in Table 2, also known as an error
matrix, is used to evaluate and visualize the performance of
each stability classifier. It consists of three metrics providing
a detailed overview of the generalization performance of the
training model on the test database.

The accuracy metric in (17) defines the ratio of correctly
predicted stability status (stable/unstable) to the total number
of training data.

Accuracy(%) =
C11 + C00

C11 + C00 + C10 + C01
(17)

The reliability metric in Eq. 18, allows to evaluating the
ability of the classifier to correctly predicting the instabilities
of the power systems.

Reliability (%) =
C00 − C01

C00
(18)

The securitymetric in Eq. 19 allows evaluating the capacity
of the classifier to correctly predicting the stable status of the
power systems:

Security(%) =
C11 − C10

C11
(19)
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TABLE 3. Performance metrics of machine learning of stability prediction using rotor speed and RoCoTE based HDSI.

III. SIMULATION RESULTS
The power system dynamics are studied through two
databases generated by simulating line tripping and
three-phase to ground fault on each line and at generator
terminal busses of the IEEE 39- and 68-bus networks. The
partial load switching on/off (±20% MW) and generation
shedding (−10% & −30% MVA) allows to enhancing the
richness of both training databases. Instead of applying the
HDSI method on the two systems separately, we instead
combine the two sets of data in the hope of finding a sin-
gle, more general, predictor. This idea was first proposed
in [7], where it was pointed out that learning the physi-
cally inspired ‘‘stability concept’’ on networks with widely
different dynamic stability attributes (first swing vs. multi-
swing, oscillatory vs. voltage stability, etc.) will result in
a more general predictor encapsulating a robust stability
definition which retains significance across various dynamic
phenomena. By combining the two datasets, with the first
dominated by transient stability phenomena while the second
is dominated by small-signal stability type of events [34], it is
possible to derive a single machine-learning based stability
predictor, able to generalize the stability features to all types
of network dynamics; this leads to a singlemodel that can also
work potentially for never seen networks or novel operating
conditions on previously seen networks. Interestingly, Table 3
confirms that combining the two test systems in a single

stability database results in a RoCoTE based DT with only
a 60% reliability, which compares to 98% and 84% for the
39-bus and 68-bus test systems respectively, when they are
taken alone. By contrast, the RoCoTE based random forest
model results in a greater than 97.6% reliability rate for all
three scenarios which demonstrates that the random forest
model has enhanced generalization capabilities, which allows
it to predict the stability phenomena across a wider range
possible of systems dynamics, provided that the stability
database is rich enough.

A. TIME SERIES FOR STABILITY PREDICTION
The IEEE 39- and 68-bus networks respectively consist
of 34 and 66 lines and 10 and 16 generators. The simulations
of the networks presented in Fig. 3. (a) and Fig. 3. (b) were
performed in SPS. The consist of 740 and 2080 time-series
respectively, assuming only one signal response (such as rotor
speed) is recorded per generator. In addition, for each sample
recorded, a stability status (‘‘0’’ or = ‘‘1’’) is defined during
the simulation according to Eq. (5-6).

Note that considering the RoCoTE as a second gener-
ator signal doubles the number of stability time-series in
each database (i.e. 5 640 time-series) which was investigated
indeed, but without reporting the results here for reasons
explained in the Discussion section. The configuration of
the database allows each time-series to be named based on
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FIGURE 3. Single line diagram of the (a) IEEE 39-bus and (b) IEEE 68-bus
systems.

information about the ID number of the generator that pro-
duced the recorded speed signal, the line on which the
fault was applied, the type of fault, and the global sta-
bility status of the network in post-disturbance dynamics.
To illustrate the database built by simulating the two power
systems in Fig. 3. (a) and Fig. 3. (b), we present sam-
ple snapshots of rotor speed trajectories in Fig. 4. (a) and
RoCoTE in Fig. 4. (b), with stable cases (blue) and unstable
cases (red).

Each pre-processed stability signal is tagged with six
labels that provide the information on signal ID in database,
fault location, ID generator, signal response, type of fault
and stability status. These figures show that the RoCoTE
present more fluctuations than the rotor speed signal, which
may be expected from the derivative operation. However,
they also display only minor visual differences between
times-series from stable and unstable cases in the early
stage of post-disturbance dynamics, over 150 samples, which
underscores the challenge of predicting the stability from
time-series data directly.

FIGURE 4. Time-series: (a) rotor speed and (b) rate of change transient
energy (IEEE 39 -bus).

B. POWER ENGINEERING FEATURES MAPPING
To take full advantage of the data and improve the visibility
of the dynamic stability features following HCTSA, clus-
tering of rows and columns of the databases is performed.
This hierarchical reorganization between rows and columns
enables the calculation of the row distance and column dis-
tance metrics, according to the database stability label. The
sigmoid function is used to normalize the stability database
and display the attribute weights from lowest (blue) to highest
(red). The online signals are no longer represented by many
colors but only by blue (stable) or red (unstable). The rows of
the attribute matrix represent the number of signals present
in the database whereas the columns represent the number
of attributes calculated for each signal. The attribute matrix
derived from the rotor speed alone is shown in Fig. 5.

C. DYNAMIC STABILITY FEATURE CLASSIFICATION
A preliminary comparison of the statistical distribution of
stability attributes extracted from databases is carried out in
order to inspect visually and highlight their ability to dis-
criminate the dynamics of the power system. Thus, for each
calculated attribute, it is possible to know what percentage of
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FIGURE 5. Attributes data matrix for rotor speed (IEEE 39 -bus).

the sample data it classifies correctly as stable and unstable
cases according to the predefined labels.

By observing the rotor speed database, we find in Fig. 6,
that PC-1 and PC-2 are enough to separate the plane approx-
imately by a line, with most of the blues and reds being on
either side of the line. To improve the separation, it would take
a hyperplane of at least 10 dimensions (number of significant
principal components according to Rattle), the distribution in
blue and red confirm that PC-1 has a very negative valuewhen
unstable while PC-2 has a pronounced overlap between blue
and red which gives limited precision to separate stable and
unstable cases: the accuracy in predicting correctly the stabil-
ity of a case using PC-1 only is 96% vs 49% for PC-2 only.
A 50% accuracy means that the classification is not more
accurate that a toss-up game, confirming that the overlap in
distributions makes the separation between stable/unstable
very poor. The patterns in Fig. 6 are the PC-1 (high) and
PC-2 (low) distributions as a function of stability (blue =
stable, red = unstable). The SVM algorithm maximized the
smallest existing signed distance between the stable and
unstable signals [32], see Fig. 6.

While Fig. 2 presents the rationale behind the full set of
potential features (up to+500 numbers derived from 31 basic
functions), the 40 most significant attributes of the rotor
speed database (as obtained by minimizing redundancy and
correlation between features) are grouped into four clusters,
as shown in Fig. 7. The Daubechies wavelet (up to 97.75%)
and fast Fourier transform (up to 97.81%) best discriminate
the rotor speeds compared to Lyapunov exponents (94.65%).
This result, which highlights the relevance of frequency
domain features as the best wide-area severity indices [17],
will be further confirmed in a latter section using the more
rigorous random forest Gini importance of features [28].

D. HDSI-BASED PREDICTOR PERFORMANCE
The implementation of 10-fold cross validation SVM based
on rotor speed and RoCoTE data alone results in the
confusion matrix shown in Fig. 8. The rotor speed classifier

FIGURE 6. Linear SVM classification of rotor speed (IEEE 39-bus).

FIGURE 7. Clustering top feature of rotor speed (IEEE 39- bus).

correctly detects 310 stable signals (over 310) and 430 unsta-
ble signals (over 430), see Fig.8. (a). Whereas, the RoCoTE
classifier correctly detects 310 stable signals (over 310) and
426 unstable signals (over 430), see Fig.8. (b).

Similarly, the implementation of 10-fold cross validation
SVM based on the rotor speed and RoCoTE data results of
IEEE 68 –bus. The rotor speed classifier correctly detects
1261 stable signals (over 1264) and 812 unstable signals
(over 816), see Fig.9. (a). The RoCoTE classifier correctly
detects 1176 stable signals (over 1264) and 754 unstable
signals (over 816), see Fig.9. (b).

While comparable to existing literature, these figures are
inferior to the 10-fold SVM performance using rotor speed
signals (Fig. 8).We can conclude that the rotor speed achieves
better performance compared to the RoCoTE based on the
same HCTSA process with a 100% vs 99.5% accuracy,
see Fig. 8 (a)-(b).
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FIGURE 8. 10-fold SVM confusion matrix for (a) rotor speed and
(b) RoCoTE (IEEE 39-bus).

FIGURE 9. 10-fold SVM confusion matrix for (a) rotor speed and
(b) RoCoTE (IEEE 68-bus).

E. COMPARISON WITH EXISTING MACHINE LEARNING
TOOLS
The data-mining tool, Rattle for R, is used to evaluate the
performance of the HDSI on stability data [25]. This requires
preliminary preparation of the stability data into a format that
Rattle can understand [26], [27]. The file associated with both
the IEEE 39- and 68-bus networks contains 500+ stability
attributes tags (columns) and 2 820 signals (rows). HDSI’s
SVM 10-fold linear classifier model built from databases of
rotor speeds and the RoCoTE show good accuracy, reliability
and security compared to the decision trees method. For the
same databases, the Rattle AdaBoost, ANN and RF classi-
fiers are all highly accurate, secure and reliable, and their
performance is slightly better than that of the 10-fold SVM
classifier, Table 3. Overall, the HDSI features from rotor
speed data result in very few errors in the classification of
stability attributes.

However, with the same HCTSA attributes fed to the
mainstream machine learning algorithms RF, AdaBoost,
and ANN, they all result in nearly the same good perfor-
mance, which makes the choice of which to use a matter of
preference or availability. The main idea of this work, high-
lighted in Fig. 2, was to demonstrate that the application

TABLE 4. CPU time (in sec.) of HSDI.

of several attribute extraction methods (Lyapunov exponent,
power spectrum and wavelet decomposition) on the raw rotor
speed database can perform well, with little intervention of
the AI expert thanks to HCTSA.

The results in Table 3 confirms that this is indeed true and
further allows us to affirm that 1) the classifier is a transparent
machine learning stability predictor with explainable input
features and 2) its performance depends more on learning
attributes than the classification algorithm. Table 4 presents
in its first column the computational load of HDSI estimation
for the test systems considered in this paper. The performance
was assessed on a DELL computer configured with the Intel
processor i7-7700HQ 4-core running at 2.80 GHzwith 16 GB
of RAM. Although the CPU time is relatively significant,
the actual code is in Matlab scripting language and therefore,
it can be made faster using C-programming.

In addition, since each time series (or subset of time-
series) is analyzed individually using HCTSA, the problem of
computing HDSI is naturally parallelizable, by splitting for
instance, the 10 machines found in the 39-bus systems into
10 parallel tasks. For completeness, Table 4 also presents in
the five last columns, the respective computational require-
ments of the 5 machine learning algorithms studied in this
paper. It appears that the Boost technique offers the best com-
promise between classification accuracy and computational
burden while the random forest and 10-fold SVM CPU times
grow exponentially with the problem size.

IV. DISCUSSION
An open question that remains is which attributes among the
∼500 is the most relevant in terms of discriminative efficacy.
We have improved the quality of Fig. 10, thus highlight-
ing feature importance in terms of Gini impurity reduction,
according to the random forest machine learningmethod [28].

These results are very consistent with the clustering
approach in Fig. 7, showing that frequency domain attributes
are the most efficient decentralized severity indices [17].
Indeed, the first Lyapunov-based coefficient is ranked 61.
To highlight the critical importance of this finding in building
efficient and understandable classifiers, Fig. 11 presents box
plots Fig. 11. (a) and distributions Fig. 11. (b) of one of
the three-frequency domain variables compared to the best
Lyapunov exponent.

Whereas, the latter features overlapping distribution of
stable and unstable cases, superposition of the two Welch
spectra results in a clear-cut histogram showing extreme val-
ues correspond to unstable cases in both the IEEE 39 -bus.
The performance of HDSI derived from rotor speed

104936 VOLUME 9, 2021



R. T. Dabou et al.: Time Series-Analysis Based Engineering of High-Dimensional Wide-Area Stability Indices

FIGURE 10. Rotor speed feature importance in terms of Gini impurity
reduction (IEEE 39 -bus).

FIGURE 11. Characterizing distributions of top frequency domain
attribute: (a) box plot, (b) density distribution (IEEE 39 + 68 -bus).

alone is so good using either 10-fold SVM, AdaBoost,
or RF predictors that little is gained on the existing IEEE 39-
plus 68-bus database by stacking HDSI from rotor speed and
RoCoTE. In fact, it was found in a sharp contrast to Fig. 6, that
a principal components decomposition of the HDSI based

attributes associated to RoCoTE performed rather poorly in
splitting stable and unstable cases in two crisp classes using
a linear SVM (Fig. 12).

FIGURE 12. Linear SVM classification of RoCoTE (IEEE 39 -bus).

Only two attributes (PC-1 & PC-2) out of 500 are
used for the SVM classification of the stability database,
see Fig. 6 & Fig. 12.

While for the sake of simplicity it is possible, even prefer-
able, to analyze dynamic stability with a few predictors (less
than 10) as shown in [7] and [18], these attributes are usu-
ally selected in an ad-hoc manner with limited justification
and without any comparison with the myriad of alternative
possibilities existing in the literature (e.g. in time-domain
vs frequency domain). These methods using a single feature
such as the maximum angle in the COI reference, the peak
of the rotor speed spectral density or the maximum Lya-
punov exponent do not compare and rank these attributes
in order to define their intrinsic predictive power, leaving
the reader puzzled by the question of which of the basic
features is actually the most informative about stability phe-
nomena. The proposed HDSI is an attempt to reconciliate
all the main time-series based features found in the existing
literature in a unified framework, thus enabling their fair
comparison and ranking while providing the machine learn-
ing with much more degrees-of-freedom to explore during
the classifier model building. Admittedly, with the consid-
eration of +500 physically explainable attributes describing
each generator signal response, we agree that this approach
which expands the search space from a dozen of attributes
to hundreds of attributes may seem on the surface like an
increased complexity. But this perception missed two aspects
of the method stressed in this paper:

1) The computation of the +500 attributes is highly auto-
mated, numerically efficient, and masks a lot of digital signal
processing complexity to the user

2) The only way to select the best physically sound features
(in absence of prior knowledge or expertise) is to explore
in the same framework, all categories of candidates reported
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FIGURE 13. Decision trees classification of rotor speed (IEEE 39- bus).

by experts in existing literature, which means to computing
Fourier, Welch,Wavelet, Lyapunov based features simultane-
ously to enable comparisons.

3) Machine learning tools such as ensemble decision trees
are designed to naturally navigate through many features to
derive models with use the most informative features only.
However, it is the duty of the data scientist to provide the
machine learning the full set of informative and uncorrelated
features to work with, which can only happen in the rare cir-
cumstances where the data scientist is also a domain expert.

Therefore, the HDSI approach allows to build a large set
of possible features which enable the data scientists who are
non-domain experts to define hierarchically the predictive
power of the attributes and to give them a physical interpreta-
tion as in Fig. 6, according to the fundamental dynamics of the
power systems. For illustration, despite the high number of
inputs, the decision tree in Fig. 13 is quite simple if not trivial
to understand since it uses only 3 variables among the+500-
labeled to achieve instability prediction with a 99% reliability
on the IEEE 39-bus test system providing a strong evidence
of the discriminatory power of the three features used in
building the DT. These critical attributes turned out to be all a
subset of the frequency domain attributes illustrated in Fig. 10
and they could not have been so easily discovered in ad-hoc
manner without exploring the full set of +500 attributes
and ranking their predictive power. Such a simple tree can
be easily converted into a transparent and robust fuzzy rule
classifier [29], see Fig. 13.

However, comparing the performances of the speed and
RoCoTE based HDSI in systematic way, and prioritizing the
frequency domain features with a greater confidence would
require the simultaneous addition of another test system, such
as the IEEE 50-machine test case, or consideration of the
voltage stability phenomenon in addition to transient and
oscillatory stability conditions. In the future, we also plan to
compare the performance of HDSI based transparent machine
learning of stability status with direct opaque time-series
based deep learning using standard algorithms available in

Matlab [30] together with larger test systems and larger data
sets.

V. CONCLUSION
Existing methods for attribute analysis and extraction usually
require significant expertise for the physical interpretation of
signals. This work aims to develop a promising high dimen-
sional stability index, called HDSI, for wide-area stability
monitoring and control. This new tool can extract and classify
more than 500 attributes describing each generator response
signal obtained from dynamic state estimation based on PMU
data. This is an important alternative for the promotion of
machine learning applications to power systems dynamics.
To extract the stability attributes, 31 different analysis func-
tions from fast Fourier and wavelet transforms, periodogram
and Welch spectral methods and Lyapunov exponents are
applied to each post-disturbance response signal recorded
during fault simulation on each of the lines and close to
generator bars of the test networks. Such attributes are then
adjacently correlated and standardized to improve visibility
and interpretation of stability features hidden in the signal
responses. The most discriminating attributes are clustered
according to their percentages and then classified into two
stability categories using the 10-fold support vector machine.

The proposed HDSI-based features are used in prediction
models built in Matlab and Rattle using 10-fold SVM, DT,
RF, ANN, and AdaBoost learning algorithms. All models
performed well, except for the standard DT model that has
unsatisfactory reliability. The two main findings arising from
using the HDSI method are as follows: 1) the top attributes
in terms of discriminative power and encapsulating the sta-
bility phenomenon are frequency domain-based features and
2) 10-fold SVM, RF, ANN, and AdaBoost learning algo-
rithms result in similar performance when fed with the same
HDSI-based attributes from highly discriminative time-series
analysis. The latter conclusion enables the development of
more transparent stability predictors built using DSE based
synchronous machines response signals in post-disturbance
conditions.
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