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ABSTRACT The impact of fine particulate matter on health has captured attention worldwide. Many
studies have proven that fine particulate matter harms the respiratory system and the cardiovascular system.
To prevent people from being harmed, many scientific research studies on PM2.5 prediction have been
conducted in recent years. Accurate PM2.5 forecasting can not only alert people to stay away from
concentrated areas but also provide the government with environmental policies in the future. In this paper,
we propose a hybrid time-series prediction framework for daily-based PM2.5 forecasting. The proposed
framework consists of three components: the autoencoder, the dilated convolutional neural network, and the
gated recurrent unit. The experimental dataset with 76 monitoring stations from the Taiwan Environmental
Protection Administration is applied for comparison of the baseline and the proposed models. The proposed
model is not only for the specified city-/county-wide region but also for the particular monitoring station/site
to predict PM2.5 concentration. By considering air quality data, meteorological data, and geographical data
simultaneously, the proposed model can increase the accuracy of PM2.5 prediction. In addition, the proposed
PM2.5 forecasting model can learn the location-centric spatial features and the daily-based temporal features
simultaneously. The experimental results show that the prediction accuracy of the proposedmodel is superior
to those of the baseline models.

INDEX TERMS Autoencoder, dilated convolutional neural network, gated recurrent unit, PM2.5 forecasting.

I. INTRODUCTION
From many research studies of air quality in recent years,
the results revealed that rapid climate change and serious
environmental pollution have impacted human health world-
wide. Additionally, many studies have shown that air quality
prediction becomes more important for the living environ-
ment, particularly fine particulate matter (PM2.5). From the
viewpoint of the government, the warning of PM2.5 concen-
tration can be helpful to make environmental policies and
to remind citizens to stay away from polluted areas. Hence,
PM2.5 forecasting and monitoring are not only national but
also international topics for humans.

To live in a healthy environment, many studies have
addressed air pollution intensity and air quality forecast-
ing [1], [2]. Additionally, most of the research studies
applied either theoretical methods or simulation models to
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highlight the situation under air pollution [3]. Machine learn-
ing has been applied to predict air quality. Dong et al. [4]
proposed a method for PM2.5 forecasting by using the
hidden semi-Markov model (HSMM). Donnelly et al. [5]
proposed real-time air quality forecasting, which is based on
integrated parametric and nonparametric regression. Further-
more, weather and climate trends are considerably relevant
to air quality; hence, applying traditional machine learning
models is insufficient for air quality prediction.

In recent years, some studies have proposed a novelmethod
that is used for predictionmodels. The equipment degradation
processes possessed long-range dependence and multimode
characteristics. The causes of the multimode characteris-
tics include the external environment and operating condi-
tions, as well as the equipment loads throughout its lifetime.
Duan et al. [6] developed a multimodal fractional Lévy
stable motion degradation model, which is used to predict
the product technical life or the remaining useful life of
equipment. Liu et al. [7] proposed a prediction model of
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the remaining useful life based on the generalized Cauchy
stochastic process. Reliable gearbox prediction is a com-
plex problem. To overcome the gearbox reliability problem,
a hybrid model based on the fractional Lévy stable motion,
the gray model and the metabolismmethod was proposed [8].
In this model, the feature extraction method is used to reveal
gearbox degradation and to solve gearbox insensitivity to
weak faults. In 2021, a new long-range-dependent degrada-
tion model was proposed to predict the remaining useful life
of rolling bearings [9]. The degradation model is based on
the generalized Cauchy process and can describe the local
irregularities and the global correlation characteristics of the
time-series data. Linear mathematical models cannot ade-
quately describe wind-speed characteristics. To overcome the
limitations of the linearity assumption, a novel model based
on the generalized Cauchy process was introduced [10].
In this model, the fractal dimension and Hurst parameter
are combined for simulation and forecasting of the wind
speed. Furthermore, the prediction model is applicable to
describe the local irregularity and global correlation of wind
speed.

Many studies have addressed the interrelation between
air pollution factors such as PM2.5 and meteorological data.
Traditional machine learning lacks the adoption of data-
driven approaches to process time-series air quality data
[11], [12]. Nevertheless, deep learning models can apply
to data-driven methods [13], in which the features of air
quality data are competently extracted. In the domains of
image classification, speech recognition, and natural lan-
guage processing, deep learning models have made remark-
able achievements [14]–[16]. Shallow learning models are
utilized to predict air quality, and deep learning approaches
are appropriately applied to predict time-series air quality
data [17]–[20]. In [21], a multivariate time-series method
was conducted for air quality prediction. In addition, deep
learningmodels aremost suitable for dealingwith data-driven
approaches and applicable to handle time-series data.

A hybrid time-series framework for daily-based PM2.5
forecasting is proposed in this paper. The nationwide and
city-/county-wide regions for air quality prediction are all
covered. Both the temporal and spatial correlation depen-
dencies of features are learned from air quality time-series
data, such as wind speed, PM2.5, and coordinates. We sum-
marize the major contributions of this paper in the following
paragraphs.

First, we develop a hybrid time-series deep learningmodel,
which is composed of three components. Autoencoder (AE)
and dilated convolutional neural network (CNN) learn spatial
features through air quality and geographical data. Gated
recurrent unit (GRU) extracts temporal features through
air quality and meteorological data. Compared with the
existing models, such as the ST-DNN model proposed by
Soh et al. [22], the proposed model can decrease the aver-
age MAE and RMSE values by 16% and 18%, respectively.
In addition, our model also shortens the average training time
by 12%.

Second, according to the experimental results, the pro-
posed model is not only accurate on a nationwide scale but
also adequate for region-wide prediction of time-series data
such as air quality. Furthermore, our model can be applied to
predict the air quality of the target site. The proposed model
is superior to the existing prediction models.

The rest of this paper is organized as follows. Section II
describes the related research works. The methodology of
the proposed PM2.5 forecasting framework is presented in
Section III. Section IV depicts the experimental setup and
the prediction comparison, of which the prediction error and
the training time are considered in our work. We show the
conclusion and future work in Section V.

II. RELATED WORKS
For the literature on PM2.5 forecasting, almost all exist-
ing works dealt with the prediction accuracy of air pol-
lutants by using machine learning models and statistical
methods [3], such as HMM [4], regression [5], artificial neu-
ral networks [23], and ARIMA [24]. Zhang et al. [1], [2]
proposed a real-time air quality prediction approach, which
focuses on the analysis of the major research trends and
current status, as well as future directions. In Zhou et al. [25],
the hidden temporal dependencies regarding PM2.5 were
addressed with Lasso-Granger by developing a probabilistic
dynamic causal (PDC) model. The hybrid model is based on
the regression neural network and empirical mode decompo-
sition for the previous 24-hour PM2.5 prediction proposed by
Zhou et al. [23]. In Deleawe et al. [26], a machine learning
model that conducts air quality measurements in the urban
environment was used to predict the CO2 levels.
In addition, many studies show that deep learning mod-

els have been used for air quality prediction. Air quality
data possess time series and nonlinear characteristics, and
thus, data-driven models are directed to address the topic of
urban computing [27]. Moreover, many PM2.5 forecasting
studies are based on big data, which can obtain the predicted
results by adoptingmany historical andmultivariate data [28].
Zheng et al. [11] proposed a semisupervised learning model
that combines CRF with ANN classifiers. Hsieh et al. [12]
developed a semisupervised method to conduct fine-grained
and real-time air quality data. An air quality prediction frame-
work in real time that applies data-driven models was pre-
sented in Zheng et al. [29].

With regard to the capability of data-driven methods and
nonlinear problems, deep learning models have generally
been adopted to solve time-series and sequence data prob-
lems [6], [30], [31]. That is, air quality data possess char-
acteristics such as time-series data. In [32], Li et al. [32]
presented a novel air quality forecasting model by utilizing
spatial-temporal deep learning (STDL), which considers the
temporal and spatial correlations. To predict air pollution,
Ong et al. [33] developed a deep recurrent neural network
(DRNN) by adopting the autoencoder approach. In [18],
Qi et al. [18] proposed a deep air learning (DAL) model
to deal with feature analysis, interpolation and forecasting.
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In [34], Zhang et al. [34] developed a deep residual neural
network to extract the features of time-series data and ana-
lyzed the congestion of citywide crowds.

In [35], a hybrid deep learning framework was developed,
whichwas combinedwithmultiple deep neural networkmod-
els. The hybrid framework has also been applied to the topics
of video classification and face detection [36]. Additionally,
hybrid deep learning frameworks have not been well fitted to
handle air quality forecasting issue predictions [37]. Many
researchers have shown that hybrid deep learning models
have exceptional performances compared to classic deep
learning models [36].

Many works have shown that convolutional neural net-
works (CNNs) have excellent performance in video process-
ing and image recognition [16]. Indeed, it is also applied to
time-series data prediction [31]. Among deep learning mod-
els, CNNs are superior to time-series data and multivariate
data. Recurrent neural networks (RNNs) are applicable for
learning the time dependencies and extracting the temporal
features of time-series data. Furthermore, to mitigate the
vanishing gradient problems of RNNs, Hochreiter et al. [38]
developed a variant of RNN, LSTM, which refers to the inter-
nal states of the memory cells for mitigating the vanishing
gradient problems. RNN can predict time-series data; more-
over, LSTM is excellent in time-dependent feature extraction.

Du et al. [37] proposed a hybrid deep learning model
to predict PM2.5 in Beijing, and the hybrid model was
composed of 1D-CNN and Bi-LSTM. In his work, two
datasets were applied to PM2.5 forecasting: the Beijing PM2.5
Dataset from the US Embassy in Beijing, and the Urban
Air Quality Dataset from the Urban Air Project of Microsoft
Research. The experimental results show that 1D-CNN can
effectively extract the local trends and spatial features from
the air quality time-series data. Soh et al. [22] developed an
adaptive deep learning model to forecast PM2.5 in Taiwan
and Beijing. In his work, the Taiwan dataset was collected
from the Taiwan Environmental Protection Administration,
and the Beijing dataset was provided by the Urban Air
Quality Dataset from the Urban Air Project of Microsoft
Research. The experimental results also showed that CNN
can extract the surrounding targets and spatial features from
the air quality data.

Du et al. [37] proposed a deep air quality forecasting
framework (DAQFF), which is composed of various deep
learning models. The main idea of the DAQFF is not only
to deal with time-series forecasting issues but also to address
spatiotemporal data features. In addition, the DAQFF corre-
lates the multivariate air quality data. The DAQFF can extract
the temporal features as well as the spatial features from air
quality data. One-dimensional CNN and bidirectional LSTM
are two components of DAQFF; the former deals with the
spatial data features, and the latter deals with the temporal
data features [39], [40].

In [41], Yu and Koltun proposed a convolutional net-
work approach to conduct dense forecasting, and the pro-
posed model applies dilation factors to aggregate multiscale

contexts without degrading the resolution. The proposed
model introduces dilation factors for the sake of expand-
ing the receptive fields. In addition, dilated convolution can
increase the accuracy and efficiency of dense forecasting.

Soh et al. [22] developed an adaptive air quality predic-
tion model that includes multiple deep learning models. The
spatial-temporal deep neural network (ST-DNN) considers
terrain and meteorological data concurrently, which means
that ST-DNN can extract spatial and temporal features from
air quality data. ST-DNN combines three deep learning mod-
els: the first two models are artificial neural network (ANN)
and long short-term memory (LSTM), which extracts the
temporal features from the air quality data; the last one is the
convolutional neural network (CNN), which extracts the spa-
tial features from the air quality data. In summary, ST-DNN
can extract spatial correlations and the temporal dependencies
of neighboring locations. Zhang et al. [42] combined CNN
and LSTM to achieve higher forecasting accuracy of air
pollution.

III. METHODOLOGY
In this section, we first present the framework of this paper
and then state three main components in the framework.
That is, the autoencoder, one-dimensional CNN and GRU are
described in order.

In this work, our motivation is to develop a deep learning
framework for time-series PM2.5 forecasting. To consider
the comparability and fairness of the model performances,
we compare the classic and existing deep learning models
and choose a traditional machine learning model for com-
parison. In this paper, PM2.5 forecasting considers both the
location correlation of multiple monitoring stations and the
time dependency of a single monitoring station. CNNs can
effectively extract the local trends and spatial features of
different districts. The GRU possesses a memory mechanism,
so it can effectively extract the short- and long-term temporal
features of a particular district.

Fig. 1 depicts the components and functionalities of our
framework. On the left-hand side, the air quality and geo-
graphical data are first input into the autoencoder layers and
then into the dilated convolution layers. On the right-hand
side, the air quality and meteorological data are input into
the GRU layers. Afterward, the air quality input data are
output from the abovementioned layers and merged with the
concatenate layer for data fusion. One flattened layer is then
introduced to feed the following dense layer with the input
data. Finally, the predicted PM2.5 values are generated.
By considering the interrelated factors of variant data

sources, we consider the correlation of geographical areas,
meteorological conditions, and air quality time-series data
simultaneously. AE and dilated CNN can effectively extract
PM2.5 concentrations from the specified district based on
historical air quality, and GRU can effectively extract PM2.5
concentrations from the seasonal climate based on historical
air quality. To predict the PM2.5 concentration of particu-
lar monitoring stations under various climate circumstances,
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FIGURE 1. Framework diagram.

we combine the learning results of AE and dilated CNN with
GRU for all the time periods.

The proposed model is named the hybrid time-series
framework (HTSFW), which combines unsupervised and
supervised models for daily-based PM2.5 forecasting. The
HTSFW model applies AE and dilated CNN to extract the
local trends and spatial features. Additionally, HTSFW uti-
lizes GRU to extract the long dependencies and temporal
features.

For conducting the spatiotemporal features of the air qual-
ity data, we extract the spatial features from the PM2.5 values
correlated with the monitoring station locations, such as the
coordinates; in addition, we concurrently retrieve the tempo-
ral features from the PM2.5 records interrelated to the weather
and climate factors, such as the wind speed.

The air quality-related dataset is composed of geographical
data and meteorological data, such as PM2.5, longitude, lati-
tude, SO2, CO, O3, NO2, PM10, wind speed, temperature and
humidity. To increase prediction accuracy, the HTSFWmodel
consolidates the training results of the geographical data and
the meteorological data. In the HTSFW model, the missing
values of the air quality dataset were padded with zeros.
In other words, the same experimental dataset was applied
to all the baseline and HTSFW models. The data contents
are recorded by day; hence, PM2.5 forecasting generates daily
time frames.

As is known, the innovation of the HTSFW model can
not only consider a single monitoring site for time-dependent

meteorological factors but also examine wide regions
for location-interrelated geographical factors. In addition,
the HTSFW model combines the unsupervised with the
supervised models, which has excellent performance in
PM2.5 forecasting. The details of the HTSFW model are
discussed in the following subsections.

A. AUTOENCODER
The first model used in the proposed framework for the air
quality and the geographical data and autoencoder is an unsu-
pervised deep learning model [10]. The simplest autoencoder
network has one hidden layer. The input layer first encodes
the high-dimensional data; then, the hidden layer stores
the low-dimensional codes as the intended data features.
Additionally, the functionality of the output layer is to use the
low-dimensional codes to reconstruct the high-dimensional
input vectors.

FIGURE 2. Autoencoder operation.

Fig. 2 depicts the autoencoder operation, which possesses
only one hidden layer. The dimensionality of the input layer
is five, and the input data are encoded and then stored in the
hidden layer. Therefore, fewer neurons of the hidden layer
lead to the outcome of data compression or dimensionality
reduction. With the same dimensionality as the input layer,
the purpose of the output layer is to decode the hidden rep-
resentation from the previous layer and reconstruct it to the
original input data.

Furthermore, multiple hidden layers can be constructed to
form the stacked autoencoder (SAE) network. In the encoding
phase, the dimensionality of the next layer has fewer neurons
than the previous layer, whichmeans that each neuron ignores
useless data and keeps meaningful data. During the training
process, backpropagation can be utilized for fine-tuning the
connection weights. In the decoding phase, in contrast to
the encoding phase, the dimensionality of the next layer
possesses more neurons than the previous layer; each neuron
learns the data features and reconstructs the original input.

In addition to dealing with the geographical relationship
set of the target stations for PM2.5 forecasting, we develop an
approach to select the target region or site, which is simul-
taneously applicable for extracting the local trends and long
dependencies. Algorithm 1 depicts the proposed method.

Here, di and sj indicate the particular district and sta-
tion, respectively, and i and j denote the district and station
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Algorithm 1 Select the Geographical Relationship Set for the
Target Stations, Where Target Districts Are Given by dtarget

1: Let district D = {di|i = 1, . . . ,m}, station S = {sj|
j = 1, . . . , n}, time T = {tk |k = 1, . . . , o}

2: if ∀di ⊂ D then
3: sort di by ascending order
4: for i = 1 to m do
5: if di = dtarget then
6: sort sj contained in di by ascending order
7: sort tk recorded in sj by ascending order
8: end if
9: end for
10:end if

identifiers, respectively. Moreover, tk denotes the timestamp
of the data record, and k represents the timestamp index.

Algorithm 1 first sorts the district identifiers in ascending
order; the HTSFW model defines the target district identi-
fier afterward. Then, the proposed algorithm searches the
matching district identifier and sets the matching district to
be the target district. After that, the monitoring stations of the
target district are sorted by the station identifiers in ascending
order. Finally, each target monitoring station is sorted by the
timestamps in ascending order.

As shown in Algorithm 1, the target district identifier can
refer to a single district or multiple districts. In other words,
the regional coverage of PM2.5 forecasting can be dynami-
cally conducted in accordance with the proposed algorithm.

In this paper, an experimental dataset with 76 monitoring
stations (Jan. 2014 to Jun. 2019) in Taiwan is downloaded,
which was provided by the Taiwan Environmental Protec-
tion Administration (TWEPA). In the downloaded dataset,
the missing values of the data items were recorded to be
empty. To deal with the missing values in the dataset,
we padded the mentioned data items with zeros.

B. ONE-DIMENSIONAL DILATED CONVOLUTIONAL
NEURAL NETWORK
SVM was developed in 1992 and is a supervised machine
learning model. It has been widely used for data classifi-
cation and regression. SVM is also a forecasting method
based on a statistical learning framework. One of the SVM
models, LSSVM, is a least-squares version of SVM, which
is to minimize the sum of the squared errors of the objec-
tive function. SVR, another version of SVM, was proposed
in 1996 and is mainly used for data regression. Du et al. [37]
proposed the DAQFF model, which can accurately predict
PM2.5 concentrations. To compare the performances of the
proposed and baseline models, SVR, ARIMA, LSTM, GRU,
CNN and RNNwere tested in his work. For the next one-hour
prediction of the Beijing PM2.5 Dataset, RMSE values were
42.61, 41.86, 30.60 and 12.21 for SVR-POLY, SVR-RBF,
SVR-LINEAR and CNN, respectively, while MAE values
were 31.82, 34.93, 20.47 and 9.09 for SVR-POLY, SVR-RBF,

SVR-LINEAR and CNN, respectively. For the next one-hour
prediction of the Urban Air Quality Dataset, RMSE values
were 56.35, 50.51, 29.23 and 20.95 for SVR-POLY, SVR-
RBF, SVR-LINEAR and CNN, respectively, while MAE
values were 47.20, 42.26, 18.82 and 16.36 for SVR-POLY,
SVR-RBF, SVR-LINEAR and CNN, respectively. Based on
the previouslymentionedwork, we, therefore, choose CNN to
build our PM2.5 forecasting framework. In our work, the data
interval is 24 hours, and the forecasting horizons are one, two,
three, six, 12, 24, 36, 48, 60 and 72 day(s).

The next model used in the proposed framework for
the air quality and geographical data is a one-dimensional
dilated CNN. The main consideration is stated as follows.
CNNs are well suited for spatial feature extraction, while
one-dimensional CNNs apply to time-series data. The dilated
convolution network can extract air quality features from the
input time-series data. In addition, using dilation factors can
expand the receptive fields and further enhance the training
efficiency. Both are discussed in the following subsections.

1) 1D-CNN FOR TIME-SERIES DATA FEATURE EXTRACTION
In the image processing field, convolutional neural networks
are commonly adopted [16]. Nevertheless, CNN is also
applied to time-series data prediction. The classical CNN
commonly consists of convolutional, activation and pool-
ing layers. Furthermore, the two-dimensional CNN is pop-
ularly utilized for image classification [35]. In this work,
the HTSFWmodel utilizes the one-dimensional CNN to pre-
dict the PM2.5 concentration. In general, the activation func-
tion of the one-dimensional convolutional layer is depicted as
follows:

sti (x
t ) = ReLU (sti−1(x

t ) ∗ wti + b
t
i ). (1)

As shown in Equation (1) is the activation function of the
convolutional layer, where ∗ indicates a convolution operator,
wti and b

t
i represent the weights and biases, respectively, and

x t represents the t-th time step of the input data.
The HTSFW model uses two connected one-dimensional

convolutional layers to extract the spatial features from the
geographical data, and the two connected layers constitute
the hierarchy to represent the local trend features. In other
words, the two connected one-dimensional CNNs can learn
the local trend features of a single monitoring station and
can also extract the hidden spatial correlation features from
multiple stations.

In Fig. 3, the time-series features of the input air quality
data are first filtered through the one-dimensional convolu-
tion kernel, and the activation function processes the input
features, weights and biases. After that, the extraction process
of the activation function generates the output targets.

Since the air quality input dataset contains time-series data
items, the one-dimensional CNN is adopted to compress the
length of multivariate input data and learn the air quality
data features. Due to the local perception and weight sharing
of the one-dimensional convolution network, the number of
parameters decreases, and the learning efficiency improves.
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FIGURE 3. One-dimensional convolution process.

2) DILATION FOR LEARNING PHASE EFFICIENCY
In our model, we applied 1D-CNN to extract the local trend
and spatial features from the time-series data. Since air qual-
ity data are related to the time sequence, we apply the dilation
factors in the hidden layers to expand the receptive fields.
When the air quality data are inputted to 1D-CNN, by using
the dilation convolution, our model can speed up the learning
process both in the single time step and the multiple time
steps.

Yu and Koltun [41] developed a convolutional network
module that applies dilation factors to aggregate multiscale
contextual information. The dilated convolution module can
exponentially expand the receptive fields without losing cov-
erage. The dilated convolution is defined as follows:

(F ∗l k) (p) =
∑

s={α,α+l}
F (s) k (s) . (2)

Equation (2) states the one-dimensional dilated convolu-
tion, in which dilation rate l convolves input F with kernel k ,
where ∗l denotes a dilated convolution operator and p =
α + l;α = {l−1, 3l−1, 5l−1, 7l−1, . . . ,Ml−1−l} ;M is the
input bucket size.

FIGURE 4. Dilated convolution operation.

Fig. 4 represents the dilated convolution operation. First,
the one-dimensional dataset is input into the dilated convo-
lution layers. Next, the dilation factors are implemented in
the hidden layers; to put it differently, dilation factors are
set to one, two, four and eight. Afterward, as previously
mentioned, the receptive fields of the next layers can expand
exponentially. As a result, the one-dimensional dilated CNN

can decrease the number of parameters and reduce the train-
ing time. For example, Fig. 4 shows three hidden layers
with 16 input data. Based on the depiction of the elapsing
time sequence in Fig. 3, the indices start from zero and pass
through the left to the right.

In [43], Zhen et al. presented a dilated CNN approach for
sequence prediction. The approach utilizes dilation factors to
extend the receptive fields and introduces residual connec-
tions to form a deeper network. The experimental video anal-
ysis results revealed performance enhancements with fewer
parameters and shorter running times. Hence, inspired by
the convolutional neural network with dilation factors, this
work proposes a one-dimensional dilated CNN to expand the
receptive fields and increase the training efficiency for air
quality forecasting.

In this paper, two one-dimensional convolution layers are
concatenated, and the dilation rate is applied to two for both
layers. The number of output filters is 64, and the length of the
1D convolution window is one in the first dilated convolution
layer. In the second dilated convolution layer, we set the
number of output filters to 128, and the length of the 1D
convolution window is one. The padding of the two dilated
convolution layers is parameterized to the same dimension
for both the input and output.

C. GATED RECURRENT UNIT
The exploding and vanishing gradient problems of tradi-
tional RNNs are inevitable. To mitigate gradient problems,
a long short-term memory (LSTM) network was developed
in 1997 [38]. LSTM refers to the internal states within the
memory cells for mitigating the mentioned gradient prob-
lems. In 2014, another RNN variant, the gated recurrent unit
(GRU), was proposed by Cho et al. [14]. LSTM is composed
of three main building blocks: the input gate, forget gate,
and output gate. In other words, GRU has a simpler network
than LSTM. The GRU consists of two main components: the
reset gate and update gate. For this reason, the GRU training
process results in better efficiency.

The reset gate is responsible for the short-term memory,
while the update gate is in charge of the long-term memory.
In this work, GRU is used for certain reasons: one is the
functionality of hidden state handling, which implies that
GRU is well suited to time-series data prediction; the other
is a simpler network, which results in a faster learning pro-
cess. Therefore, GRU is feasible for extracting the long-term
temporal dependency features.

Fig. 5 shows the main components of the GRU building
block. The main components are combined to handle the
hidden states and retain the temporal features over a period
of time. The main components of the single GRU block are
represented as follows:

rt = σ (Wrx t + Urht−1 + br ) , (3)
zt = σ

(
Wzx t + Uzht−1 + bz

)
, (4)

ĥt = φh (Whx t + Uh(rt ◦ ht−1)+ bh) , (5)
ht = (1− zt) ◦ ht−1 + zt ◦ ĥt . (6)
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FIGURE 5. The structure of the GRU unit.

As denoted in the above formulas, rt represents the reset
gate that determines the amount of previous information to
be ignored, zt represents the update gate that determines the
amount of previous information to be passed, ĥt denotes the
candidate hidden state, ht−1 represents the previous hidden
state, and ht represents the current hidden state. In addition,
xt indicates the input data,W and U are the weights, and b is
the bias.

In this work, GRU is applied to retrieve the long-term
and time-series features of the air quality data. The HTSFW
model extracts the local trend features using AE and a
one-dimensional dilated CNN; additionally, the long-term
spatial-temporal correlation features hidden in multivariate
time-series data are extracted by using GRU.

The local trend features and the long-term correlation fea-
tures are concatenated afterward, followed by the flattened
layer, which transforms the features into a vector. In addition,
the vector dimensionality is reduced by the fully connected
layer. Eventually, the output of the training process results in
PM2.5 forecasting.

IV. EXPERIMENTS
In this section, we first describe the experimental dataset
of this work and interpret the experimental parameters
and the settings afterward. Moreover, we conduct perfor-
mance comparisons of the baseline and proposed models, the
ST-DNN [22] and the proposed models.

A. DATASET
In this paper, the experimental dataset is sourced from the
Taiwan Environmental Protection Administration (TWEPA).
The dataset contains air quality-related data that cover all of
the cities and counties in Taiwan, and each data record is
a daily average. The data features include air quality, geo-
graphical and meteorological data such as PM2.5, longitude,
latitude, SO2, CO, O3, NO2, PM10, wind speed, temperature
and humidity.

The time of the dataset is from Jan. 2014 to Jun. 2019, and
the data interval is 24 hours. There are 76 monitoring stations

built around all cities and counties in Taiwan. To deal with the
missing values in the dataset, those recorded as empty were
padded with zeros.

Many works show that air quality is highly related to
meteorological circumstances. For instance,moderate air pol-
lution is due to high wind speed, good air quality can be due
to high atmospheric pressure, and high humidity deteriorates
the PM2.5 concentration [11], [29].

To prepare the experimental dataset, we sort the data items
by geographical location after downloading the raw data
from the TWEPA. That is, the neighboring cities/counties
are sorted in order. For data preprocessing, we extract the
spatial correlation features between the air quality and the
geographical regions.

In the experimental dataset, each monitoring station
possesses air quality, geographical and meteorological data
features. In addition, each data item contains a recorded
timestamp. The 76 monitoring stations are distributed in Tai-
wan; therefore, this work can predict the PM2.5 concentration
in Taiwan and the city-/county-wide regions, as well as the
particular sites.

B. EXPERIMENTAL SETUP
This section describes the system setting of the experimental
environment and the parameters of the HTSFW model. The
experimental environment is configured on a Windows 10
system, and the resources are equipped with an Intel(R)
Xeon(R) CPU E5-2620 2.10 GHz and 32 GB memory. Our
experiments are completed in Python 3.7.3 with the deep
learning libraries Keras 2.2.4 on top of TensorFlow 1.9.0 to
execute the baseline and the proposed models.

The HTSFW model is compared with five deep learning
models and one machine learning model. The baseline mod-
els embrace convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), and two variants of RNNs,
which include long short-term memory (LSTM) and gated
recurrent units (GRUs), and support vector regression (SVR).
To further compare with the ST-DNN model [22], it is also
considered a baseline model.

In our work, the default parameters in Keras are applied
to weight initialization. During the training phase, for over-
fitting prevention, a dropout rate of 0.3 is configured.
In addition, the lookup size, batch and epoch are 1, 32 and
100, respectively. The activation functions of CNN and RNN
(including LSTM and GRU) are ReLU and tanh, respectively.
Adam is used as the optimizer. The learning rate is set to
0.001. The values of beta one and beta two are 0.9 and 0.999,
respectively. The epsilon is 1e-7.

For the baseline models, the number of hidden layers
is set to one by default, and each hidden layer possesses
128 neurons. In the HTSFW model, we first utilize two AE
layers that concatenate with two one-dimensional convolu-
tion layers with a dilation factor of two for air quality and
geographical feature extraction. In addition, the number of
output filters and the length of the convolution window of
each layer are applied to (64, 1) and (128, 1), respectively.
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TABLE 1. Prediction error comparison between the baseline and proposed models.

We also adopt each of the two GRU layers with 128 hidden
neurons for air quality and meteorological feature extraction.
The mean square error (MSE) is used as the loss function
in the training process, and the activation function used in
the output layer for target prediction is tanh. Furthermore,
the input time-series data are normalized to [0, 1] by using the
min-max function, while the missing values in the dataset of
the data items padded the data items with zeros. The dataset
is divided into two parts: the first four years of data, and the
last 18 months of data. The former part is used for training,
and the latter part is used for testing.

For training process evaluation, two metrics, MAE and
RMSE, are applied to measure the learning performances.
The two error indices are denoted as follows:

MAE =
1
n

∑n

i=1
|yi − ŷi|, (7)

RMSE =

√
1
n

∑n

i=1

(
yi − ŷi

)2
, (8)

where n stands for the number of testing data, yi indi-
cates the actual PM2.5 value, and ŷi represents the predicted
PM2.5 value.

C. PERFORMANCE COMPARISON OF BASELINE
AND PROPOSED MODELS
In this section, the HTSFW model is compared with the
baseline models. It is noted that the coverage area of PM2.5
prediction is all the cities and counties in Taiwan, and the air
quality data are from the 76 monitoring stations. In addition,
both the single and multiple time steps of PM2.5 forecasting
are shown in Tables 1 and 2.

Since all the data items are 24-hour averages, one step
indicates one day later, and multistep represents the specified
days later. The prediction size in Tables 1 and 2 specifies a
single time step and multiple time steps. That is, the predicted
size of one means the PM2.5 prediction one day later. In this
experiment, CNN, RNN, LSTM, GRU, SVR, and ST-DNN
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TABLE 2. Prediction error comparison between the baseline (ST-DNN [22]) and proposed models.

of baseline models and the proposed HTSFW model are
compared by indices MAE and RMSE, respectively.

As shown in Table 1, the performance of PM2.5 forecasting
24 hours later shows that the HTSFW model can decrease
the ratio of MAE by 26.52%, 25.92% and 40.12% by using
CNN, RNN and LSTM, respectively. The HTSFW model
can reduce the percentage of RMSE by 22.57%, 7.32% and
42.11% by applying the respective CNN, RNN and LSTM
models.

In Table 2, for the PM2.5 prediction one day later, the per-
formance indicates that the HTSFW model can decrease
the proportion of MAE by 36.13%, 66.26% and 53.13%
by utilizing GRU, SVR and ST-DNN, respectively. In addi-
tion, the HTSFW model can reduce the scale of RMSE by
36.24%, 56.46% and 46.22% with GRU, SVR and ST-DNN,
respectively.

In addition, we highlight the preprocessing of the missing
data items in the experimental dataset. The lack or absence
of data item values is inevitable, such as the malfunction of
the monitoring station over a five-year duration. The handling
of the missing data values is important because it is related to

the experiment proceeding. In this work, themissing values of
the experimental dataset are padded with zeros. The missing
values with the zero-padding approach are applied to all the
baseline models and the proposed model.

As shown in Tables 1 and 2, the prediction performances
of the proposed model are compared with four classic deep
learning models, one traditional machine learning model and
one existing deep learning model. The comparison includes
single- and multistep forecasting performances, and the pre-
diction sizes are parameterized to ten time steps. In addi-
tion, MAE and RMSE are used for performance comparison.
In our model, the columns of improvement show a reduction
in the ratio of the prediction errors. Based on the improvement
values, the proposed model is superior to the six baseline
models in the ten time steps by using MAE and RMSE.

The recording period of the experimental dataset is from
01/01/2014 to 06/30/2019, and the data interval is 24 hours.
There are 148,399 data samples in total. The time of the train-
ing data is from 01/01/2014 to 12/31/2017, and the number
of data samples is 107,357 (72%); the time of the testing data
is from 01/01/2018 to 06/30/2019, and the number of data
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samples is 41,042 (28%). To consider all the seasonal factors
affecting the PM2.5 concentration, we use a forecasting period
between 01/01/2018 and 12/31/2018. In terms of the perfor-
mance comparison of all the forecasting models, the HTSFW
model can also extract the time-series data features from the
seasonal interrelation.

FIGURE 6. Average MAE comparison. Note: average MAE in ten different
time steps for each model; the measuring unit of MAE is µg/m3.

Fig. 6 depicts the average values of the MAE metric in
ten different time steps for each baseline and our model.
For PM2.5 prediction analysis, we further average the MAE
values for each model based on MAE in Tables 1 and 2.
According to the bar charts corresponding to MAE averages
plotted in Fig. 6, the prediction errors of the HTSFW model
are clearly lower than those of the baseline models. SVR has
the highest MAE average of 10.76, while HTSFW has the
lowest MAE average of 7.26, which means that the proposed
model can reduce the prediction errors for both short-term
and long-term periods.

FIGURE 7. Average RMSE comparison. Note: average RMSE in ten
different time steps for each model; the measuring unit of
RMSE is µg/m3.

Fig. 7 denotes the average values of the RMSE index in ten
different time steps for the entire baseline and the proposed
model. As shown in the bar charts, HTSFW reveals the lowest
prediction error. The highest RMSE average of 13.24 is SVR,
and the lowest MAE average of 10.05 is HTSFW. In sum-
mary, we compare the prediction errors of HTSFW with the
existing baseline models by MAE and RMSE metrics, and

TABLE 3. Training time comparison between the baseline (ST-DNN [22])
and proposed models.

the resulting figures indicate that the HTSFW model can
remarkably decrease the PM2.5 prediction errors.

According to ten different time step performance com-
parisons in Tables 1 and 2, the HTSFW model is superior
to all the baseline models overall. Based on the experimen-
tal results, the contribution of this paper is stated as fol-
lows. First, the HTSFW model can accurately predict PM2.5
concentrations in various regions concurrently, for example,
urban and rural areas. In other words, HTSFW can predict
PM2.5 concentrations for monitoring stations located nation-
wide. Second, the HTSFWmodel can also accurately predict
PM2.5 concentrations in not only a short period of time but
also a long period of time. PM2.5 forecasting in those periods
is superior to the existing deep learning models. Therefore,
HTSFW is applicable for predicting PM2.5 concentrations in
both single time step and multiple time steps.

D. PERFORMANCE COMPARISON BETWEEN ST-DNN
AND PROPOSED MODELS
In this section, the HTSFW model is further compared to
the ST-DNN model [22]. First, we compare the training time
for all 76 monitoring stations in ten different time steps.
Next, we select four cities/counties in Taiwan and compare
the prediction errors of the monitoring stations located at
each of the four cities/counties. In addition to comparing the
prediction errors, we further select four particular sites that
are located in the four cities/counties.

As shown in Table 3, we compare the training time of
PM2.5 forecasting of ST-DNN with that of HTSFW. In other
words, the training time of all the monitoring stations in
Taiwan is evaluated. In accordance with the training time
comparison, HTSFW can reduce the time by at most 15.67%
and at least 8.23%. The average training time in ten different
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TABLE 4. Prediction error comparison between ST-DNN [22] and proposed models.

time steps indicates that ST-DNN takes 20.57 seconds and
HTSFW takes 18.11 seconds. As a result, HTSFW can
decrease the ratio of the average training time by 11.96%.

Fig. 8 shows the geographical map of all the cities/counties
in Taiwan. The upper part of the map in green is the northern
region, the middle part in blue is the central region, the lower
area in yellow is the southern region, and the right side of
Taiwan in red is the eastern region. To predict the PM2.5 con-
centration of the specified regions, we apply the developed
Algorithm 1 to select the target districts. This work selects
one city/county from the four regions mentioned previously
indicated by the red arrow signs on the map. The four target
districts are Taipei City (TPE), Taichung City (TCH), Tainan
City (TAN) and Taitung County (TAT). Our Algorithm 1 can
define arbitrary target district identifiers, although we select
the four cities/counties in consideration of their representa-
tiveness of the four regions in Taiwan. In addition, the four
selected target districts possess different weather conditions
and climate circumstances.

Table 4 represents the experimental comparison of pre-
diction errors between ST-DNN and HTSFW. We train the
two models in five different time steps and compare the
forecasting errors of the four target districts. In the test-
ing data of the four cities/counties, the highest maximum
PM2.5 concentration value of 74 is in TAN, while the lowest
maximum value of 23 is in TAT. For the PM2.5 forecasting

one day later, the HTSFW model can decrease the ratio of
MAE by 35.04% and 64.88% in TAN and TAT, respectively;
additionally, HTSFW reduces the scale of RMSE by 40.62%
and 57.14%.

With respect to the predicted size of 12, the HTSFW
model decreases the percentage of MAE by 5.45%, 18.75%,
19.82% and 37.67% in TPE, TCH, TAN and TAT, respec-
tively, while HTSFW can reduce the percentage of RMSE by
9.39%, 9.58%, 19.19% and 31.33%, respectively. According
to the prediction comparison in the five different time steps,
the HTSFW model is conspicuously better than the ST-DNN
model. From the PM2.5 forecasting of the nationwide cover-
age and the regional districts, HTSFW performs well in the
time series with air quality data prediction.

In Table 4, the experimental results of the HTSFW model
show that the forecasting errors of the four regions in five
prediction sizes decrease. Since ST-DNN is an adaptive deep
learning model, it is composed of traditional machine learn-
ing and classic deep learning models. Our hybrid model is
further compared to the ST-DNN model by the peak error
values. The peak error indicates that the peak predicted PM2.5
values of the two models are different from the observed
PM2.5 values. Based on the experimental results, HTSFW
possesses lower peak errors than ST-DNN in the TPE, TCH
and TAT regions of five predicted sizes. For the TAN region,
HTSFW has lower peak errors than ST-DNN of predict sizes
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FIGURE 8. Regional city/county for PM2.5 forecasting in Taiwan. Note:
https://eego.epa.gov.tw/english/tour1/index1.asp? Parser = 99,10,27,,,,,1.

FIGURE 9. PM2.5 forecasting comparison between two models
(ST-DNN [22]) at station Yangming in Taipei City.

one and two. For a single time step in particular, HTSFW
has almost half the peak error values of those of ST-DNN.
For prediction sizes three, six and twelve, HTSFW has
slightly higher peak error values than ST-DNN.

Fig. 9 depicts the particular monitoring station Yangming
in Taipei City; the station Yangming is located in the moun-
tain area. The maximum PM2.5 concentration of the test-
ing data of station Yangming is 32 in spring. The black
trend represents the ground truth, the red line indicates the
PM2.5 prediction of ST-DNN, and the blue line represents
the PM2.5 prediction of HTSFW. From the plotted depiction,
the one-year prediction of HTSFW is closer to the ground
truth than that of ST-DNN.

FIGURE 10. PM2.5 forecasting comparison between two models
(ST-DNN [22]) at the Fengyuan station in Taichung City.

Fig. 10 shows the PM2.5 forecasting of station Fengyuan,
which is located in the urban area of Taichung city. The
maximum value of the PM2.5 concentration of the testing
data at the Fengyuan station is 52 in the spring. According to
the prediction results, the ST-DNN model [22] is worse than
the HTSFW model, especially the peak points of the trend,
as shown in the forecasting figure.

FIGURE 11. PM2.5 forecasting comparison between two models
(ST-DNN [22]) at station Tainan in Tainan City.

In Fig. 11, the figure indicates the PM2.5 prediction of the
Tainan station located in an urban area in Tainan City. The
maximum value of the PM2.5 concentration of the testing data
at the Tainan station is 65 in the spring. From the plotted
representation, the forecasting trend of the HTSFW model
is quite close to the ground truth. In contrast, the PM2.5
prediction of ST-DNN is close to the ground truth when the
values are below 20. However, the prediction of the ST-DNN
model [22] is evidently different from the ground truth when
the values are above 20.

In Fig. 12, the figure represents the PM2.5 forecasting of the
Guanshan station, which is located in a rural area in Taitung
County. In eastern Taiwan, there is a sparse population, and
most of the people in the east earn a living by farming,
particularly Taitung. The maximum PM2.5 concentration of
the testing data at station Guanshan is 21 in autumn. Due to
lower pollution from industry and vehicular traffic, the annual
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FIGURE 12. PM2.5 forecasting comparison between two models
(ST-DNN [22]) at the Guanshan station in Taitung County.

PM2.5 concentrations in Taitung are mostly below 20. Despite
the fact that both the forecasting trends of ST-DNN and
HTSFW have no obvious difference from that of the ground
truth, the figure shows that the prediction results of HTSFW
are better than those of ST-DNN.

In this work, to evaluate the proposed model and the devel-
oped Algorithm 1, we first compare the baseline models with
the proposed model by using the air quality data from the
76 monitoring stations in Taiwan. Furthermore, we compare
the training time and the prediction errors of the existing
ST-DNN model [22] with those of the proposed HTSFW
model. For the comparison of the ST-DNN and HTSFW
models, we compare their prediction errors of the four spec-
ified target districts and the sites belonging to each district.
Moreover, we compare the prediction errors of selected par-
ticular sites belonging to each of the four target districts.
According to the experimental results, the HTSFW model
outperforms other models in different coverage regions and
prediction periods.

Based on the experimental results, the innovation of the
HTSFW model is expressed as follows. First, for air quality
and geographical data training, the HTSFW model adopts
the dilated CNN for feature extraction. Dilation factors are
used to expand the receptive fields that lead to increased
training efficiency. In addition, HTSFW applies GRU to
time-series feature extraction for air quality and meteorolog-
ical data learning. As shown in Table 3, the learning time
decreases significantly because the GRU network is simpler
than the LSTM network. Second, we develop an innovative
algorithm to select the target district for PM2.5 forecasting
in Algorithm 1. By using the proposed Algorithm 1, the pro-
posed HTSFW model can accurately predict the PM2.5 con-
centration of a particular site as well as the specified regions.
In Table 4 and Figs. 9-12, HTSFW can accurately predict the
PM2.5 concentration of the four cities/counties in northern,
central, southern and eastern Taiwan. Furthermore, for the
selected monitoring station in each of the four cities/counties,
the PM2.5 prediction of the HTSFWmodel is obviously better
than that of the ST-DNN model [22].

V. CONCLUSION
In this paper, we propose a hybrid time-series deep learning
model for daily-based PM2.5 forecasting. The accuracy of the
PM2.5 prediction is enhanced by considering the air quality
data and the meteorological data simultaneously. In addition,
the PM2.5 concentration is also related to geographical loca-
tion and time frame. For the performance comparison, we first
compare the MAE and RMSE of PM2.5 prediction between
the baseline and the proposed models. For ten different time
steps, our model is superior to the baseline models. Moreover,
to predict the air quality of the four city-/county-regions,
the proposed model is further compared to the ST-DNN
model [22]. The selected regions are located in northern,
central, southern, and eastern Taiwan. Furthermore, we select
one monitoring station in each region for the accuracy com-
parison. From the experimental results, the proposed model
is accurate for all the regions and suitable for local regions
and specified sites.

In our work, the proposed HTSFW model can accurately
predict the PM2.5 concentration of the specified monitoring
station or regional district in Taiwan. In addition, in this
COVID era and post-COVID period, both the administra-
tion and citizens have to avoid symptomatic infection and
spread of the epidemic. For instance, timely announcements
of the setup of screening stations and the confirmed case
locations are both critical factors. The government needs
to effectively manage and predict the COVID-19 vaccine
distribution; hence, the forecasting models need to consider
the spatial correlation, temporal dependency, air quality, and
traffic transportation simultaneously. In other words, the fore-
casting models have to effectively extract the data features
from variant sources and accurately predict the COVID-19
vaccine distribution in time.

In this work, we develop a hybrid deep learning model
to increase the accuracy of PM2.5 forecasting. Such hybrid
models are based on the combination of multiple machine
learning and/or deep learning models. The adaptive ST-DNN
model is proposed to predict the PM2.5 concentration of a
single monitoring station, which is combined with machine
learning and deep learning models. Our HTSFW model is
composed of multiple deep learning models that enhance
the prediction accuracy of the existing models. Since 2014,
GANs have been widely applied to time-series data such as
natural language processing [15], [17]. Air quality prediction
is highly related to time-series data, and therefore, we will
consider utilizing GAN for our future work.

GAN was designed in 2014 and is one of the deep learning
models [15], [17]. In this model, two neural networks com-
pete with each other based on zero-sum game theory. The
generative network generates new data through unsupervised
learning, and the discriminative network evaluates the new
data through a competitive process. It has been widely used
for image, video, and natural language processing. Inspired
by the sequential data of GAN applications, we will seriously
consider including GANs in future work.
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For future work, we will further study the heights of each
monitoring station for PM2.5 prediction. In addition, we will
also develop a new PM2.5 forecasting model to deal with
seasonal climate change to enhance the air quality prediction
accuracy.
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