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ABSTRACT The resistance distance is an intrinsic metric on graphs that have been extensively studied by
many physicists and mathematicians. The resistance distance between two vertices of a simple connected
graph G is equal to the resistance between two equivalent points on an electrical network, constructed to
correspond to G, with each edge being replaced by a unit resistor. Hypercube Qn is one of the most efficient
and versatile topological structures of the interconnection networks, which received much attention over the
past few years. The folded n-cube graph is obtained from hypercubeQn by merging vertices of the hypercube
Qn that are antipodal, i.e., lie at a distance n. Folded n-cube graphs have been studied in parallel computing
as a potential network topology. The folded n-cube has the same number of vertices but half the diameter
as compared to hypercubes which play an important role in analyzing the efficiency of interconnection
networks. We intend is to minimize the diameter. In this study, we will compute the resistance distance
between any two vertices of the folded n-cube by using the symmetry method and classic Kirchhoff’s
equations. This method is beneficial for distance-transitive graphs. As an application, we will also give
an example and compute the resistance distance in the Biggs-Smith graph, which shows the competency of
the proposed method.

INDEX TERMS Resistance distance, resistance diameter, networks, folded n-cube.

I. INTRODUCTION
For undetermined symbols and terminology, please refer to
the book by Bollobás [1].

The computation of two-vertex resistances in electri-
cal networks is a very old problem considered by many
researchers over many years [2]. The computation of
resistance is pertinent to a wide selection of problems
extending from random walks [4], opinion formation [12],
classical transport in disordered media [3], robustness
of coupled oscillators network [5]–[7], first-passage pro-
cesses [8], identifying the influential spreader node in a
network [11], lattice Greens functions [9], [10], resistance
distance [13]–[15], to graph theory [10], [16]. There are
numbers of techniques and formulae have been devel-
oped for calculating the resistance distance, i.e., alge-
braic formulae [18], [20]–[25], series and parallel rules,
combinatorial formula [4], delta-wye transformation [17],
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sum rules [18], [19], star-triangle transformation [17],
probabilistic formulae [4], [26], star-mesh transforma-
tion, the principle of elimination, recursion formula [27],
the principle of substitution and so forth. By employ-
ing the above methods and formulas, resistance distance
in many networks and graphs has been discussed before,
i.e., Potting network [41], circulant graphs [28], Sailboat
fractal networks [40], Cayley graphs [29], complete n-partite
graphs [30], wheels and fans [31], Double graphs; graph
with an involution [32], regular graphs [33], [34], pseudo-
distance-regular graphs [35], distance-regular graphs [51],
some fullerene graphs [36], Sierpinski gasket network [37],
ring-type network [38], maximum and minimum resis-
tance distance in n-dimensional hypercubes [39], and
others [42]–[48]. But, it is not straightforward to get the
resistance distance in complex networks.

In this paper, we study simple connected graphs,
i.e., graphs without loops and multiple edges. The vertices
and edges of a graph G are symbolized by V (G) and E(G),
respectively. The distance d(u, v) is the shortest-path distance
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FIGURE 1. Superposition of symmetric current distributions.

between two vertices u and v in a graph G. The length of the
longest shortest-path in a graph G is called its diameter and
it is denoted by D. The resistance diameter Dr (G) of a graph
G is defined by the maximum resistance distance between all
pairs of vertices in G [39]. We need to minimize the diameter
of a graph to improve the efficiency of interconnection net-
works. In this study, we employ symmetrymethod to compute
the resistance distance. This idea was previously discussed
by van Steenwijk [49], when he calculated the resistance of
regular polyhedral resistive structures.

A graph can be viewed as an electrical network in which
each edge is corresponding to a resistor of 1-ohm resistance
r . If there is a potential difference p between any edge of
vertices i and j then an electric current wwill flow in the edge
according to the ohm’s law:

w =
p
r
.

In many practical problems, the electric current is made
to compelled the network at a single point and leave it to
others. The famous laws of Kirchhoff govern these currents.
Kirchhoff’s potential law states that the sum of potential
differences round any cycle a1, a2, . . . , ak equal to zero:

pa1a2 + pa2a3 + . . .+ pak−1ak + paka1 = 0.

Kirchhoff’s current law states that for any vertex the total
current entering the vertex is exactly equal to the total current
leaving the same vertex. In this study, we utilize the symmetry
structure and determine which vertices have the same poten-
tial. This problem is to model the network in such a way that
when a current w is entered into one vertex while it is allowed
to leave the network at the remaining n − 1 nodes in equal
portions w/(n − 1) (see Figure 1). For more details, see the
paper by van Steenwijk [49]. Now we have solved the current
scheme on all sides and superimposed it to a similar network,
where all currents are ignored and rotated, so that the current
w now leaves the node of interest.

In the superposed system, the current nw/(n − 1) reaches
one vertex and leaves another vertex, and zero current reaches
or leaves each other’s vertex. We will draw a layered graph
by using breadth-first search technique for a network N and
we choose a vertex s as a starting vertex through which the
external current w is passed. We number these layers as their
distance away from a starting vertex s. We then define a layer

FIGURE 2. Constructions of F (Q2) and F (Q3) by merging vertices of
Q2 and Q3.

matrix li,j (number of vertices in layer i connected to any
vertex in layer j). Then we can obtain the potential difference
by using ohm’s from any starting vertex s to any desired
vertex t as follows:

(ws,v1 + wv1,v2 + . . .+ wvd−1,t )r . (1)

s = v0, v1, . . . , vd = t is a walk from s to t .
In the resolving system, the potential difference among

similar vertices is

−(w′t,vd−1 + w
′
vd−1,vd−2 + . . .+ w′v1,s)r . (2)

It is easy to verify that

wvi,vi+1 = −w
′

d−i,d−1−i(i = 0, . . . , d − 1). (3)

So by equations 1, 2 and 3, the potential difference between
s and t in the superimposed system is

2(ws,v1 + wv1,v2 + . . .+ wvd−1,t )r . (4)

The equivalent resistor r between vertices s and t is found
by superposition of the situation described above as follows:

rs,t = 2(ws,v1 + wv1,v2 + . . .+ wvd−1,t )r
(n− 1)
wn

. (5)

II. RESISTANCE DISTANCE IN THE FOLDED N-CUBES
The graph of the n-hypercube is given by the graph Cartesian
product [50] of complete graphs k2�k2� · · · k2︸ ︷︷ ︸

n

. A hypercube

of order n is n-regular, bipartite, with diameter n, 2n vertices
and n2n−1 edges. The folded n-cube graph is a graph obtained
by merging vertices of the n-hypercube graph Qn that are
antipodal, i.e., lie at a distance n (the graph diameter of (Qn)).
The folded n-cube graph has a diameter D = d n2e, n + 1
regular, 2n vertices and (n + 1)2n−1 edges (see Figure 2).
We use the symbol Qn for n-hypercube and F(Qn) for the
folded n-cube graph.
Theorem 1: The resistance distance between two vertices

of the folded n-cube F(Qn) equals

rn,k (F(Qn)) =
2n − 1
2n−1

k∑
i=1

wi,

where k is the distance between two vertices and
1 ≤ k ≤ d n2e, and wk , as shown at the bottom of the next
page.

Proof: Suppose that the resistance of each edge of folded
n-cube F(Qn) is 1-ohm. We will use the symmetry method
to compute the resistance distance between any two vertices
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FIGURE 3. The layered graph of the folded n-cube F (Qn).

of a folded n-cube F(Qn). For that, we solve the sets of
equations. These sets of equations are obtained by entering
a current w through any vertex and taking a current w

2n−1 out
through the all other vertices in the network F(Qn). Since the
F(Qn) is a distance transitive so we can choose any vertex s
as a starting vertex through which the external current w is
passed. This cleaves the network F(Qn) into different layers
of equipotential vertices according to their distances away
from s, i.e., vertices in the k th layer are at a distance k away
from s, where 1 ≤ k ≤ d n2e (see Figure 3).
We select a vertex for each layer and make a Kirchhoff

current equations to express the current reaching and exiting
that vertex. Each vertex in the k th layer is adjacent to k
vertices in layer k − 1 when 1 ≤ k ≤ d n2e and (n + 1 − k)
vertices in the layer k + 1 when 0 ≤ k ≤ d n2e − 1. For odd
n, each vertex at k = D layer is adjacent to n + 1 vertices
in the layer k − 1. The number of vertices in the k th layer is

(n+1)!
k!(n+1−k)! , where 0 ≤ k ≤ d n2e. For odd n, the number of

vertices at k = D layer is (n+1)!
2×k!(n+1−k)! .

Now we set up a layer matrix li,j. In Figure 3, the layer
graph shows that starting vertex s (Layer 0) connected to n+1
vertices only in layer 1 and it is not connected to any other
vertex in any other layer. So we can write the first row of
matrix as follows:(

0 n+ 1 0 0 · · · 0
)
.

Now we select any vertex in layer 1 which is connected to
n vertices in layer 2 and one vertex in layer 0 gives us the 2nd

row,i.e., (
1 0 n 0 · · · 0

)
.

Similarly, we create the layer matrix for all other vertices.
For even n, we have

0 n+ 1 0 0 · · · 0
1 0 n 0 · · · 0
0 2 0 n− 1 · · · 0
...

...
...

. . .
...

0 · · · 0 D− 1 0 n+ 2− D
0 · · · 0 D 0


(d n2 e+1)×(d

n
2 e+1)

,

(6)

and for odd n, we have

0 n+ 1 0 0 · · · 0
1 0 n 0 · · · 0
0 2 0 n− 1 · · · 0
...

...
...

. . .
...

0 · · · 0 D− 1 0 n+ 2− D
0 · · · 0 n+ 1 0


(d n2 e+1)×(d

n
2 e+1)

.

(7)

From matrices 6 and 7, we have the following two sets of
equations:

w− (n+ 1)w1 = 0

w1 − nw2 −
w

2n − 1
= 0

2w2 − (n− 1)w3 −
w

2n − 1
= 0

... =
...
... =

...

(D− 1)wD−1 − (n+ 2− D)wD −
w

2n − 1
= 0

DwD −
w

2n − 1
= 0

w− (n+ 1)w1 = 0

w1 − nw2 −
w

2n − 1
= 0

2w2 − (n− 1)w3 −
w

2n − 1
= 0

... =
...
... =

...

(D− 1)wD−1 − (n+ 2− D)wD −
w

2n − 1
= 0

(n+ 1)wD −
w

2n − 1
= 0

where wi is the current of an edge between the layer i−1 and
the layer i.

wk =


1

n+ 1
, k = 1.

(k − 1)!(n+ 1− k)!
(n+ 1)!

[1−
k−1∑
i=1

(n+ 1)!
i!(n+ 1− i)!

1
2n − 1

], 2 ≤ k ≤ d
n
2
e.
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Here there are d n2e + 1 equations and d n2e + 1 unknown
variables in both sets of equations. Because there is a no
connection between vertices that that are at a distance greater
than one in different layers. The current among layers can be
procured by the simple recursion relation:

w1 =
w

n+ 1
.

wk =
w

n+ 2− k
((k − 1)wk−1 −

1
2n − 1

) (2 ≤ k ≤ d
n
2
e).

Hence, let w = 1, we can get (8), as shown at the bottom
of the page.

So by using equations 8 and 5, we can find the resistance
distance between any two vertices in the folded n-cubes
F(Qn),

rn,k (F(Qn)) =
2n − 1
2n−1

k∑
i=1

wi,

where 1 ≤ k ≤ d n2e.
Corollary 1: The resistance distance between two vertices

of the folded n-cube F(Qn) is maximum at k = D.
Proof: From Theorem 1, we have

rn,k−1(F(Qn)) =
2n − 1
2n−1

k−1∑
i=1

wi.

So,

rn,k (F(Qn)) =
2n − 1
2n−1

k∑
i=1

wi = rn,k−1(F(Qn))+
2n − 1
2n−1

wk ,

where 2n−1
2n−1

wk > 0. So the resistance distance between two
vertices of the folded n-cube F(Qn) is maximum at k = D.
Remark 1: Since the F(Qn) is a distance transitive graph,

the F(Q n ) is a distance regular graph. Biggs [51] (or see
also [52], [53]) presented a set of potentials, described in
terms of the intersection arrays of distance-regular graphs,
which allow one to compute the resistance between any two
vertices. The resistance distance among any two vertices of
F(Qn) can be computed by the method of [51]. In Theorem 1,
the current distribution satisfying the recursive relation is
considered and then the resistance distance between any two
points is calculated according to Ohm’s law.
Remark 2: It appears in Fig 5 that resistance diame-

ter Dr (F(Qn)) of the folded n-cube strictly decreases as n
increases while the ordinary diameter of the folded n-cube
in Fig 4 is strictly increased as n increases. In many communi-
cation aspects, the folded n-cubes has proven to be superior to
the hypercubes. The diameter is halved, the average distance

FIGURE 4. The graph for the diameter of the folded n-cube F (Qn), where
n = 2,3,. . . ,100.

FIGURE 5. The graph for the resistance diameter of the folded n-cube
F (Qn), where n = 2,3,. . . ,100.

is better, the communication link delay is shorter, and lower
cost make this new structure very promising. The resistance
diameter of folded n-cubes is also less than resistance diame-
ter of hypercubes [39]. The reason is that we have more paths
between pairs of vertices in folded n-cubes as compared to the
hypercubes. Due to the reduction in the resistance diameter,
it improves the efficiency of the folded n-cube in message
transmission and parallel computing.

III. APPLICATIONS
In this section, as an application, we will compute the resis-
tance distance of folded 4-cube and Biggs-Smith graph to
show the efficacy of the suggested method.
Example 1: The graph for the folded 4-cube is shown

in Figure 6 (a). We take the vertex 1 as a starting vertex
and draw a layered graph for the folded 4-cube as depicted

wk =


1

n+ 1
, k = 1.

(k − 1)!(n+ 1− k)!
(n+ 1)!

[1−
k−1∑
i=1

(n+ 1)!
i!(n+ 1− i)!

1
2n − 1

], 2 ≤ k ≤ d
n
2
e.

(8)
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FIGURE 6. a. The folded 4-cube. b. The layered graph of the folded 4-cube.

FIGURE 7. The Biggs-Smith graph.

in Figure 6 (b). The starting vertex 1 is adjacent to 5 vertices
in layer 1, each vertex in layer 1 is adjacent to 4 vertices in
layer 2 and 1 vertex in layer 0 and each vertex in layer 2 is
adjacent to 2 vertices in layer 1. The layer matrix and vertex
equations for the currents, as shown below:

l4 =

 0 5 0
1 0 4
0 2 0

 .

w− 5w1 = 0 (9)

w1 − 4w2 −
w
15
= 0 (10)

2w2 −
w
15
= 0 (11)

From the above equations, we have w1 =
1
5w and w2 =

1
30w. Now by putting these values in equation 5, we obtain
the resistance distance between any two vertices of the folded
4-cube, i.e.,

r4,1 = (w1)
30
16w
=

3
8
,

r4,2 = (w1 + w2)
30
16w
=

7
16

,

where r4,1 and r4,2 are the resistance distances in the folded
4-cube at a distance 1 and 2, respectively.

FIGURE 8. The layered graph of the Biggs-Smith graph.

Example 2: TheBiggs-Smith graph is a 3-regular graph on
102 vertices and 153 edges (see Figure 7). Since Biggs-Smith
graph is a distance-transitive, so it does not matter which
vertex we choose to draw a layer graph. We draw a layered
graph by using a breadth-first search technique by choosing
102 as a starting vertex (see Figure 8). The vertex 102 is
adjacent to 3 vertices in layer 1, each vertex in layer 1 is
adjacent to 2 vertices in layer 2 and 1 vertex in layer 0 and
so on. So we can write the layer matrix and vertex equations
for the currents as follows:

0 3 0 0 0 0 0 0
1 0 2 0 0 0 0 0
0 1 0 2 0 0 0 0
0 0 1 0 2 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 3 0


w− 3w1 = 0 (12)

w1 − 2w2 −
w
101
= 0 (13)

w2 − 2w3 −
w
101
= 0 (14)

w3 − 2w4 −
w
101
= 0 (15)

w4 − w5 −
w
101
= 0 (16)

w5 − w6 −
w
101
= 0 (17)

w6 − w7 −
w
101
= 0 (18)

3w7 −
w
101
= 0 (19)

After solving above equations, we get

w1 =
1
3
w, w2 =

49
303

w, w3 =
23
303

w, w4 =
10
303

w, (20)

w5 =
7
303

w, w6 =
4

303
w, w7 =

1
303

w. (21)

107108 VOLUME 9, 2021



M. S. Sardar et al.: Novel and Efficient Method for Computing Resistance Distance

We obtain the resistance distance in Biggs-smith graph by
using equation 5 and the values obtained in 20.

r3,1 = (w1)
202
102

w =
101
153

.

r3,2 = (w1 + w2)
202
102

w =
50
51

.

r3,3 = (w1 + w2 + w3)
202
102

w =
173
153

.

r3,4 = (w1 + w2 + w3 + w4)
202
102

w =
61
51

.

r3,5 = (w1 + w2 + w3 + w4 + w5)
202
102

w =
190
153

.

r3,6 = (w1 + w2 + w3 + w4 + w5 + w6)
202
102

w =
194
153

.

r3,7 = (w1 + w2 + w3 + w4 + w5 + w6 + w7)
202
102

w =
65
51

.

IV. CONCLUSION
Over the last few years, the forumula for computing resistance
distance is usually obtained by using (pseudo)- inversion
or eigenvalues and eigenfunctions of the Laplacian matrix.
We cannot apply these formulas to further study because they
contain Chebyshev polynomials or trigonometric functions.
So in this study, we developed a novel and efficient method
for computing the resistance distance. The resistance distance
between any two vertices in a folded n-cubes is obtained
by using the symmetry method and classic Kirchhoff’s
equations. The method is more suitable to graphs that are
distance-transitive. As an application, we also compute the
resistance distance for Biggs-Smith graph by using the sug-
gested method. It is also shown that the resistance diameter
of folded n-cubes is also less than that of hypercubes which
could play an important role in analyzing the efficiency of
interconnection networks.
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