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ABSTRACT Non-negative least square regression (NLS) is a constrained least squares problem where
the coefficients are restricted to be non-negative. It is useful for modeling non-negative responses such as
time measurements, count data, histograms and so on. Existing NLS solvers are designed for cases where
the predictor variables and response variables have linear relationships, and do not consider interactions
among predictor variables. In this paper, we solve NLS in the complete space of power sets of variables.
Such an extension is particularly useful in biology, for modeling genetic associations. Our new algorithms
solve NLS problems exactly while decreasing computational burden by using an active set method. The
algorithm proceeds in an iterative fashion, such that an optimal interaction term is searched by a branch-
and-bound subroutine, and added to the solution set one another. The resulting large search space is
efficiently restricted by novel pruning conditions and two kinds of sparsity promoting regularization; l1
norm and non-negativity constraints. In computational experiments using HIV-1 datasets, 99% of the
search space was safely pruned without losing the optimal variables. In mutagenicity datasets, the proposed
method could identify long and accurate patterns compared to the original NLS. Codes are available from
https://github.com/afiveithree/inlars.

INDEX TERMS LASSO/LARS, itemset mining, nonnegative least squares, variable interaction,
interpretable machine learning.

I. INTRODUCTION
Non-negative least square regression (NLS) is a constrained
least squares problem where the coefficients are restricted to
be non-negative. It is useful for modeling non-negative data
such as time measurements, count data, or price. It has been
introduced in [14], and since then many algorithms have been
developed. NLS is not only famous for its use as a subroutine
for solving non-negative matrix factorization [11], but also
has many other applications. For example in computational
chemistry, it is used for estimating concentrations from spec-
tra data, in which the percentage of a composition does not
take negative values [2]. Another example in computational
biology is mass spectrometry analysis, in which observed
spectrum is to be recovered by fitting templates isotope pat-
terns [23]. A review by [3] contains other applications such
as text mining and speech recognition, as well as algorithmic
solutions.

However, existingmethods for NLS assume linear relation-
ships among predictor variables and response variables, and
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cannot automatically consider high order interactions. As we
show later in this paper, there are promising applications in
biology and chemistry in which NLS with variable interac-
tions are useful. For example in HIV research, drug resistance
of a virus is modeled by weighted sum of known mutations,
where weights are sought to be nonnegative, and the accumu-
lation of mutations often triggers severe increase in the drug
resistance. The reason that NLS with variable interaction has
not been considered before lies in the necessity of enumerat-
ing all the variable interactions a-priori, an NP-hard problem.

Frequent pattern discovery, or itemset mining methods
such as Apriori [1], FP-growth [8], or Eclat [31], are
typically used for enumerating patterns, and enumeration
of all the itemsets is equivalent to enumeration of all the
combinations of variables in the given dataset. However,
using all the resulting patterns as features for machine learn-
ing algorithm requires some engineering. For example, [22]
employed LASSO regression [27] as a machine learning
algorithm and LCM [23] as an enumeration algorithm to
consider all the interactions among mutations for predict-
ing the drug resistance of anti-HIV agents. Reference [18]
extended this work with a GAP safe screening, and
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FIGURE 1. Solutions to a 2-dimensional problem by OLS (©), NIM (×) and NIL1 (�). Ellipses are the contours of the least squares error. Four
possible cases are displayed depending on the position of the OLS solution. Sparsity is induced if the OLS solution occurs any orthants other than
the 1st orthant.

demonstrated that further efficiency can be brought to pattern
search. SHIMR [4] extended LASSO to classification by
employing double hinge loss, and demonstrated its ability to
reject uncertain samples for improving the test set accuracy.
In all of the above works, `1 constraints played an impor-
tant role in suppressing the number of variables in building
prediction models. This paper is positioned in the line of
these works, however, this work employs, for the first time,
non-negativity constraints for inducing sparsity, whose prop-
erty in terms of support recovery is studied recently [17]
and [23]. Similarly to the previous works, we employ a
modified itemset mining algorithm as a subroutine to find
variable interactions necessary for explaining the response.
So the solution obtained is not different from the one obtained
by a two-step approach that enumerates all the variable inter-
actions first, then run NLS solver on it. In feature selection
literature [7], the above two-step approach is known as a filter
method, and our approach is known as an embedded method.
An obvious disadvantage of a filter approach is its necessity
for enumerating all the interacting variables that satisfy a
certain predefined threshold. In data mining literature, this
threshold is known as a minimum support, and pattern enu-
meration with low minimum support is known to be often
intractable due to the exponential growth in the number of
the resulting output. Nevertheless, using high minimum sup-
port is harmful for building an accurate classifier or regres-
sor, since infrequent ones may be crucially important for a
given problem. Thus in our solution, we employ an itera-
tive approach similar to boosting, and collect a handful of
salient variable interactions one another. Compared to the
filter methods, this embedded approach has an advantage in
terms of storage, since it does not need to store an intractably
large number of variables into memory. For the sake of the
search efficiency, we define a tree-based search space, and
develop pruning conditions such that ue unnecess parts of
teary search space can be pruned. Our pruning conditions
make use of the response label attached to each sample, so it
is a kind of a supervised approach. Therefore it is much
more efficient than the unsupervised filter approach based
solely on minimum support. Another important difference
of this work from [22] is the efficiency in searching the
solution set, which is obtained by additional non-negativity

constraints. We demonstrate this fact using simulated data
in Section IV.

This paper is based on the ICDM’18 paper [25] which
included a solution to the `1 regularizedNLS problem consid-
ering variable interactions. However, recent studies revealed
that non-negativity constraints alone work as a weak regu-
larization that helps promoting sparsity, so we pursue this
direction in this extended version. In this paper, we introduce
two kinds of nonnegative least square models considering
interactions;

1) NIM (Nonnegative Interaction Model), that makes use
of only non-negative constraints, whose solution is
found by a cutting plane method [16]. If the size of the
interaction is limited to 1, the solution is identical to
that of NLS.

2) NIL1 (Nonnegative Interaction model with `1 regular-
ization), that makes use of both `1 and non-negative
constraints. For efficiently searching the best reg-
ularization parameter, least angle regression [6] is
employed. Note that NIL1 itself is already described
in [25], but we demonstrate additional experimental
results.

In order to understand the differences among OLS, NIM
and NIL1, we illustrate their solutions in a two dimensional
toy problem (Figure 1). Depending on the location of the
OLS solution, four different scenarios are possible, and dis-
played from left to right. They are categorized into one of the
following three cases.

1) OLS solution occurs in the 1st orthant. NIM solution
coincides with it, but NIL1 solution may shrink more
to the origin depending on the size of the triangle.
Sparsity is not induced in this case. (The leftmost plot
in Figure 1)

2) OLS solution occurs in the 2nd or 4th orthant, then
sparsity is induced since NIM solution typically occurs
on either x or y axis where the ellipsoid hits. NIM solu-
tion and NIL1 solution do not coincide, but NIL1 solu-
tion may shrink more towards zero depending on the
size of the triangle, or the strength of the regulariza-
tion. (The 2nd leftmost plot and the rightmost plot in
Figure 1, respectively)
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3) OLS solution occurs in the 3rd orthant. NIM solution
and NIL1 solution coincide, and the maximum sparsity
can be obtained. (The 3rd leftmost plot in Figure 1)

The solutions of NIM and NIL1 depend not only on the
position of the OLS solution, but also on the shape of the error
contour around the OLS solution .1 In practical situation,
in which we have not only two but many more variables,
cases 1 and 3 rarely occur and the case 2 dominates, since it
is unlikely that all the OLS coefficients take the same signs.

In practice, the benefit of NIM resides in its simplicity.
Since it does not need any regularization parameter to tune,
it is easy to use for practitioners [23]. On the other hand,
the benefit of NIL1 is its ability to carefully tune the regu-
larization parameter. We demonstrate in the experiments that
NIMfinds smaller solution sets, but NIL1 performs better due
to its ability to control the size of the solution sets.

This paper is organized as follows. In Section II, we intro-
duce notations and settings used throughout the paper.
Section III describes all the algorithms for the proposedmeth-
ods. Section IV describes experimental settings and results
based on simulation datasets. We demonstrate the efficiency
obtained by pruning conditions, and highlight the difference
made by `1 regularization. In Section V, we demonstrate the
usefulness of the proposed methods in HIV-1 datasets and a
mutagenicity dataset. Section VII concludes the paper with
discussion.

II. PRELIMINARIES
We work on training data with n samples, each sample con-
sisting of up to D items and the corresponding label, which is
represented formally as {(z1, y1), (z2, y2), . . . (zn, yn)}, where
y ∈ R+, and z ∈ {0, 1}D. We also use compactly represented
design matrix Z = {z1, z2, . . . , zn}>, as well as full design
matrix X = {x1, x2, . . . xn}>, in which presence or absence
of an itemset is represented as;

xi,t = I (t ⊆ zi), ∀t ∈ T , (1)

where I (.) is an indicator function that returns 1 if an itemset
(a set of items) t is included in sample x, otherwise 0, and
T be the set of all the frequent items appearing in at least
one of given samples. Let p = |T | = 2D − 1 be the size of
the combinatorial feature space, then X ∈ Rn×p is a binary
matrix that contains all the interaction terms. Due to its size,
preparation and storage of X is not only inefficient, but often
intractable in practice. So in our proposed algorithm, wework
with Z, and only necessary part of X is dynamically accessed
and stored into memory.

A. SPARSE NON-NEGATIVE LEAST SQUARES
Our model is a linear regression model learnable from
{(x1, y1), (x2, y2), . . . (xn, yn)}, and can be represented as;

f (x) = x>β,

1For example in the 3rd orthant, if the contour is inclined more towards
y > 0, then the NIM solution can change from (0, 0) to (c, 0), where c > 0.

where β are regression coefficients. Below we incorporate
non-negative constraints to coefficient vector β, and attempt
to predict response vector y in a least squares sense. The
resulting non-negative least squares (NLS) problem is;

minβ�0‖y− Xβ‖22, (2)

where β � 0 stands for non-negativity constraints for a
vector β. Introduction of `2 penalty results in non-negative
ridge regression, and that of `1 penalty results in
`1 regularized non-negative least squares (`1NLS) or
non-negative LASSO;

minβ�0‖y− Xβ‖22 + λ‖β‖1, (3)

where λ is a regularization parameter, β ∈ Rp is a sparse
coefficient vector whose entries are mostly zeros due to
`1 penalty [9]. The λ that performs best in a given dataset
depends on the data, and one has to use an adaptive method
such as cross-validation with grid search [9]. However, in our
case, we have to run expensive enumeration algorithm as
many as the candidate λs. This task is not only inefficient,
but also may become intractable for large number of λs. Thus
wemake advantage of regularization path tracking algorithm,
and attempt to reduce computational burden in the enumer-
ation algorithm as much as possible. It can be realized by
jumping from the current λ to the next λ, and reusing the
already found features in identifying the next feature [6].

B. PATH TRACKING ALGORITHM
Reference [21] has shown that `1 regularized regression with
quadratic loss function has piecewise linear solution paths,
and can be efficiently computed with the same time complex-
ity as that of ordinal least squares. Let us decouple loss and
penalty in equation (3), and define L(y,Xβ) = ‖y − Xβ‖22
and J (β) = ‖β‖1. Our goal is to show coefficient profile

β̂(λ) = arg min
β�0

L(y,Xβ)+ λJ (β), (4)

along the λs in sequence.
This problem can be solved efficiently only when β̂(λ) has

piecewise linearity [21], namely that for a finite set of ordered
λs such that λ0 < λk . . . < λ∞, β̂(λ) = β̂(λk )+ (λ− λk )γk
holds for λk ≤ λ ≤ λk+1, where γk ∈ Rp is a direction
of the path at λk , and is known as an equiangular vector.
Proposition 1 in [21] shows that the gradient of equation (4)
is given as

∂β̂(λ)
∂λ
= −

[
∇

2L(β̂(λ))+ λ∇2J (β̂(λ))
]−1
∇J (β̂(λ)), (5)

by using Taylor’s expansion. As we will see in this section,
nonnegative LASSO (3) satisfies the sufficient conditions for
the coefficient solution path to be piecewise linear, so it is
possible to keep track of it.

More formally, the Lagrange primal function of nonnega-
tive LASSO (3) can be written as∑

i

L(β)+ λ
∑
j

βj −
∑
j

δjβj, (6)
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where δj ≥ 0 is a Lagrange multiplier, and the dependence
of L on X and y are omitted for simplicity. From the Karush-
Kuhn-Tucker (KKT) condition, we have

∇L(β)j + λ− δj = 0 (7)

δjβj = 0 (8)

Since both β and λ take either zero or positive values,
we can derive the following conditions;

βj = 0, λ = 0 → (∇L(β))j = 0,
βj > 0, λ = 0 → (∇L(β))j = 0,
βj = 0, λ > 0 → δj = (∇L(β))j + λ > 0,
βj > 0, λ > 0 → (∇L(β))j = −λ < 0.

(9)

If λ = 0, it corresponds to an unregularized case, and a
solution can be obtained by a standard active set method [14].
If λ > 0, active variables and inactive variables have dif-
ferent conditions. Let a set of active variables be A = {j :
β̂j(λ) 6= 0}, then the direction of regularization path at some
λ(> 0) is calculated as

∂β̂(λ)A
∂λ

= −(X>AXA)−11A
(
= γA

)
, (10)

where XA and 1A denotes a design matrix and a vector of
ones, restricted to an active set A, respectively. Our update
rule is represented as an affine combination of β and γ , such
that

β∗j ← (1− τ )β j + τγ j, (11)

where 0 < τ < 1 is a step length. Note that setting τ = 0
corresponds to staying at the current active set, so ∇L(β) =
−λ holds. On the other hand, setting τ = 1 corresponds to
taking a full step towards the least squares solution so that
∇L(γ ) = 0 holds. Since equation(11) is a linear function in
its feasible region, we can track it. Along the path, one of the
following two event can occur;
• Deleting a variable: In this case, an active variable
becomes inactive, thereby one of β∗j reaches zero.
The step length until this event is obtained by solving
((1− τ )β + τγ )j = 0 for τ ;

τ =

(
βj

βj − γj

)
. (12)

• Adding a variable: In this case, an inactive variable
becomes active. Since ∇L(β∗) is given as an affine
combination of ∇L(β) and ∇L(γ ), it satisfies

∇L(β∗) = (1− τ )∇L(β)+ τ∇L(γ ).

By plugging ∇L(β) = −λ and ∇L(γ ) = 0 into
the above equation, the step length until this event is
obtained as

τ =
λ+ (∇L(β))j

λ+ (∇L(β))j − (∇L(γ ))j
. (13)

Step lengths of both events are recorded, and a smaller one
is chosen. After the occurrence of an event, the direction of
the soln path (10) needs to be recalculated.

Algorithm 1 Entire Regularization Path for Nonnegative
Interaction Model (NIL1)
1: β = 0,A = arg max

i
|∇L(β)|j, j /∈ A F Search

Problem 2
2: λ = |∇L(β)|A, γA = 1, γ j/∈A = 0
3: while λ > 0 do
4: τ1 =

(
βj

βj−γj

)
, j ∈ A

5: τ2 =
λ+(∇L(β))j

λ+(∇L(β))j−(∇L(γ ))j
, j /∈ A F Search

Problem 1
6: step length τ = min {τ1, τ2}
7: if τ = τ1 then remove the variable from active setA.
8: end if
9: if τ = τ2 then add the variable to active set A.
10: end if
11: β ← (1− τ )β + τγ
12: ∇L(β)← (1− τ )∇L(β)+ τ∇L(γ )
13: λ← (1− τ )λ
14: Recalculate new direction γA = −(X

>

AXA)−11A
15: γ j/∈A = 0
16: end while

An interesting extreme case is when λ is largest. In such a
case, β = 0 becomes the solution to equation (3), and from
KKT condition, such λ is found as

λmax = min− (∇L(0))j = max(X>y)j. (14)

So we start by searching the largest λ, then gradually
decrease it along the regularization path. Thewhole algorithm
is shown in Algorithm 1.

III. METHODS
In applying Algorithm 1 to full design matrix X , an obvi-
ous but an inefficient way is to extract X from training
dataset Z in the first place, then run a path-tracking algorithm
on it. However, with respect to the increase in the number
of items D or the number of samples n, it quickly becomes
intractable. So we devise to extract the necessary part of
X dynamically from Z. An intuition behind this idea is that,
due to the sparsity induced by `1 norm, the number of active
variables should be much smaller than that of non-active
variables, which enables us to keep only active variables.
Therefore, we focus on lines 2 and 6 of Algorithm 1, where
a switch of variable from inactive set to active set occurs.
Below, we call them Search Problem 1 and 2, and propose
efficient branch and bound algorithms for both of them.

As a canonical search space, we employ the one defined
by closed itemset mining (CIM) algorithm, LCM [29]. Given
transactions consisting of itemsets, CIM can enumerate fre-
quently appearing itemsets in the database while ignoring
their subsets with the same frequency. This idea comprises
closed itemset rather than frequent itemset, and helps
reducing the size of the output as well as improving the
interpretability. An exemplar canonical search space of CIM
is illustrated in Figure 2. In a canonical search space spanned
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Algorithm 2 Search Problem 1
1: procedure
2: τ = ∞

3: for all t consisting of single item do project(t)
4: end for
5: return τ
6: end procedure
7: function Project(t)
8: if pruning condition (15) holds then
9: return

10: end if
11: Calculate τcur =

λ+(∇L(β))j
λ+(∇L(β))j−(∇L( γ ))j

12: if τ < τcur and τcur 6= 0 then
13: τ = τcur
14: end if
15: for all child t ′ ∈ t do
16: project(t ′)
17: end for
18: end function

FIGURE 2. Exemplar search space for items {1,2,3}. It starts with the
empty set, then traverses all the combination of items without
duplication.

by CIM algorithm, one can reach a node corresponding to
combination of items (itemset) without visiting the same node
again. However, the number of nodes grows exponentially to
the increase in the number of items, therefore tree pruning is
of crucially importance. Below, we propose efficient bound-
ing conditions using target label information attached to each
sample.

A. SEARCH PROBLEM 1
We show the pseudocode for solving Search Problem 1 in
Algorithm 2, which searches for the minimum step length τ .
Suppose that we have reached a node t in a search tree, and the
minimum step length found so far be τ ∗. If we can guarantee
that there exists no smaller step length in the downstream
nodes of t , thenwe can safely prune the rest of the treewithout
losing the optimal pattern. We introduce two such pruning
conditions for the Search Problem 1 below.
Theorem 1: Let (∇L(β))t =

∑n
i=1 XtiCit where Cit =

Xitβt − yi. If the following condition is satisfied,∑
{i|Cit≥0}

XtiCit + λ < 0, (15)

then there exists no solution in the downstream of the node t,
so we can safely prune the rest of the tree without losing the
optimal pattern.

Proof: Let t ′ be a child node of t such that t ⊆ t ′ holds,
then

(∇L(β))t ′ =
∑

{i|Cit′≥0}

Xt ′iCit ′ +
∑

{i|Cit′≤0}

Xt ′iCit ′

≤

∑
{i|Cit′≥0}

Xt ′iCit ′

≤

∑
{i|Cit≥0}

XtiCit

The second inequality holds due to the fact that
{i | Cit ′ ≥ 0} ⊆ {i | Cit ≥ 0}. On the other hand, from KKT
condition, (∇L(β))t + λ > 0 must hold for any (∇L(β))t .
Therefore if

∑
{i|Cit≥0} XtiCit + λ < 0 is guaranteed at the

current node t , then there is no need to search for downstream
nodes that do not satisfy KKT condition. �

The computational complexity for computing the above
pruning condition is O(nk), where k is the size of the active
patterns, which is generally very small thanks to the sparsity
induced by `1 norm. Similarly to the first pruning condition,
we propose the second pruning condition.
Theorem 2: If the following condition is satisfied,∑

{i|Cit≤0}

XtiCit = 0,

then there exists no solution in the downstream of the node t,
so we can safely prune the rest of the tree without losing the
optimal pattern.

Proof: Let t ′ be a child node of t such that t ⊆ t ′ holds,
then

(∇L(γ ))t ′ =
∑

{i|Cit′≥0}

Xt ′iCit ′ +
∑

{i|Cit′≤0}

Xt ′iCit ′

≥

∑
{i|Cit′≥0}

Xt ′iCit ′ +
∑
{i|Cit≤0}

XtiCit

The inequality holds due to the fact that {i | Cit ′ ≤
0} ⊆ {i | Cit ≤ 0}. If

∑
{i|Cit≤0} XtiCit = 0 holds, then

(∇L(γ ))t ′ ≥ 0, which violates the non-positiveness condition
on ∇L(β) (equations (9)). �

B. SEARCH PROBLEM 2
It is called at line 2 in Algorithm 1. It is a maximization
problem, but its procedure is similar to Algorithm 2, so we
omit it. What we search for is a node that maximizes the
following criterion.

max
(
X>y

)
j
. (16)

Suppose that we have reached a node t , the corresponding
objective value be (∇L(β))t =

∑n
i=1 Xityi, and the maximum

value found so far be (∇L(β))∗t . If we can guarantee that there
exists no larger objective value in the downstream of nodes
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of t , then we can safely prune the rest of the tree without
losing the optimal pattern.
Theorem 3: [12] If the following condition is satisfied,

(∇L(β))∗t ≥
n∑
i=1

Xityi (17)

then there exists no greater (∇L(β))t in the downstream of
the node t, so we can safely prune the rest of the tree without
losing the optimal pattern.

For the proof, please refer to [12].

C. NON-NEGATIVE INTERACTION MODEL WITHOUT `1
CONSTRAINTS
For solving NLS problem with variable interactions,
we revisit equation (2). For efficiently solving the problem,
we introduce a cutting plane approach below. The problem
can be rewritten as the following optimization problem;

min
β,ξ

1
2

n∑
i=1

ξ2i (18)

s.t.
∑
t

Xitβt − yi ≤ ξi, i = 1, . . . , n (19)∑
t

yi − Xitβt − yi ≤ ξi, i = 1, . . . , n

β ≥ 0, ξ ≥ 0, (20)

where ξ are slack variables. The above program has p vari-
ables and n constraints. Since p can be extremely large due
to the potential number of interactions, directly solving the
primal problem is hard. So we derive the dual problem. From
the KKT condition, we have

∂L
∂βt
= −

∑
t

(w+i − w
−

i )Xit − γt = 0, (21)

∂L
∂ξi
= ξi − w

+

i − w
−

i − δt = 0, (22)

where δ is a slack variable. They can be rewritten as

−

∑
i

(w+i − w
−

i )Xit ≥ 0, ∀t ∈ T (23)

ξi ≥ w+i − w
−

i (24)

Substituting them back to the primal problem in its
Lagrange form, the dual problem is obtained as;

min
w

1
2

n∑
i=1

(z+i + z
−

i )
2
−

n∑
i=1

yi(z
+

i − z
−

i ) (25)

s.t.
n∑
i=1

(z+i − z
−

i )Xit ≤ 1,∀t ∈ T (26)

n∑
i=1

(z+i − z
−

i ) = 0, (27)

w+ ≥ 0, w− ≥ 0, (28)

where w+ and w− are Lagrange multipliers. After solving
the dual problem, primal solution vector β can be recovered

Algorithm 3 Cutting Plane Method Applied to the Dual of
the Non-Negative Least Squares
1: A = ∅
2: loop
3: j = arg max |∇L(β)|j, j /∈ A F search subproblem
4: if

∣∣∑n
i=1 Xijwi

∣∣ < 1 then break;
5: end if
6: Add j to the active set A
7: w ← solve the dual problem (equa-

tions (25),(26),(27) and (28))
8: end loop

from the Lagrange multipliers of the dual problem. The dual
problem has a large number of constraints, but we employ
a cutting plane method [16] to handle them. In principle,
it finds the initial solution by ignoring all the constraints, and
repeat adding a constraint one by one to the dual problem until
the stopping criterion is satisfied. The constraint to be added
is called the most violated constraint, and can be found by
solving the following search problem;

max
t

∣∣∣∣∣
n∑
i=1

Xitwi

∣∣∣∣∣ . (29)

In our case X is a binary matrix, and this problem involves
integer programming. However, it is equivalent to equa-
tion (16), thus we can receive the benefit from Theorem 3;
an efficient tree pruning condition in the space of power set
of variables. To summarize, we iteratively solve the quadratic
problem (equations (25),(26),(27) and (28)) with a limited
number of constraints, and the solution vector w is used
in a subproblem (29) to search for the next constraint. The
resulting algorithm is shown in Algorithm 3.

Since the primal problem is convex and so is its dual,
we can obtain the global solution by repeating the loop.
Moreover, the relative distance to the optimal solution can
be measured using the duality gap.

IV. SIMULATION STUDY
In this section, we demonstrate the effectiveness of the pro-
posed pruning conditions on simulated datasets. Simulated
datasets are generated as follows. First we draw a random
variable fromBernoulli distribution (q = 0.6), then generated
design matrices X ∈ {0, 1}n×p of varying sizes. Then we
randomly selected 5 columns in the designmatrix, and further
selected 5 features out of their 25 combinations. The true
coefficientsw are drawn from uniform distribution U[0,1], and
the response vector is built as y = Xw. All the computation
time are measured on a 64-bit machine with Intel(R) Xeon(R)
E5-2697 Processor 2.70GHz.

In Figure 3, we compare the computation time with/
without the proposed pruning conditions. For this exper-
iment, we fixed the number of items to 50, and varied
the sample size n ∈ {50, 100, 200, 500, 1000}. Note that
setting the number of items D to 50 corresponds to set-
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TABLE 1. Computation time of NIL1 in seconds in large datasets. The digit in parentheses shows the number of traversed nodes.

ting the maximum size of the search space to 250. There-
fore, the size of the search tree and the time for traversing
the entire space grows exponentially. Indeed, in Figure 3,
a naïve approach did not finish within 24 hours when n is
set to more than 200. In contrast, with our pruning condi-
tions, the proposed search method could successfully control
the increase in computation time low as long as n is set
to 1000.

FIGURE 3. Efficiency obtained by tree pruning. (left) Computation time
in seconds are shown in terms of the sample size while fixing the number
of items to 50. (right) Similarly, the number of traversed nodes is shown
in terms of the sample size.

A similar observation is obtained when we fixed the num-
ber of samples to 50, and chose the number of items D
from {20, 50, 100}, corresponding to p =

{
220, 250, 2100

}
.

In Figure 4, we can see that the size of the search space of a
naïve approach increases rapidly, so is the time to traverse
the space. On the other hand, with the proposed pruning
condition, the size of the search space is restricted to 0.01 %
of the original one, and the corresponding search time turns
into more than a thousand times faster, when we set the
number of items to 100. For investigating the scalability
of the proposed approach, we have run NIL1 in simulated
datasets with lager D and n. The result appears in Table 1.
It turns out that NIL1 scales to even n = 1, 000, 000 or
D = 1, 000, 100 when either one of them is kept small,
but does not scale when both n and D are larger than 1000.
If we consider a case when n is small and D is large, it is
likely that we have not observed all the important features,
so this case is hard to solve in reality. On the other hand,
when n is large and D is small, it is likely that we have
observed all the necessary features. NIL1 could successfully
handle n = 1, 000, 000 samples when the number of items
is 100.

FIGURE 4. Efficiency obtained by tree pruning. (left) Computation time
in seconds is shown in terms of the sample size while fixing the sample
size to 50. (right) Similarly, the number of traversed nodes is shown in
terms of the number of items.

In order to further understand the nature of the pro-
posed method, we compare the proposed method with
itemset LAR/LASSO. For this purpose, we implemented
itemset LAR/LASSO using exactly the same procedure as
gLARS [28], except that the pattern mining subroutine is
replaced from graph mining to itemset mining. First, we gen-
erated a dataset of 200 samples and 100 items, and com-
pared the number of iterations until reaching the peak of
the learning curve in terms of the validation set accuracy.
NIL1 took 23 seconds until reaching its best (10-th iteration),
whereas it took 100,000 seconds for itemset LAR/LASSO
to reach its best (95-th iteration). It suggests that the size
of the search space is smaller for the proposed method than
that of itemset LAR/LASSO. In order to verify this tendency,
we havemeasured the number of traversed nodes in the search
tree until showing the full regularization path, and corre-
sponding computational time while varying the maximum
pattern size. Figure 5 compares the number of nodes visited
for the proposed method and that for itemset LAR/LASSO.
In the figure, we can observe that the size of the search
space and the resulting time consumption were more than a
thousand times smaller for the proposed method compared to
itemset LAR/LASSO. This efficiency resorts to non-negative
constraints.

V. REAL-WORLD DATA EXPERIMENTS
In this section, we demonstrate the performance of the pro-
posed methods in two applications. The first one is HIV-1
drug resistance prediction problem, and the other is muta-
genicity prediction problem.
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FIGURE 5. Efficiency comparison of NIL1 with itemset LAR/LASSO. (left)
Computation time in seconds is shown in terms of the maximum pattern
size while fixing the sample size to 200 and the number of items to 100.
(right) Similarly, the number of traversed nodes is shown in terms of the
maximum pattern size.

A. HIV-1 DRUG RESISTANCE PREDICTION
In HIV-1, treatments to the patients resort to subscrib-
ing drugs for decreasing the number of viral copies in
blood. However, some strains of the virus copies survive
by obtaining drug-resistant mutations in its genome. These
drug-resistant strains then dominate the population while
non-resistant strains are eliminated by drugs. Clinicians and
statisticians then desire to decompose experimentally mea-
sured drug resistance into a weighted sum of resistance
by each mutation, which is traditionally modeled by linear
regression [20]. Considering the biological selection mech-
anism, however, these weights never take negative values.
Since mutations with negative weights suggest increased sus-
ceptibility to drugs, then they do not survive the biological
selection. In previous works [18], [22], negative regression
coefficients are observed, but they could be artifacts due to
this reason. The NLS approach to this dataset is therefore
considered to be more relevant.

The dataset we use is a collection of results of in vitro
susceptibility tests to available drugs in market, in which the
level of resistance is recorded in fold change compared to that
of wild type [20]. This record comprises our target response
vector y, and the genotypes are recorded as the difference
from the wild type sequence. For example, if an isolate x has
two mutations at the first position and the sixth position in the
reference sequence that turn original amino acids into Arginin
and Cystein, respectively, then the genotype is recorded in a
set representation as {1A, 6C}.
Figure 6 shows the transition of coefficient β as the iter-

ation proceeds. We can observe that seven different vari-
ables once moved into the active set, but one variable
is removed at the fifth event. We can also observe that
all the regression coefficients are non-negative. Figure 7
shows the learning curves by NIL1 and NIFS in three
HIV datasets. Errors in terms of the residual sum of
squares

(
RSS :

∑n
i=1(yi − x

>
i β).

2
)
are displayed for both

the training set and the validation set. We can observe
that the error curves for the training set keeps decreasing
as a function of the numbers of steps by NIL1. On the
other hand, the error curve for the validation set stops

FIGURE 6. Coefficient profile in HIV-1 AZT dataset, as a function of the
number of learning events. A non-negative weight is given to each
feature, and each feature is represented by a curve with an unique color.

TABLE 2. Comparison of computational efficiency with or without tree
pruning.

decreasing, and starts increasing at some point. The error
curve of NIM in the training set and the validation set
are displayed as the horizontal flat lines, since they have
no parameter to control regularization. The error curve of
the validation set by NIL1 almost always lies lower than
that of NIM, suggesting its generally better performance in
HIV-1 datasets. Figure 8 displays the distributions of the
found patterns by NIL1 and NIM. It is observed that
NIL1 resulted in much larger solution sets than that by NIM.
The same tendency was observed in five other datasets as
well.

In Table 2, we demonstrate the efficiency obtained by
tree prunings. We compare the computation time of the pro-
posed method with that of the naïve counterpart without
pruning. In addition to the pruning introduced in Section III,
we employ the maximum pattern size (the number of items in
an itemset) as an additional pruning condition for illustration
purpose. We can observe in Table 2 that the proposed method
has successfully pruned more than 90% of the search space
spanned by the naïve method. From Table 2, we can also
observe that roughly 90% of the computation time is saved
thanks to the tree pruning.

Lastly, we demonstrate the validity of non-negativity con-
straints in HIV-1 dataset. As it has already been discussed
in Section II, the difference between NIL1 and itemset
LAR/LASSO lies just in the fact that whether non-negative
constraints are enforced. Too see this, we ran both meth-
ods in HIV-1 AZT dataset, and compared the features
obtained until the 10-th iteration. Table 3 shows the fea-
tures obtained by NIL1 and that by itemset LAR/LASSO
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FIGURE 7. Learning curves in HIV-1 AZT (left), ABC (center), D4T (right) datasets. The error of NIL1 in the training set decreases
monotonically as the number of steps increases, while the error in the validation set stops decreasing, and start increasing at some point.
The error of NIFS in the training set and the validation set are shown as horizontal flat lines, since they have no parameter to control
regularization.

FIGURE 8. Pattern size distribution in HIV-1 AZT (left), ABC (middle) and D4T (right) datasets.

TABLE 3. Features selected by NIL1 and itemset LAR/LASSO until the
tenth iteration. In itemset LAR/LASSO, features ‘‘139R’’ and ‘‘139R, 173E’’
receives negative coefficients, but they are suspected to be artifacts since
mutants with increased susceptibility to drugs do not survive the
biological selection.

as well as their coefficients and the ranking in terms of
absolute values. Both of the methods identify combinatorial
feature {170L, 173E} as one of the most influential feature
with large positive weights. However, itemset LAR/LASSO
also assigns large negative coefficient to {139R} as well.
However, mutations with large negative weights do not sur-
vive biological selection, so this feature is considered as an
artifact.

B. MUTAGENICITY PREDICTION
In computational chemistry, small molecules are often rep-
resented as descriptors and stored in databases together with

bioactivity or chemical reactivities. These records can be used
for building a statistical model for predicting activity or reac-
tivity of unseen compounds. We use the CPDB mutagenic-
ity dataset [10], which provides mutagenicity classifications
(341 mutagens and 343 nonmutagens) as determined by the
Salmonella/microsome assay (Ames test). We ran regression
methods by making target labels to either mutagen (1.0) or
nonmutagen (0.0). In this experiment, we aim at detecting a
set of descriptors that trigger mutagenicity as well as building
a classifier, so can assume that the regression coefficients take
positive values 2 As descriptors, we employed 166 MACCS
keys [5] available through Open Babel [19]. We randomly
split the dataset into 80% training and 20% testing, and mea-
sured the performance in the test set. We repeated this proce-
dure 10 times, and report the averaged statistics in Table 4.
We compare NIL1 with NIM. We also ran LARS and NLS
as baselines, which do not consider variable interactions.
In NIL1, 20% of the training set is reserved as the valida-
tion set, and used to determine the regularization parameter.
In each experiment, we counted the number of features and
the size of each feature, which represents the number of items
in it. Rule coverage stands for the ratio of samples represented
by at least one feature.

2If one is interested in analysis in nonmutagens, then one can swap target
values.
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TABLE 4. Classification performance in CPDB dataset based on binary fingerprints. The best value in each measure is highlighted in bold font, and
the second best one in italic font.

TABLE 5. Representative features found by NLS. In the table, A stands for any atom, Q stands for any atom other than H or C.: stands for an aromatic
bond, @ stands for any ring bond, and ! stands for negation.

If we compare the proposed methods with the baselines,
we can have an interesting observation in its rule cov-
erage. LARS and NLS showed rule coverage as high as
0.994 and 0.744, respectively. On the other hand, the NIM
and NIL1 showed lower coverage such as 0.353 and 0.473,
respectively. As we discuss more details below, this is due to
the nature of the proposed methods which attempt to search
for complex variable interactions not covered by a large
number of samples, but have high classification accuracy.

Among the non-negative models, NIL1 performed best in
terms of the test set accuracy , which would be due to the
consideration of variable interactions unlike LARS and NLS.
If we focus on the feature size, NIL1 discovered much larger
ones than by NIM. On the other hand, the slightly inferior
performance of NIM would be due to the lack of ability
to avoid overfitting. As we explain in the next paragraph,
large features are important, since they can lead to improved
interpretability.

Tables 5 and 6 show representative features selected by
NLS and NIL1, respectively. MACCS ID 133 found by NLS
has a ring structure with Nitrogen attached to it, and has a
large coverage (36.7%) with a moderate accuracy (72.5%).
The same structure is captured by NIL1, but with additional
structures (Indices 1 and 4 in Table 6.) It is observed that
by adding additional structures, the accuracy of this feature
boosts to either 77.8% or 78.3% at the cost of smaller cover-
age. The same observation can be made for the MAACS ID

16 found by NLS. This three molecules hetero cycle structure
is detected by NIL1 as well (Index 6 in Table 6, but with an
additional carbon structure. Its accuracy is boosted from 80%
to 88.2%, at the cost of a smaller coverage. In general, an easy
problem can be solved with features with high accuracy and
high coverage, but a harder problem requires many rules
with low coverage. In this experiment, NIL1 has successfully
discovered such rules unlike the baselines. Another interest-
ing observation can be made for MACCS ID 70 in Table 5.
The corresponding structure in NIL1 is Index 2 in Table 6.
Although the coverage and accuracy do not differ between
the two features, the one by NIL1 suggests that Nitrogen
is used in the form of NO2 or NOOH . This property stems
from closed itemset mining, which returns the longest itemset
among the itemsets with the same frequency. This additional
information is useful for practitioners to understand the clas-
sification mechanism, and designing new molecules.

VI. DISCUSSION
LASSO is known to be an interpretable method due
to its ability to induce sparseness to regression coeffi-
cients. In this paper, we incorporated two additional fac-
tors which could improve interpretability. The first one
is itemset-based features. Machine learning algorithms
which employ itemset-based features are known to be
interpretable [13], [30]. The second one is non-negativity on
regression coefficients. Non-negative matrix factorization is
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TABLE 6. Representative features found by NIL1. In the table, A stands for any atom, Q stands for any atom other than H or C.

often used as an analytical and interpretable tool due to its
ability to automatically extract sparse factors [15]. Its inter-
pretability is deemed to originate from the addition of positive
factors, which is inherited to non-negative least squares in our
case.

On the other hand, our model has limitations in its inter-
pretability. For example if we consider an itemset {A,B},
then its occurrence is highly correlated with the occurrence of
either item A or item B. Pattern-based features are often over-
lapping each other, then their interpretations are not straight-
forward. These are common problems when we employ pat-
terns as features [26], and their solutions are left remained as
a future work.

VII. CONCLUSION
In this paper, we have proposed to incorporate interac-
tion terms to the non-negative least squares problem. For
suppressing the resulting intractable number of variables,
we took advantage of `1 regularization and non-negativity
constraints. For efficiently finding interaction terms, novel
bounding conditions are introduced to the tree based
search space. In terms of the prediction accuracy, enforc-
ing not only non-negativity constraints, but also `1 con-
straints together turned out to be useful. It can be
attributed to the ability of `1 constraints which can avoid
overfitting. In application to HIV-1 drug resistance pre-
diction, we discussed the necessity of introducing both
non-negativity constraints and variable interactions from
the biological viewpoint. In the application to mutagenicity
prediction problem, we demonsrtrated that the proposed

method is relatively easy to interpret and useful for predictive
as well as for explanatory purposes.

REFERENCES
[1] R. Agrawal and R. Srikant, ‘‘Fast algorithms for mining association rules,’’

in Proc. 20th Int. Conf. Very Large Databases, 1994, pp. 487–499.
[2] R. Bro and S. D. Jong, ‘‘A fast non-negativity-constrained least squares

algorithm,’’ J. Chemometrics, vol. 11, no. 5, pp. 393–401, 1997.
[3] D. Chen and R. Plemmons, ‘‘Nonnegativity constraints in numerical anal-

ysis,’’ in Proc. Symp. Birth Numer. Anal., 2007, pp. 1–32.
[4] D. Das, J. Ito, T. Kadowaki, and K. Tsuda, ‘‘An interpretable machine

learning model for diagnosis of Alzheimer’s disease,’’ PeerJ, vol. 7,
p. e6543, Mar. 2019.

[5] J. L. Durant, B. A. Leland, D. R. Henry, and J. G. Nourse, ‘‘Reoptimization
ofMDL keys for use in drug discovery,’’ J. Chem. Inf. Comput. Sci., vol. 42,
no. 6, pp. 1273–1280, 2002.

[6] B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, ‘‘Least angle
regression (with discussion),’’ Ann. Statist., vol. 32, no. 2, pp. 407–499,
2004.

[7] I. Guyon and A. Elisseeff, ‘‘An introduction to variable and feature selec-
tion,’’ J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003.

[8] J. Han, J. Pei, and Y. Yin, ‘‘Mining frequent patterns without candidate
generation,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
2000, pp. 1–12.

[9] T. Hastie, R. Tibshirani, and M. Wainright, Statistical Learning With
Sparsity: The Lasso and Generalizations. Boca Raton, FL, USA: CRC
Press, 2015.

[10] C. Helma, T. Cramer, S. Kramer, and L. De Raedt, ‘‘Data mining and
machine learning techniques for the identification of mutagenicity induc-
ing substructures and structure activity relationships of noncongeneric
compounds,’’ J. Chem. Inf. Comput. Sci., vol. 44, no. 4, pp. 1402–1411,
2004.

[11] H. Kim and H. Park, ‘‘Sparse non-negative matrix factorizations via
alternating non-negativity-constrained least squares for microarray data
analysis,’’ Bioinformatics, vol. 23, no. 12, pp. 1495–1502, 2007.

[12] T. Kudo, E. Maeda, and Y. Matsumoto, ‘‘An application of boosting
to graph classification,’’ in Proc. Adv. Neural Inf. Process. Syst., 2005,
pp. 729–736.

110004 VOLUME 9, 2021



M. Takayanagi et al.: Sparse Nonnegative Interaction Models

[13] H. Lakkaraju, S. H. Bach, and J. Leskovec, ‘‘Interpretable decision sets:
A joint framework for description and prediction,’’ in Proc. Int. Conf.
Knowl. Discovery Data Mining (KDD), San Francisco, CA, USA, 2016,
pp. 1675–1684.

[14] R. Lawson and C. Hanson, Solving Least Squares Problems. Philadelphia,
PA, USA: SIAM, 1995.

[15] D. D. Lee and H. S. Seung, ‘‘Learning the parts of objects by non-negative
matrix factorization,’’ Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999.

[16] H.Marchand, A.Martin, R.Weismantel, and L.Wolsey, ‘‘Cutting planes in
integer and mixed integer programming,’’ Discrete Appl. Math., vol. 123,
nos. 1–3, pp. 387–446, 2002.

[17] N. Meinshausen, ‘‘Sign-constrained least squares estimation for high-
dimensional regression,’’ Electron. J. Statist., vol. 7, pp. 1607–1631,
Jan. 2013.

[18] K. Nakagawa, S. Suzumura, M. Karasuyama, K. Tsuda, and I. Takeuchi,
‘‘Safe pattern pruning: An efficient approach for predictive pattern min-
ing,’’ in Proc. KDD, 2016, pp. 1785–1794.

[19] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and
G. R. Hutchison, ‘‘Open babel: An open chemical toolbox,’’ J. Cheminfor-
matics, vol. 3, no. 1, pp. 1–14, Dec. 2011.

[20] S. Y. Rhee, J. G. Matthew, R. Kantor, B. J. Betts, J. Ravela, and
R. W. Shafer, ‘‘Human immunodeficiency virus reverse transcriptase
and protease sequence database,’’ Nucleic Acids Res., vol. 31, no. 1,
pp. 298–303, Jan. 2003.

[21] S. Rosset and J. Zhu, ‘‘Piecewise linear regularized solution paths,’’
Stanford Univ., Stanford, CA, USA, Tech. Rep. HAL:ccsd-00020066,
2003.

[22] H. Saigo, T. Uno, and K. Tsuda, ‘‘Mining complex genotypic features
for predicting HIV-1 drug resistance,’’ Bioinformatics, vol. 23, no. 18,
pp. 2455–2462, Sep. 2007.

[23] M. Slawski, R. Hussong, A. Tholey, T. Jakoby, B. Gregorius,
A. Hildebrandt, and M. Hein, ‘‘Isotope pattern deconvolution for
peptide mass spectrometry by non-negative least squares/least absolute
deviation template matching,’’ BMC Bioinf., vol. 13, no. 1, pp. 1–18,
Dec. 2012.

[24] M. Slawski and M. Hein, ‘‘Non-negative least squares for high-
dimensional linear models: Consistency and sparse recovery without reg-
ularization,’’ Electron. J. Statist., vol. 7, pp. 3004–3056, Jan. 2013.

[25] M. Takayanagi, Y. Tabei, and H. Saigo, ‘‘Entire regularization path for
sparse nonnegative interaction model,’’ in Proc. IEEE Int. Conf. Data
Mining (ICDM), Singapore, Nov. 2018, pp. 1254–1259.

[26] I. Takigawa and H. Mamitsuka, ‘‘Generalized sparse learning of linear
models over the complete subgraph feature set,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39, no. 3, pp. 617–624, Mar. 2017.

[27] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’ J. Roy.
Statist. Soc., B, Methodol., vol. 58, no. 1, pp. 267–288, 1996.

[28] K. Tsuda, ‘‘Entire regularization paths for graph data,’’ in Proc. 24th Int.
Conf. Mach. Learn. (ICML), 2007, pp. 919–926.

[29] T. Uno, T. Asai, Y. Uchiyama, and H. Arimura, ‘‘LCM: An efficient
algorithm for enumerating frequent closed item sets,’’ in Proc. CEUR
Workshop, vol. 90, B. Goethals and M. J. Zaki, Eds., New York, NY, USA,
2003, pp. 1–10.

[30] S. Vojíř, V. Zeman, J. Kuchař, and T. Kliegr, ‘‘EasyMiner.Eu: Web frame-
work for interpretable machine learning based on rules and frequent item-
sets,’’ Knowl.-Based Syst., vol. 150, pp. 111–115, Jun. 2018.

[31] M. Zaki, S. Parthasarathy,M. Ogihara, andW. Li, ‘‘New algorithms for fast
discovery of association rules,’’ in Proc. 3rd Int. Conf. Knowl. Discovery
Data Mining (KDD), Newport Beach, CA, USA, 1997, pp. 283–286.

MIRAI TAKAYANAGI received the B.E. degree in electrical engineering and
computer science from Kyushu University, in 2019. He is currently enrolled
with the School of Information Science and Electrical Engineering, Kyushu
University.

YASUO TABEI received the M.Sci. and D.Sci.
degrees from The University of Tokyo, Japan,
in 2007 and 2010, respectively. From 2010 to
2013, he was a Postdoctoral Researcher with the
Minato Discrete Structure Manipulation System
Project, JST ERATO. From 2013 to 2016, he was a
Research Scientist with the Advanced Core Tech-
nologies for Big Data Integration, JST PRESTO.
He started the current position, in 2017. He is cur-
rently a Unit Leader of the Succinct Information

Processing Unit, RIKEN Center for Advanced Intelligence Project. Many of
his research papers have been published in top conferences of data mining,
machine learning, and bioinformatics, such as KDD, ICDM, IJCAI, ISMB,
and ECCB. His research interests include data mining, machine learning,
data compression, and their application to chemoinformatics and bioinfor-
matics.

EINOSHIN SUZUKI received the B.E., M.E.,
and D.E. degrees from The University of Tokyo,
in 1988, 1990, and 1993, respectively. From
1993 to 1996, he was a Faculty Member with
Tokyo Institute of Technology. From 1996 to 2006,
hewas a FacultyMemberwithYokohamaNational
University. Since 2006, he has been a Profes-
sor with Kyushu University. His research inter-
ests include data mining, machine learning, and
autonomous mobile robots. He is on the editorial

board of JIIS and has served as a PC Member for KDD 12 times.

HIROTO SAIGO received the master’s and Ph.D.
degrees in informatics from Kyoto University,
in 2003 and 2006, respectively. He was also a
Visiting Student with the University of California,
Irvine (UCI). He worked as a Research Scientist
with the Max Planck Institute (MPI) for Biologi-
cal Cybernetics, from 2008 to 2010, and MPI for
Informatics, from 2008 to 2010. From 2010 to
2015, he was an Associate Professor with Kyushu
Institute of Technology. Since 2016, he has been an

Associate Professor with Kyushu University. His research interest includes
development of statistical machine learning methods tailored for problems
in bioinformatics and cheminformatics. He serves as a reviewer/PC member
for numerous top-level conferences and journals.

VOLUME 9, 2021 110005


