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ABSTRACT Flying base stations (FlyBSs) enable ubiquitous communications in the next generation mobile
networks with a flexible topology. However, a deployment of the FlyBSs intensifies interference, which
can result in a degradation in the throughput of cell-edge users. In this paper, we introduce a flexible
soft frequency reuse (F-SFR) that enables a self-organization of a common SFR in the networks with an
unpredictable and dynamic topology with the FlyBSs. We propose a graph theory-based algorithm for an
allocation of resource plans, which is understood as a bandwidth allocation and a transmission power setting
in the context of SFR. Furthermore, we introduce a low-complexity implementation of the proposed resource
allocation using deep neural network (DNN) to significantly reduce the computation complexity. We show
that the proposed F-SFR increases the throughput of cell-edge users by 16% to 26% and, at the same time,
improves the satisfaction of the cell-edge users by up to 25% compared to the state-of-the-art solutions.
We also demonstrate that the proposed scheme ensures a higher fairness in the throughput among the users
with respect to the state-of-the-art solutions. The implementation via DNN also outperforms all state-of-the-
art solutions despite its very low complexity.

INDEX TERMS Flying base station, interference, soft frequency reuse, deep neural networks, throughput,
UAV, user satisfaction, fairness.

I. INTRODUCTION
The current mobile networks are typically based on a fixed
infrastructure. Such architecture limits performance in sce-
narios, where the communication is supposed to be estab-
lished in a highly time-space varying manner. To increase
flexibility of the mobile networks, base stations can be
mounted on unmanned aerial vehicles (UAVs) [1]. Such base
stations are denoted as flying base stations (FlyBSs). The
FlyBSs bring benefits in an emergency scenario and/or in sit-
uations with a significant short-to-mid-term increase in data
traffic in a small area, for example, during sport events or con-
certs. Tomake the networks with the FlyBSs practically feasi-
ble, still, many challenges should be solved including [2], [3]:
placement of the FlyBSs, resource allocations, energy effi-
ciency, trajectory optimization for prolonging FlyBS opera-
tional time, user association, or interference management.
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The positions of the FlyBSs change over time depending on
the user density and communication requirements. The Fly-
BSs’ movement results in a strong variation of interference in
time and space. This makes the interference management in
the network with FlyBSs even more challenging than in the
conventional mobile networks. Unfortunately, the research
work in the interference management for the networks with
the FlyBS is rather limited. The existing interference sup-
pression or mitigation techniques exploit different network
parameters, such as antenna type, power control, FlyBS posi-
tioning, and coordinatedmulti-point (CoMP). The directional
antenna and antenna arrays are used in [4] and [5], respec-
tively. However, the use of multiple antennas is practically
not feasible for the FlyBSs due to a relatively small size of
the FlyBSs. Interference management techniques based on
CoMP are proposed in [6], [7]. However, the CoMP requires a
significant number of signaling exchange among the FlyBSs
and synchronization among different FlyBSs for CoMP oper-
ation. Some techniques optimize the positions of the FlyBSs
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[8]–[10], and transmission power [11]. Such techniques have,
however, a high computational overhead due to the iterative
nature of the optimization algorithms.

The above-mentioned works suffer from a high compu-
tation complexity and/or from a significant signaling load
imposed by an exchange of control information. This limits
practical applications of the FlyBSs, as the FlyBSs are of a
limited processing capability and a limited energy. Moreover,
the FlyBSs are designed to change positions, as the served
users move. Hence, the positions of the FlyBSs are hard to
predict and do not follow any predictable pattern. Therefore,
the distance among FlyBSs can change over time signifi-
cantly and, consequently, impairs the throughput. The most
critical situation is for the cell-edge users, who get affected
the most due to interference. A soft frequency reuse is a
suitable solution to handle interference to the cell-edge users.
Moreover, the SFR is of a low complexity and is easy
to implement comparing to the above-mentioned solutions,
as demonstrated in, e.g., [12]–[19]. Various strategies of
implementing the SFR in the common mobile networks are
presented in [12]–[20]. However, all these papers assume the
locations of the base stations are apriori known and do not
change over time. Although all above-mentioned solutions
can improve the throughput of the cell-edge users in the
conventional mobile network with a fixed and apriori known
topology, a direct application of these works to the scenarios
with FlyBS is not possible, because of a dynamic, irregular,
and unpredictable topology of such networks.

In the common mobile networks, the SFR is implemented
so that each cell is allocated with a specific resource plan,
i.e., with a particular combination of the transmission power
and the bandwidth assigned to the users in different levels
of the cell. The resource plans are allocated to the cells in
such a way that the cell with a particular resource plan is
surrounded by a group of the cells with different resource
plans. However, the positions of the FlyBSs are not known
apriori, as the FlyBSs move according to the users behavior.
This makes the locations of the FlyBSs unpredictable and
such a ‘fluid’ nature of the topology of the networks with the
FlyBSs does not allow a simple adoption of the common SFR.
To the best of our knowledge, no effort has been made so far
to adopt the SFR to the network with the FlyBSs to reduce
interference.

To enable the use of the SFR in the networks with the Fly-
BSs, we propose a novel flexible SFR (F-SFR) allocating the
resource plans dynamically according to the users’ density,
the number of FlyBSs, and the coverage area of individual
FlyBSs. Unlike the solutions proposed in the related works,
the proposed F-SFR supports an arbitrary number of SFR
levels and the core idea enables an implementation via deep
neural networks to lower the complexity of our solution.

The contributions of the paper are summarized as follows:

• We propose a novel graph theory-based algorithm that
distributes the resource plans among the FlyBSs such
that the interference experienced by the cell-edge users

is reduced. The interference reduction is achieved via a
smart allocation of the resource plans so that each FlyBS
is allocated with the resource plan that maximizes the
distance to another FlyBS with the same resource plan.

• While the number of resource plans in the existing
approaches for SFR is confined to three, we propose a
novel dynamic solution with the bandwidth allocation
suitable for an arbitrary number of the resource plans.
We show that a higher number of the resource plans
results in an improvement in the throughput of the cell
edge users.

• Since the networks with the FlyBSs are highly con-
strained by the computational capability and the energy,
we devise the DNN-based resource plan allocation.
The DNN is trained offline with the inputs represented
only by the locations of the deployed FlyBSs. Then,
the trained DNN predicts the resource plan for each
FlyBS with a negligible complexity. The prediction is
done simply by processing the actual positions of the
FlyBSs via the trained DNN.

Note that this paper is an extension of our prior work [21],
where an initial idea of the SFR in the networks with the
FlyBSs is outlined. The overall motivation of this paper has
evolved from the initial concept of a dynamic allocation of
the resource plans presented in [21] to the low-complexity
solution of the dynamic resource plan allocation. To this
end, we propose a new low-complexity solution that assigns
resource plans to the FlyBSs for the SFR via deep neural
network. The new scheme is denoted as DNN F-SFR. Fur-
thermore, while the number of resource plans in the existing
approaches (including our prior work [21]) for the SFR is
limited to three, in this paper, we propose a dynamic solution
with the bandwidth allocation scheme suitable for an arbitrary
number of the resource plans.

The rest of the paper is organized as follows. We pro-
vide an overview of related work in the next section. The
system model is presented in Section III. The details of the
proposed graph-theory-based F-SFR, its extension towards
an arbitrary number of resource plans, and a low-complexity
implementation via the DNN, are described in Section IV.
Then, we evaluate the performance of the proposed F-SFR
via simulations and compare it with the state of art schemes
in Section V. Finally, the paper is concluded in Section VI.

II. RELATED WORK
Although a significant progress has been achieved in the
research related to the FlyBS deployment [22]–[27], the only
limited amount of works target the interference management
among FlyBSs. In [28], interference management commonly
adopted for small cells is applied to the networks with
FlyBSs. The algorithm is based on non-cooperative game
theory and allocates the channels among different FlyBSs so
that co-channel interference is minimized. This results in a
reduced interference among the FlyBSs. However, the overall
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performance drops notably when the FlyBSs become over-
loaded. Furthermore, to eliminate the co-channel interference
among the users of different FlyBSs, directional antennas
at the FlyBSs are used in [4]. Another approach, presented
in [5], jointly optimizes the user association, downlink trans-
mission power, and three-dimensional placement of the Fly-
BSs to reduce interference. The gain in throughput is achieved
via large antenna arrays. However, due to a limited processing
capability and energy at the FlyBSs, the use of the large
antenna arrays or directional antennas is not practical, as it
incurs a heavy computational burden.

A deployment of multiple FlyBSs with awareness of inter-
ference is proposed in [29]. The FlyBSs are deployed at
the center of non-overlapping circles. Hence, the distance of
each FlyBS with respect to the center FlyBS is optimized
to reduce interference. This approach is similar to the 7-cell
clustering in the conventional mobile networks. Although
such clustering reduces interference, the users’ satisfaction
rate is degraded as well, since the users’ locations and their
requirements are not considered. In [6], a user association
and an interference mitigation are addressed. The authors
propose an algorithm based on the CoMP to suppress the
interference. The CoMP for the interference suppression in
the networks with the FlyBSs is also proposed in [7]. The
users are divided into a number of groups and the users in the
same group are allocated with the same time and frequency
in a particular epoch. Contrary, the users in different groups
are allocated with orthogonal time and frequency. Never-
theless, this resource allocation results in a lower frequency
reuse. Moreover, the CoMP requires an exchange of a notable
amount of signalling among the FlyBSs to coordinate the
communication in a perfectly synchronized manner. Never-
theless, the perfect synchronization might be impossible to
guarantee in practical applications. In [8], [9], the FlyBS is
deployed between a pair of a transmitter and a receiver to
manage interference from a macro base station. The FlyBS
acts as a relay and the interference is suppressed by an
adjustment of the FlyBS’s position. Since the FlyBS acts as
the relay for a single link, interference among the FlyBSs is
not considered.

A joint trajectory and power control-based interference
management is proposed in [30], where relaying via multiple
FlyBSs is assumed and neighboring macro base stations,
small cells, and jammers are considered as a sources of
interference. The trajectories of the FlyBSs are optimized
by the spectral graph theory and, then, the transmission
power of the FlyBSs is optimized. Nevertheless, the proposed
optimization is highly complex in terms of computation,
thereby, not efficient for the energy-constrained networks
with the FlyBSs. In [11], the throughput maximization for
a simple network with two FlyBSs and one user attached
to each FlyBS is solved via a determination of the FlyBSs’
locations and the allocation of the transmission power for
each user. However, the proposed solution is very complex
if more than two FlyBSs and multiple users are considered.
In [10], interference among the FlyBSs is mitigated via the

altitude optimization, as the altitude has a direct impact on
the interference experienced by the users. However, only
one user per FlyBS is considered and an extension to the
scenario with multiple FlyBSs and multiple users is not
straightforward.

In [31], [32], Q-learning is exploited for the transmission
power control to improve the throughput by reducing inter-
ference in the heterogeneous networks. A similar approach is
adopted for the association of the users in [33], [34]. Machine
learning, by means of support vector machine, is adopted
also in [35], [36] for the power control in cognitive radio
networks. The power control is addressed via a deep neural
networks in [37]. However, all these works are designed for
the networks with a fixed infrastructure and a flexibility of the
FlyBSs is not reflected. Machine learning for the networks
with FlyBSs is considered, for example, in [38], where the
authors optimize the FlyBSs’ trajectory with interference
awareness. However, the proposed algorithm incurs a signif-
icant computation overhead, which makes the interference
mitigation complicated.

The cell-edge users get affected the most significantly due
to the interference. A SFR is a less complex solution to
handle interference to the cell-edge users. In [12], the cells
are divided into more than two circular regions, denoted
as levels, with the center of each region (level) located at
the cell center. Such approach is known as multi-level SFR
(ML-SFR) and allows an efficient mitigation of interference.
In [13], the impact of a cell sectorization for the ML-SFR
is investigated. An efficiency of the ML-SFR in heteroge-
neous networks (HetNets) is investigated in [14] and the SFR
is found to be a savior for the cell-edge users [12]–[14].
A feasibility of the SFR in the scenario with microcells is
analyzed in [15]. The authors in [15] develop the SFR for the
HetNets combining the macrocells and the microcells. While
the macrocell coordinates the allocation of the resource plans
among the microcells, the microcells select the resource plan
according to the reference signal received quality from the
other microcells within the macrocell. However, without the
macrocell being present, the algorithm is not applicable and
implementable. In addition, similar to all existing SFR-based
schemes, only three resource plans are considered in [15] and
an extension towards a higher number of the resource plans is
not straightforward due to the nature of the proposed solution.
A three-levelML-SFR for the heterogeneous networks is then
proposed in [16] to balance the communication load between
the macrocells and the microcells. In [17], [18], the SFR
is combined with CoMP to further improve throughput in
the cell-edge area. An analysis of massive multiple-input
multiple-output (MIMO) with SFR is carried out in [19].
In [20], an extreme learning machine predicts three param-
eters of SFR: i) the number of users in the cell-edge area, ii)
the amount of bandwidth required for the cell-edge area, and
iii) the power ratio of the cell-edge and cell-center area. The
model proposed in [20] suffers from a high computational
complexity due to the use of genetic algorithm. Furthermore,
the allocation of resource plan is static.
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FIGURE 1. Interference scenario of SFR. (a) Interference of 2-level SFR
(b) Bandwidth splitting.

III. SYSTEM MODEL
In this section, we outline the system model. Note that to
keep a continuity, we follow a similar system model as in our
prior work [21], where the SFR in the networks is outlined.
In a common SFR, the cell is divided into L circular regions,
denoted as levels. The center of each circular region (level)
is located at the cell center [12]–[14]. For practical purposes,
the number of levels L is an even number. If the cell is divided
into more than two levels, the corresponding system is called
multi-level SFR (e.g., 4-level SFR if L = 4). One SFR is
created by two concrete levels in each cell, as shown in Fig. 1
for the 2-level SFR with the FlyBSs. The l th level of the cell
forms one SFR together with the (L − l + 1)th level of the
same cell. Note that l ≤ L and l ∈ Z+. For example, if L = 8
and l = 2, the second level forms the SFR with the seventh
level of the cell. As two levels create one SFR, the number of
the SFRs is equal to L

2 [13], [14].
The area covered by the l th level is denoted as an inner

region if l ≤ L
2 ; otherwise, it is denoted as an outer region.

The amount of the bandwidth allocated to the outer region
of the SFR is a half of that allocated to the inner region to
optimize the network throughput, see, e.g., [12]. In general,
three cells form a cluster to ensure that the outer-regions of
the cells in the cluster have a distinct bandwidth, as the whole
bandwidth is divided into L + L

2 sub-bands. For example,
in Fig. 1, the whole bandwidth is divided into three sub-
bands: ζ = {(ζ1, ζ2, ζ3} for L = 2, i.e., for 2-level SFR.
The bandwidth allocated to the outer region of the cell is
used in the inner regions of the cells in the same cluster [12].
The sub-bands are allocated to different levels of the cell
with different transmission powers. The transmission power
for communication with the users in the inner regions is
lower than the transmission power for the users in the outer
region [12]. A particular combination of the sub-band alloca-
tion to the different levels of the SFR and the corresponding
transmission power setting is denoted as a resource plan. The

total number of resource plans used in the network is denoted
as N . To allocate a distinct bandwidth in the outer region of
the cells in the cluster, L+L/2 sub-bands are created to form
three resource plans as shown in Fig. 1 (upper-left corner of
the figure) for L = 2.
The resource plan allocation starts from an arbitrary cell.

In this cell, the sub-band allocation to different levels is
also selected randomly out of all available options. In our
example, the sub-bands ζ1 and ζ2 are allocated to the inner
regionwith a low transmission power and ζ3 is allocated to the
outer region with a high transmission power in the cell 3. This
combination of the sub-bands and the transmission powers
is labeled as the resource plan 1. Similarly, the resource
plan 2, with the sub-bands ζ3 and ζ2 for the inner region
and ζ1 for the outer region, is allocated to the cell 1. The
last resource plan 3 is allocated to the cell 2. The power
allocated to the sub-bands of the l th level is defined, according
to [14], as:

Pi =

{
αlγlP for 1 ≤ l ≤ L

2
αL−l+1P for L2 < l ≤ L

(1)

where αl is the ratio of the transmission power allocated to
the outer level of the l th SFR to the maximum transmission
power P, and γl is the ratio of the transmission power allo-
cated for the inner region to the power for the outer region of
the l th SFR level.

We assume that the users are uniformly distributed in a
given area covered by M FlyBSs. Without loss of generality,
the heights of the users are considered negligible. The FlyBSs
can be deployed using any existing technique, such as those
proposed in [23], [27], which maximize the network through-
put. For the sake of simplicity of explanations, we adopt the
deployment of the FlyBSs proposed in [23]. This deployment
is based on k-means++ unsupervised machine learning algo-
rithm [39]. As an optimization of the users’ association is not
our objective, we simply adopt a common association of the
users to the FlyBSs so that the user is attached to the FlyBS
from which it receives the strongest signal.

The throughput of the nth user located in the l th level of the
mth FlyBS is defined as:

0lm,n = Blm,nlog2

(
1+

Plgm,n
I=m + I 6=m + Blm,nσ 2

)
(2)

where Blm,n is the bandwidth allocated to the nth user located
in the l th level of the mth FlyBS, I=m =

∑
q∈�=m Plgq,n is

the interference from the FlyBSs in which the same resource
plan as in themth FlyBS is used, I 6=m =

∑
q′∈�6=m PL−l+1gq′,n

is the interference from the FlyBSs using different resource
plans than themth FlyBS, gm,n is the channel gain between the
mth FlyBS and the nth user of themth FlyBS,�=m is the set of
FlyBSs in which the same resource plan as in the mth FlyBS
is used, �6=m is the set of FlyBSs in which different resource
plans compared to the mth FlyBS are exploited, gq,n is the
channel gain between the nth user and the qth FlyBS with q ∈
�=m, gq′,n denotes the channel gain between the nth user and
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the q′th FlyBS with q′ ∈ �6=m, PL−l+1 is the transmission
power of the FlyBS for its (L − l + 1)th level, and σ 2 is the
noise power spectral density. Note that we use bold letter to
present sets and matrices throughout the paper. A list of the
symbols used in this paper is given in Table 1.

TABLE 1. List of symbols.

IV. PROPOSED F-SFR FOR NETWORKS WITH FlyBSs
In this section, we first outline the targeted problem and we
motivate the approach adopted to solve this problem. Then,
we address the challenges caused due to the variable radius
of the FlyBS’s cell and the resource plans allocation among
the FlyBSs in a dynamic and flexible manner. To this end,
we describe also an assignment of the users to individual
levels of the cells. Afterwards, we introduce the proposed
algorithm for a flexible allocation of the resource plans.
Furthermore, we present an extension of the proposed SFR
towards the bandwidth allocation for an arbitrary number of
resource plans. We also introduce a low-complexity scheme
for allocation of the resource plans based on DNN.

A. OUTLINE OF THE PROBLEM AND MOTIVATION FOR
THE ADOPTED APPROACH
The objective is to improve the throughput of cell-edge user
via the proposed SFR tailored for the flexible networks with
the FlyBSs while the maximum transmission power, P, is not
increased and the fairness among the users is not impaired.
This objective is addressed via the proposed F-SFR described
in the next subsections. To use the SFR in the networks
with FlyBSs, any two FlyBSs with the same resource plans
should be positioned as far as possible from each other.
One way to facilitate this is to apply a SFR-aware deploy-
ment of the FlyBSs in which the objective is to maximize
the minimum distance between any two FlyBSs with the
same resource plan. This optimization problem can be solved
using any nature-inspired optimization algorithm, such as
genetic algorithm, particle swarm optimization, etc. Such
solution converges to the deployment of the FlyBSs at the
edges of the served area to suppress interference. However,
at the same time, it also decreases the network throughput,
as the received signal from the serving FlyBSs is also of a
low quality due to a relatively large distance between the
user and the FlyBSs. Another approach to solve our prob-
lem is a multi-objective optimization to jointly maximize
the minimum distance between any two FlyBSs having the
same resource plan and the network throughput. In this case,
the gain in the throughput of cell-edge users is achieved by
sacrificing the network throughput and vice-versa. As our
objective is to suppress interference, we focus on the resource
plan allocation for already deployed FlyBSs. This allows us to
design an algorithm independent of the FlyBSs’ deployment
in order to make our solution universal. Thus, the FlyBSs can
be deployed to maximize the network throughput via any of
the existing positioning algorithm.

The flowchart of the proposed F-SFR is shown in Fig. 2.
First, the FlyBSs are deployed using k-means++ algorithm.
We adopt k-means++, as it is simple, but efficient and
commonly adopted solution in many related works. As the
k-means++ only serves for the deployment of the FlyBSs,
it is always performed at the beginning of the algorithm.
Then, the users are associated to the FlyBSs and to a specific
level of SFR. After this step, the resource plans are allocated
for all FlyBSs either via the proposed graph-theory-based
or DNN-based approach. Finally, power and bandwidth are
allocated to each user depending on the resource plan allo-
cated to the FlyBS. In the next subsections, we first describe
the association of the users (to the FlyBSs and to the SFR
levels) and, then, we describe the allocation of the resource
plans to the individual SFR levels of each FlyBS. We also
present an extension of the proposed F-SFR towards an allo-
cation of an arbitrary number of the resource plans and to a
low-complexity solution based on the DNN.

B. ASSOCIATION OF THE USERS
The user association in SFR involves two steps: association
of the users to different FlyBSs and, then, association of
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FIGURE 2. Flowchart of the proposed resource plan allocation in
networks with FlyBSs.

the users of each FlyBS to different levels of the FlyBS.
As the principle of our proposed resource plan allocation
for the F-SFR is independent of the users’ association to
the FlyBSs, we adopt the technique proposed in [40], where
the user is attached to the FlyBS from which it receives the
strongest signal compared to that from all other FlyBSs. Once
the users are matched to the FlyBSs, the users should be
also associated to the individual levels of SFR. The simple
solutions developed solely for the 2-level SFR, such as the
one in [15], are unfortunately not directly applicable to our
targeted ML-SFR. Thus, we propose the following approach
enhancing the convectional association developed for the
2-level SFR towards ML-SFR.

First, we arrange the users associated to each FlyBS in the
ascending order depending on the strength of the received
signal from the respective FlyBSs. In the common SFR,
the outer region is allocated with a half of the bandwidth of
its corresponding inner region [12]. Also, in the conventional
SFR, the radius of each level is determined in such a way
that the outer region contains a half of the users associated to

the inner region of the SFR [15]. For this reason, we divide
the sorted users into L + L/2 groups. Compared to the
users in the second and other groups, the users in the first
group receive stronger signals. The inner and outer regions
of the SFR are allocated with two and one groups of the
users, respectively. Among L + L/2 groups of the users,
the users of the first two groups (i.e., those receiving the
highest and second highest levels of signal from the FlyBS)
are associated with the level 1, while the users in the last
group (i.e., those receiving the lowest level of signal from
the FlyBS) are associated with the last level of the FlyBS.
The remaining groups of the users are, then, associated with
the rest of the levels sequentially considering whether the
levels belong to the inner-region or the outer-region. For
example, for 4-level SFR, the first two groups of the users
are associated with the first level, the next two groups are
associated to the second level. Then, the fifth and sixth groups
of the users are associated with the third and fourth levels,
respectively.

C. PROPOSED ALLOCATION OF THE RESOURCE PLANS
Once the users are associated to the SFR levels of each FlyBS,
the bandwidth for each SFR level should be allocated. The
allocation of bandwidth for different levels of the FlyBSs
should be done with respect to the bandwidth allocation for
the neighboring FlyBSs in the cluster, because the bandwidth
allocated in the outer region of any SFR of one FlyBS cannot
be used in any outer region of any SFR of the neighboring
FlyBSs. This bandwidth allocation results in a reduced inter-
ference experienced by the cell-edge users and in an increase
in their throughput. However, the resource plans should be
allocated among the FlyBSs so that two FlyBSs having the
same resource plans are as far as possible from each other.
To solve this challenge, we propose and describe a novel
approach for the allocation of the resource plans among the
FlyBSs based on the graph theory.

In the network with the FlyBSs, we can consider each
FlyBS as a vertex of a graph. Then, connecting the vertices
to each other, we create the complete graph, where the edge
between a pair of the vertices represents the distance between
the vertices. The complete graph represents the locations
of different FlyBSs and the distances between the FlyBSs.
An example of such graph consisting of five vertices (i.e.,
FlyBSs) is shown in Fig. 3. After representing the networks

FIGURE 3. Representation of the networks with FlyBSs as graph.
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with the FlyBSs as the complete graph, we introduce the
concept of the graph coloring problem (the vertex coloring
in particular). However, instead of using the vertex adjacency
constraint (i.e., two adjacent vertices must have different
colors), we modify the constraint so that the vertices should
be colored such that the distance between any two vertices of
the same color is maximized. To color the graph, we consider
a fixed number of colors, where the color represents one
resource plan. In other words, we determine the color of each
vertex (i.e., assign the resource plans to the FlyBSs) out of
the given the number of colors (i.e., the number of resource
plans). In this way, the problem of allocating the resource
plan to the FlyBSs is transformed into the graph coloring
problem. Note that the complete graph ofM vertices consists
of M (M−1)

2 edges.
First, we give a brief high-level overview of the proposed

algorithm before explaining it in detail. The algorithm starts
with a random selection of one FlyBS, which is denoted as the
start FlyBS. This FlyBS is allocated with any of the available
resource plans. Out of the rest of the FlyBSs, the FlyBS
located closest to the start FlyBS is selected for the allocation
of another resource plan in the next iteration. The FlyBS
selected for the next iteration is denoted as the target FlyBS.
All FlyBSs that have some resource plans already allocated
are grouped according to their plans so that the FlyBSs with
the same plan are in the same group. In each group, the FlyBS
that is the closest to the target FlyBS is determined and we
denote it as the closest FlyBS. Note that the number of the
closest FlyBSs is equal to the number of groups of the FlyBSs
with the same resource plan. Then, among the closest FlyBSs,
the one that is the farthest from the target FlyBS is chosen (we
label it as the farthest FlyBS). This chosen FlyBS (the farthest
FlyBS) determines the resource plan for the target FlyBS so
that the target FlyBS is allocated with the same resource plan
as the farthest FlyBS. In the next step, a new target FlyBS is
selected out of the FlyBSs, which are not allocated with any
resource plan yet and the process is repeated until all FlyBSs
get one resource plan.

Now, let’s describe the proposed solution in more details.
First, we define few variables to describe the proposed solu-
tions in Algorithm 1. The FlyBSs are divided into two groups:
i) the FlyBSs, which are already allocated with the resource
plans (these are included in the set UA), and ii) the FlyBSs,
which are not yet allocated with any resource plan (included
in the set UN ). Initially, UA is an empty set while UN con-
tains all FlyBSs. The set R = {r1, r2, . . . , rR} contains all
available resource plans rr and R is the number of available
resource plans. The setCmaps the assigned resource plans to
the FlyBSs so that the mth element of C contains the resource
plan assigned to the FlyBS indicated in themth element ofUA.
Note that C is initially an empty set.
In the first step of the resource plan allocation, the start

FlyBS S is randomly selected from UN (line 2 in
Algorithm 1). The start FlyBS S is allocated with any random
resource plan (rr ) and this fact is reflected by putting rr to
the set C (line 3). The FlyBS is then included to the UA and

Algorithm 1: Resource Plan Allocation

1 UA
← ∅, UN

← 1 : M , R← [r1, r2, rR], C ← ∅
2 Select the start FlyBS, S, randomly from UN

3 C ← C ∪ r1, UA
← UA

∪ S, UN
= UN

\S
4 while

∣∣UN
∣∣ > 0 do

5 Determine dS,m ∀m ∈ UN

6 T ← argminm∈UN dS,m
7 for r ← 1 to |R| do
8 D∗← ∅
9 for m ∈ UA do
10 if r == cm then
11 Determine dT ,m
12 D∗← D∗ ∪ dT ,m
13 end
14 end
15 δr ← min(D∗)
16 end
17 r∗← argmaxr∈Rδr
18 C ← C ∪ r∗, UA

← UA
∪ T , UN

← UN
\T

19 end

excluded from UN (line 3). Then, the distances dS,m of all
FlyBSs inUN from the start FlyBS are calculated (line 5) and
the closest FlyBS is selected (line 6) as the target FlyBS T for
the next iteration.

The distance of each FlyBS to the start FlyBS can be
calculated either from known coordinates of all FlyBSs or
from the level of signal received from other FlyBSs using
a cellular localization technique [41]. Note that coordinates
of the FlyBSs should be known for a common operation
and flight control of the FlyBSs, hence, such assumption
is perfectly realistic in any real-world applications of the
FlyBSs. As the interference mitigation is critical especially in
the scenarios, where the FlyBSs can interfere with each other
(i.e., there are no buildings or obstacles among them), we can
assume that even the second approach for the determination
of the distance based on the received signal levels is feasible.
The reason is that we can assume that there are no obsta-
cles/buildings among the FlyBSs as the obstacles/buildings
would suppress mutual interference and any inter-cell inter-
ference mitigation technique would not be needed. Hence,
the mutual received signal levels among the FlyBSs can
properly reflect the distances among the FlyBSs in a realistic
scenario.

For each resource plan (line 7), the distances dT ,m of the
target FlyBS T to all FlyBSs cm ∈ C already allocated with
the given resource plan r ∈ R, (lines 9-10), are calculated
(line 11) and stored inD∗. In line 9, |C| denotes the cardinality
of the set C. Then, the distance δr of the closest FlyBS with
the r th resource plan from the target FlyBS is determined
(line 15). Note that if there is no FlyBS with any of the
r th resource plan up to this iteration, that is, D∗ is empty,
the distance is set to infinity. However, if three source plans
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FIGURE 4. Example of the allocation of resource plans to FlyBSs; FlyBSs
are depicted with circles and the number in the circle indicates ID of the
FlyBS, each color corresponds to a specific resource plan, the distances
among the FlyBSs are indicated by the numbers between the FlyBSs.

would be available, three closest FlyBSs with the distances δr
are found (line 15) so that one FlyBS uses each of the resource
plans. Next, among the closest FlyBSs (in our example three
FlyBSs), the resource plan r∗ of the farthest FlyBS is allo-
cated to the target FlyBS (lines 17-18). Note that if two or
more FlyBSs are in the same distance, a random FlyBS out
of these is selected. Finally, the FlyBS is inserted to UA and
excluded from UN (line 18). After this allocation, the new
iteration starts by selecting the new FlyBS from UN as the
target FlyBS and the above process is repeated.

In order to clarify the proposed algorithm explained above,
we assume a network of 10 FlyBSs (see Fig. 4(a)). Let us
assume that the FlyBS 5 is chosen arbitrarily as the start
FlyBS. An arbitrary resource plan is allocated to the FlyBS.
In the figure, the resource plan 1, shown with red color
in Fig. 4, is randomly selected for the FlyBS. Next, we select
the FlyBS, which is the closest to the FlyBS 5 but is not
assigned with any resource plan yet. The selected closest
FlyBS, which is FlyBS 4 in this case, is allocated with the
resource plan next. The FlyBS 4 is labeled as target FlyBS in
this iteration. To know which resource plan to allocate to the

target FlyBS, we compute distance of the target FlyBS from
all FlyBSs, which are already allocated with the resource
plans. The FlyBS 5 is the closest FlyBS to the target FlyBS
and is assignedwith the resource plan 1. Thus, we can allocate
any resource plan except the resource plan 1 to the FlyBS 4.
In this case, we randomly pick the resource plan 2, from
the resource plans 2 and 3, which is presented as blue color
in Fig. 4(c). Afterwards, we select the new target FlyBS to
allocate the resource plan. As before, the target FlyBS is the
start FlyBS’s closest FlyBS among all the FlyBSs, which has
no resource plan yet. As shown in Fig. 4(d), the FlyBS 7 is
the new target FlyBS. The FlyBS 5 and 4 are allocated with
the resource plans 1 and 2, respectively. Thus, the new target
FlyBS, FlyBS 7, is allocated with the resource plan 3 (green
color), i.e., with the only resource plan not allocated so far.
Now, each resource plan is allocated exactly once.

In the next iteration, the FlyBS 6 is the closest FlyBS
from the start FlyBS among the FlyBSs, which are yet not
allocatedwith the resource plan. Hence, we select the FlyBS 6
as the new target FlyBS. Since we have at least one FlyBS
per resource plan, we group the FlyBSs, which are already
allocated with the resource plans based on their resource
plans. This gives us three groups: group1 (FlyBS 5 with plan
1); group 2 (FlyBS 4 with plan 2); and group 3 (FlyBS 7 with
plan 3). We have only one FlyBS per group. Thus, the FlyBS
of each group is the closest FlyBS to the target FlyBS
6 from the respective group. Thus, the FlyBS 4 is the farthest
FlyBS out of the three FlyBS (one from each group). The
target FlyBS 6 is allocated with the resource plan of the
farthest FlyBS 4. Thus, the resource plan 2 is allocated to
the FlyBS 6. Afterwards, we select a new target FlyBS for
the next iteration.

Now, to show the process for a general case with more
FlyBSs already associated with the resource plans, let’s skip
to Fig. 4(h). The FlyBSs 3, 4, 5, 6, 7, 8, and 9 are already
allocated with the resource plans. Still the FlyBSs 0, 1, and 2
are not yet allocated with any resource plan. Out of the three
FlyBSs with no resource plan, the FlyBS 2 is the closest to
the start FlyBS. Thus, we denote the FlyBS 2 as the new
target FlyBS. To know the resource plan, which should be
allocated to the target FlyBS, let us divide the FlyBSs already
allocated with the resource plans into three groups based on
their resource plans. We get three groups: group 1 (FlyBSs 8
and 5 with plan 1), group 2 (FlyBSs 6, 4 and 9 with plan 2)
and group 3 (FlyBSs 3 and 7 with plan 3). Next, we select
the closest FlyBS to the target FlyBS 6 from each group. For
the group 1, out of the FlyBS 8 and 5, the FlyBS 8 is the
closest one to the FlyBS 2. Thus, we select the FlyBS 8 from
the group 1. Similarly, we find the FlyBSs 4 and 3 from the
groups 2 and 3, respectively. Out of the FlyBSs 2, 3 and 8,
the FlyBS 4 is the farthest from the target FlyBS 2. Thus,
the resource plan of the FlyBS 4, i.e., the plan 2, is allocated
to the FlyBS 2 as shown in Fig. 4 (i). This process repeats
until we allocate the resource plan to every FlyBS. The final
resource plan allocation to all FlyBSs is shown in Fig. 4(k).
We see that the FlyBSs 0, 5 and 8 are allocated with the
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resource plan 1 (red), the FlyBSs 2, 4, 6, and 9 are allocated
with the plan 2 (blue), and the plan 3 (green) is allocated to
the FlyBSs 1, 3, and 7.

D. BANDWIDTH ALLOCATION FOR ARBITRARY NUMBER
OF RESOURCE PLANS
The conventional SFR takes into account a pre-defined three
cells set up (i.e., N = 3) to form a cluster to allocate the
bandwidth among the different levels. The reason behind
choosing only three cells for the allocation of the bandwidth
in the conventional SFR schemes is to ensure that the cell
with a particular resource plan is surrounded by the cells with
different resource plans. However, there exists no such fixed
pattern of the resource plans allocation among the cells in the
network with FlyBSs. Under this scenario, we have an extra
degree of freedom and we can discard such constraint. Hence,
we discuss a way how to use more than three FlyBSs (i.e.,
N ≥ 3) to form a soft cluster. We introduce the term soft
cluster to indicate that the cluster of FlyBSs with the relative
positions of the FlyBSs is not fixed and changes over time
depending on the user distribution at a specific time instant
(e.g., due to users’ movement).

The major motivation for the higher value of N is that we
can increase the mutual distance between any two FlyBSs
with the same resource plan and, thus, the interference is sup-
pressed. This situation is illustrated in Fig. 5. While Fig. 5(a)
shows the resource plan allocation for N = 3, the same
deployment of the FlyBSs for N = 6 is shown in Fig. 5(b).
Comparing both examples for N = 3 and N = 6, we see
that there is a significant increase in the distance between
the FlyBSs with the same resource plans due to a higher
number of the resource plans. The increased distance reduces
interference among the FlyBSs and, consequently, improves
the spectral efficiency in the cell-edge area.

FIGURE 5. Example of the effect of the using higher number of resource
plans: (a) three resource plans (b) six resource plans.

Since each FlyBS uses a distinct sub-band in its cell-edge
area with respect to the other FlyBSs in the soft cluster,
the required number of the resource plans is N and the
required number of the sub-bands is L

2N . Figure 4 shows
an example of the sub-bands allocation among different SFR
levels of each FlyBS of the soft cluster for N = 6. The num-
ber of sub-bands allocated to all levels except the outer-most

level of each FlyBS is N − 1. Thus, the higher number of
resource plans results in the allocation of a wider band to the
inner region comparing to the outer region. Since the users are
divided among different levels based on their channel quality,
the number of users considered to be the cell-edge users
decreases. However, the reduced number of the users expe-
riences comparatively higher throughput due to the increased
number of the resource plans. The increased number of the
resource plans allows to use the same resource plan farther
from each other to reduce interference and, consequently,
to increase the throughput of the cell-edge users.

E. LOW-COMPLEXITY IMPLEMENTATION OF PROPOSED
F-SFR VIA DNN
The performance of the network with the FlyBSs is highly
constrained by a limited processing capability of the Fly-
BSs and by a limited energy available for both flying
and communication. The computation demanding algorithms
for the resource plans allocation result in a higher energy
consumption. In addition, complex solutions escalate the net-
work response time in a fast-changing environment. How-
ever, the proposed resource plan allocation algorithm is of the
polynomial time complexity O(M2N ). To reduce the com-
plexity, we develop the resource plan allocation algorithm
based on machine learning that can save a large part of the
computation overhead. To this end, the inputs and outputs
of the graph-theory based solution can be used to train any
machine learning model, which can classify patterns. The
model should discover the pattern in the input data and finds
an association between the pattern and the output. This asso-
ciation approximates the behavior of the algorithm (i.e., how
the algorithm reacts to the pattern of its input data). Once the
model learns the behavior of the algorithm, it can mimic that
behavior and the learned model becomes an abstraction of the
algorithm. Since the model just mimics the algorithm, it does
not follow the procedure the algorithm itself. For this reason,
the computational overhead of the model-based solution is
significantly lower than that of the algorithm itself. Approxi-
mating the graph theory-based algorithm, we propose a deep
neural network-based F-SFR (DNN F-SFR). We select the
DNN for the algorithm approximation, because the DNN is
proven to be suitable for functions approximation, as shown,
e.g., in [42]. The DNN is known to handle very complex
problems due to its capability of extracting patterns even
from a large dataset. Unlike the classification algorithms,
such as K-nearest neighbor (KNN), which requires a lot of
computation in predicting the class of an instance of the
dataset, the DNN requires only a very little computation. This
property makes the DNN very suitable for the networks with
the FlyBSs, as the FlyBSs are limited by the energy avail-
able in the battery. Thus, we use the DNN instead of other
classification algorithms to reduce complexity of the F-SFR.
Another reason for which the DNN is used to approximate
our graph theory-based resource plan allocation algorithm
is that, unlike any other traditional classification algorithms,
it does not require an explicit feature selection and it can
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FIGURE 6. Allocation of sub-bands, ζ , to the SFR levels and FlyBSs in a soft cluster for N = 6.

select the most important features by itself exploiting its
multiple layers. This makes the DNN suitable in terms of
computational overhead [43].

The implementation of DNN involves the DNN training
and the prediction of the resource plan allocation. The DNN
is trained offline and, then, it promptly predicts the resource
plans of the individual FlyBSs online during a real operation
of the FlyBSs. The training is done with an artificially created
dataset, as any real dataset is not unavailable. Nevertheless,
the real datasets are usually not necessary to validate basic
ideas and concepts and simulation-based data sets are com-
monly considered in literature [42], [44]–[46]. The DNN con-
sists of three hidden layers and one input and one output layer
as shown in Fig. 7. The inputs to the network are represented
by the locations of FlyBSs determined by the k-means++,
as explained in Section III. We consider two-dimensional
deployment of the FlyBSs with a fixed altitude. Thus, the
input layer is composed of 2M neurons for the network with
M FlyBSs, each neuron representing either X or Y coordinate
of one FlyBSs. The number of neurons in the output layer
is equal to the number of available resource plans N . In the
first, second, and third hidden layers, 19, 13, and 14 neurons
are included, respectively. The number of hidden layers and
the number of neurons in the hidden layers are determined
experimentally and lead to a good performance while the size
of the DNN is still acceptable.

FIGURE 7. Illustration of DNN structure for prediction of resource plan
allocation for FlyBSs.

The step-by-step operation of the DNN based solution is
presented in Fig. 8 and Fig. 9. Fig. 8 shows the steps of the
dataset creation and offline training of the DNN. The training
of the DNN requires the dataset. The dataset creation starts
from the generation of the random user locations with the
uniform distribution. The FlyBSs are positioned in the area
applying k-means++ clustering algorithm. The positions are,
then, inserted to the graph theory-based resource plan alloca-
tion algorithm (summarized in Fig. 2), which allocates the
resource plans to all FlyBSs in the network. Each instance
of the dataset contains the positions of all FlyBSs and the

104896 VOLUME 9, 2021



M. S. Hossain, Z. Becvar: SFR With Allocation of Resource Plans Based on Machine Learning in Networks With FlyBSs

FIGURE 8. Flowchart of dataset creation and training of the DNN for the
proposed DNN F-SFR.

resource plan number (i.e., the label or class of the instance)
for the FlyBS, whose actual position is represented by the
first two elements of the input vector W. To get the instance
representing the resource plan of the ith FlyBS, the locations
of the first and the ith FlyBSs are swapped (by swapping 1st

and 2st elements with the (2i− 1)th and 2ith ofW) and, then,
the ith element of the output of the resource plan allocation
algorithm is appended at the end of the position vector W.
There areM − 1 swapping operations performed to generate
M instances of the dataset if there are M FlyBSs in the
network. Thereafter, the new vector of the FlyBSs’ positions
is generated based on the new positions of the users. This
process continues until the required number of instances is

FIGURE 9. Flowchart of the online testing of the DNN F-SFR.

generated. After generating the dataset, the 70%, 15% and
15% of the whole dataset are exploited for the training,
validation, and testing, respectively. While the training and
validation datasets are used for the offline DNN training,
the test dataset is exploited for evaluation of the proposed
resource plans allocation performance to verify how correctly
the DNN can mimic the behavior of the graph theory-based
resource plan allocation algorithm.

Fig. 9 gives the pictorial representation of the DNN’s
exploitation. The trained DNN is used for online alloca-
tion of the resource plans. The DNN-based resource plan
allocation starts with inserting the positions of the users to
the k-means++ clustering algorithm, which determines the
positions of the FlyBSs. Then, the trained DNN allocates one
resource plan to each FlyBS in each iteration. To know the
resource plan of the ith FlyBS, we again swap the (2i − 1)th

and 2ith elements (represents the position of the ith FlyBS)
with the 1st and 2nd elements (represents the position of
the 1st FlyBS) of the input FlyBS position vector W. Then,
we apply this modified position vector W′ to the input layer
of the DNN. For M FlyBSs, there are M iterations, and each
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iteration assigns the resource plan to one FlyBS (represented
by the vector R′).

F. DESIGN FEATURES AND POTENTIAL CONSTRAINTS
In this subsection, following basic features of the pro-
posed approach and potential constraints and extensions
are described. The proposed solutions follow a centralized
approach. One of the FlyBSs acts as the ‘leader’, which
coordinates the network deployment. First, the FlyBSs are
deployed using the k-means++ clustering algorithm. Then,
either the F-SFR or the DNN F-SFR is run to allocate the
resource plans among the FlyBSs. However, the DNN F-SFR
can also be implemented in distributed manner. The dis-
tributed approach requires each FlyBS to transmit its position
and share it with others so that each FlyBS gets the positions
of all FlyBSs. Knowing the positions, each FlyBS runs the
trained DNN to know its own resource plans. Although the
resource plans can be allocated in the distributed manner
using the proposed DNN F-SFR, the deployment of the Fly-
BSs is still centralized if the conventional k-means++ or any
other algorithm are used for this purpose. In future works,
the determination of the FlyBSs’ positions can enhance our
work to optimize performance via positioning done jointly
with the interference mitigation. Another important design
feature is the capability of the proposed solutions to adopt
any number of resource plans. In case of the moving users,
the deployment of the FlyBSs and allocation of the resource
plans among the FlyBSs should be done periodically. At the
end of each period, the number of resource plans can be
decided in our proposal depending on the throughput require-
ment of the cell-edge area, and the resource plans are allo-
cated dynamically. This offers an extra degree of freedom
with respect to existing works to optimize also the network
performance depending on the serving environment.

Of course, the practical implementation of our solu-
tion implies additional challenges to be considered and
addressed. For example, the distributed solution requires sig-
naling among FlyBSs to let each other know positions of all
FlyBSs. This signaling consumes communication resources
and, in real applications, a small portion of the available
resources should be reserved for this purpose. However, this
problem is also present for HetNet SFR and other existing
approaches. In this paper, the parameter setting of the DNN
is done experimentally. However, the considered parameters
may not be optimum as any optimization algorithm is not
used in this paper. Thus, a possible extension can optimize the
DNN parameters over time to further improve performance.
However, such optimization adds a computational burden on
the FlyBSs, which are of a limited processing capability.
Hence, a trade-off between performance and computation
should be taken into account.

V. PERFORMANCE EVALUATION
In this section, we first define simulation scenarios, mod-
els and parameters. Then, the performance metrics are

defined and simulation results are presented along with their
discussion.

A. SIMULATION SCENARIO AND MODELS
A suburban area with a size of 1 km × 1 km is considered.
In this area, 400 users are randomly distributed and also up
to 24 FlyBSs are deployed according to k-means++ algo-
rithm [39]. Although the proposed resource plan allocation
algorithm can be applied to any FlyBS positioning systems,
we consider k-means++ algorithm in this paper for its sim-
plicity and good performance [47]. Tomodel the communica-
tion channel, the path loss model of air-to-air channel is taken
from [48] and the pathloss between the users and the FlyBSs
corresponds to the model for the suburban environment as
defined in [49]. The parameters related to the simulation envi-
ronment are set up in line with [47]. The bandwidth is equally
divided among the users located within a particular SFR level
of the FlyBS. The simulation parameters are summarized
in Table 2. The values of the parameters for the transmission
power allocation (α and γ , see (1)) are determined experi-
mentally and set to the values leading to a sufficiently high
performance. An optimization of these values dynamically
according to the environment is a complex problem and we
leave it for future research. To eliminate a randomness in the
models, we consider 5000 realizations of the deployment,
each realization is with different locations of the users and,
thus, also with different locations of the FlyBSs. As indicated
above in Section IV-E, we design the DNN with three hidden
layers, each with 19, 13, and 14 neurons, respectively. The
DNN is trained offline with artificial data. To minimize the
overfitting problem, we exploit a validation set of data with a
size of 15% of the whole dataset (see [50] for more details
about the overfitting problem and the validation set). The
detailed parameters of the DNN setting and configuration are
given in Table 3.

TABLE 2. Simulation parameters.

B. BENCHMARK ALGORITHMS AND PERFORMANCE
METRICS
We consider two state-of-the-art algorithms as benchmarks
to assess the performance of the proposed F-SFR and DNN
F-SFR. To show the gain of SFR in the networks with the
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TABLE 3. Parameters of deep neural network for allocation of resource
plans.

FlyBSs, we first consider a recent resource allocation scheme
for the interferencemitigation among FlyBSs proposed in [6],
where each user is allocatedwith an equal transmission power
and bandwidth. This approach is denoted as ‘No SFR’ in
the figures. Then, also the SFR for heterogeneous networks,
proposed in [15] and denoted as ‘HetNet SFR’, is investi-
gated. The HetNet SFR is, up to our best knowledge, the only
solution that considers the resource plan allocation to the ran-
domly and irregularly deployed microcells. However, even
this solution cannot be directly implemented to a general
scenario with the FlyBSs. To make the HetNet SFR suitable
for the network with FlyBSs, one of the FlyBSs is assumed
to perform the role of the macrocell. For a fair comparison
of the throughput, the user association scheme discussed in
Section IV-B is used in all schemes.

The performance is evaluated in terms of the average
throughput of cell-edge users, the ratio of satisfied cell-edge
users for aminimum throughput requirement, and the fairness
in throughput. The average throughput of cell-edge users is
understood as the average throughput of the users associated
to the outer-most level (e.g., the second and fourth levels
for two and four-levels SFR, respectively). Note that, for
the ‘No SFR’, the same set of users as for both F-SFR and
HetNet SFR algorithms is defined as the cell-edge users for
a fair comparison. The ratio of satisfied cell-edge users is
understood as the ratio of the total number of users that
experience the throughput equal to or higher than the mini-
mum required throughput 0min. The fairness in throughput is
investigated via a commonly accepted Jain’s fairness index,
see its definition, e.g., in [51].

C. ANALYSIS OF THE DNN ACCURACY
To investigate the quality of DNN learning, an accuracy is
commonly considered. Our objective is to suppress mutual
interference imposed by the FlyBSs via the allocation of the
same resource plan to the FlyBSs that are far from each
other. Hence, we define the accuracy of the DNN learning
via the distance among the FlyBSs that cause interference
to each other. More specifically, in Fig. 10, the accuracy is

FIGURE 10. Accuracy of resource plan allocation for FlyBSs by DNN
represented via average distance among the FlyBSs allocated with the
same resource plan and projection of the average distance to path loss.

represented by the average distance among all FlyBSs that
exploit the same resource plan. To provide an indication from
a more practical perspective, we also interpret the accuracy
via the average path loss among the FlyBSs with the same
resource plan in Fig. 10. The figure demonstrates that the
average distance among the FlyBSs with the same resource
plan reached by the F-SFR (target of the DNN learning) and
by the DNN-based F-SFR is very close to each other. The
difference ranges from 4.9% and 4.4% for 6 and 24 FlyBSs,
respectively. As the distances among the FlyBSs with the
same resource plans are relatively high (hundreds of meters),
such learning error is negligible. This is confirmed by a
projection of the average distance to the path loss. Fig. 10
indicates that the difference in path loss between the F-SFR
and the DNN F-SFR is below 0.9 dB (i.e., 0.7% error). Such
error in the path loss of the interfering channels is negligible
and we can conclude the learning is sufficiently accurate for
the purposes of the interference suppression via SFR.

D. PERFORMANCE ANALYSIS OF THE PROPOSED
RESOURCE ALLOCATION AND DISCUSSION OF RESULTS
First, we demonstrate the performance of the F-SFR in terms
of the average throughput experienced by the cell-edge users
in Fig. 11. This figure shows the throughput for both two-
and four-level SFRs. We observe that the conventional inter-
ference mitigation technique, represented by the No SFR,
is not efficient for an application in the networks with the
FlyBSs and the No SFR is outperformed by all other SFR
schemes, because interference in the cell-edge area is not
sufficiently managed by the No SFR. Contrary, the proposed
F-SFR significantly improves the throughput comparing to all
other state-of-the-art schemes. The throughput improvement
introduced by the F-SFR with respect to the No SFR and the
HetNet-SFR is from 52% to 200% and from 16% to 26%,
respectively. Fig. 11 further demonstrates an increasing gain
in the throughput introduced by the proposed F-SFR over
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FIGURE 11. Average throughput of cell-edge users over different number
of deployed FlyBSs for 2-layer SFR (top subplot) and 4-layer SFR (bottom
subplot).

the No SFR and the HetNet SFR if the number of FlyBSs
increases. This observation is a result of the fact that, with
a higher number of FlyBSs, the interference becomes more
severe and the proposed F-SFR can handle it more efficiently,
since it provides a high spatial separation of the same resource
plans allocated to the FlyBSs. The figure also shows that the
number of SFR levels influences the performance notably and
the throughput rises with the number of levels. The 4-level
F-SFR provides about 19% higher throughput than the 2-level
F-SFR. The reason for the superior performance of the
4-level SFR over 2-level SFR is a lower interference resulting
from the lower transmission power in the inner regions of
the neighboring FlyBS. As the number of levels increases,
the radii of the inner regions decrease, hence, a lower trans-
mission power is set to the users located within the inner
regions. Figure 11 also confirms that even the low-complexity
DNN-based implementation of the F-SFR outperforms both
No SFR and HetNet SFR. Of course, the lower complexity
of the DNN F-SFR results into a minor degradation in the
throughput of the cell-edge users with respect to the proposed
F-SFR. However, this degradation is in order of few percent
(about 5%) for both L = 2 and L = 4. The degradation is
compensated by themuch lower computational complexity of
the DNN-SFR, making the DNN F-SFR a suitable resource
plan allocation schemes for networks with the FlyBSs.

We investigate also the ratio of the cell-edge users for
which, the minimum required throughput 0min is satisfied,
see Fig. 12. The proposed F-SFR outperforms both the Het-
Net SFR and the No SFR for a whole investigated range
of 0min. The maximum gain is reached for the throughput
required by the users of 1.4 Mb/s. At this point, the proposed
F-SFR leads to an increase in the ratio of the satisfied users
by 484% (from 0.13 to 0.76) and by 25% (from 0.61 to 0.76)
comparing to the No SFR and the HetNet SFR, respectively.
It is worth to note that the increase in the number of SFR
levels affects the satisfaction ratio in a different way for

FIGURE 12. Ratio of satisfied cell-edge users, i.e., the cell-edge users that
experience throughput equal to or above their minimum requirement
0min for scenario with 15 FlyBSs for 2-layer SFR (top subplot) and 4-layer
SFR (bottom subplot).

different algorithms. The satisfaction ratio increases for all
schemes based on the SFR (i.e., DNN F-SFR, F-SFR, and
HetNet SFR). The higher number of SRF levels significantly
improves the performance of the proposed F-SFR, as the
F-SFR can take an advantage of the higher number of the
SFR levels via an efficient mitigation of interference. For
the HetNet SFR, the ratio of the satisfied users improves only
slightly with a higher number of levels L, as the distance
between two neighboring FlyBSs with the same resource
plan impacts more notably on the throughput of the cell-edge
user than on the lower transmission power in the inner-most
level of the neighboring FlyBS. The conventional interference
mitigation, represented by the No SFR, leads even to a lower
satisfaction for higher L. This is due to the fact that the
average distance of the cell-edge users from the FlyBS in
the 4-level SFR is larger than in the 2-level SFR. Hence,
the cell-edge users experience strong interference and their
throughput degrades. We also see that for L = 4, the DNN
F-SFR offers up to 1634% (77% for L = 2) and 23%
(13% for L = 2) higher ratio of the satisfied cell-edge users
comparing to the No SFR and the HetNet SFR, respectively.
The superiority of the proposed F-SFR is demonstrated by the
fact that the percentage of the satisfied users obtained by the
HetNet SFR with L = 4 is reached even by the DNN F-SFR
with only L = 2.
While it is evident from the above discussion that the

proposed F-SFR and DNN F-SFR improve the throughput
and the user satisfaction, we investigate also the fairness
in throughput of the users to demonstrate the fairness in
throughput among the users located in the cell-center and
cell-edge regions of the FlyBS.

Figure 13 shows that the proposed F-SFR reaches the high-
est fairness among all schemes overall numbers of FlyBSs
and SFR levels. The highest fairness reached by the F-SFR
is a results of the increased throughput of the cell-edge users.
Consequently, a difference in the throughput among the users
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FIGURE 13. Fairness in throughput experienced by all users represented
via Jain’s Fairness Index for 2-layer SFR (top subplot) and 4-layer SFR
(bottom subplot).

is reduced and the fairness is increased. In addition, a higher
number of the SFR levels also increases the fairness. This
is again a consequence of the increased throughput of the
cell-edge users, as demonstrated in Fig. 11. For all schemes,
the fairness increases with the number of FlyBSs up to a
maximum reached around 18-20 FlyBSs. Then, the fairness
saturates and starts slightly decreasing. The initial increase
is due to the distance of the users to the FlyBS. For a lower
number of the FlyBSs, the area covered by each FlyBS is
larger comparing to the area covered if a higher number of
the FlyBSs is deployed. Thus, there is a higher difference in
the distances of the closest and farthest users from the serv-
ing FlyBS. Consequently, also a higher path loss difference
among these two users is observed and this causes a more
notable difference in the throughput (lower fairness). The
increase in the number of FlyBS leads to a more balanced
effect of the impact of an increasing interference among the
FlyBSs and a decreasing path loss of the users to the serving
FlyBS. Thus, the fairness rises with more deployed FlyBSs.
However, any further increase in the number of FlyBSsmakes
the interference dominant over the pathloss and the through-
put of the cell-edge and cell-center users becomes more
different. For L = 2, the fairness of the low-complexity DNN
F-SFR is almost the same as for the F-SFR and HetNet SFR.
For L = 4, the fairness attained by the DNN F-SFR reaches
slightly lower fairness (up to 1%) comparing to the proposed
F-SRF and slightly higher fairness (up to 1%) compared to
the HetNet SFR. Anyway, Fig. 13 confirms that the superior
performance of both F-SFR as well as DNN F-SFR in terms
of the cell-edge users’ throughput is not at the cost of a lower
fairness among the users.

The throughput of the cell-edge users can be further
improved by increasing the number of the resource plans
as shown in Fig. 14 for 15 FlyBSs. Note that the existing
resource plan allocation algorithms, e.g., the one proposed
in [15], are not directly applicable to the SFR with more than
three resource plans. Thus, we do not depict the competitive

FIGURE 14. Impact of number of resource plans on the average
throughput of cell-edge user achieved by the proposed F-SFR for
15 FlyBSs.

algorithms in Fig. 14. The figure demonstrates that a higher
number of the resource plans improves the throughput by up
to roughly 15% and 7% for L = 4 and L = 2, respectively.
This improvement is achieved for about 10 resource plans,
then, there is no effect of the number of resource plans. This
behavior can be explained as follows. Two FlyBSs with the
same resource plan causemore interference to each other than
the same two FlyBSs with the different resource plans. Then,
for a lower number of the resource plans, any two FlyBSs
with the same resource plans are relatively close to each other.
However, if the number of resource plans increases, the dis-
tance among FlyBSs with the same resource plan increases as
well and the interference is reduced. Once the distance among
FlyBSs with the same resource plans is large enough and the
interference among these FlyBSs with the same resource plan
is negligible, any further increase in the number of resource
plans (and thus in the distance among FlyBSs with the same
resource plans) does not affect the throughput.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a novel SFR scheme, named
F-SFR, in order to dynamically and adeptly allocate resource
plans among the FlyBSs in a coverage area depending on
the current network topology. The objective of the resource
plan allocation algorithm is to allocate the transmission power
and bandwidth among different levels of the coverage area
of each FlyBSs such that the distance between the FlyBSs
allocated with the same resource is maximized. This maxi-
mization of the distance reduces interference. We show that
with respect to the state-of-the-art SFR schemes, the pro-
posed F-SFR attains a notable improvement in the cell-edge
users’ throughput. The improvement varies from 16% to 26%
depending on the number of FlyBSs deployed in the service
area. Furthermore, the proposed scheme achieves up to 25%
improvement in the user satisfaction ratio in terms of the
experienced throughput. In addition, the proposed F-SFR
does not compromise fairness in throughput among the users.
Furthermore, we have also proposed an extension enabling to
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increase the number of resource plans resulting in additional
up to 15% improvement in the throughput of the cell-edge
users. Thus, we have designed also a very low-complexity
implementation of the proposed F-SFR via DNN. This DNN-
based F-SFR slightly reduces the gains of the F-SFR with
respect to the state-of-the-art solutions, however, even the
DNN-based F-SFR still significantly outperforms the state-
of-the-art approaches.

As a future work, a joint FlyBSs deployment and resource
plan allocation optimization should be investigated. Further-
more, the DNN-based solution with the real dataset should
also be tested. Moreover, replacing the centralized approach
with a distributed solution, where each FlyBS decides its
position and resource plan is a future challenge.
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