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ABSTRACT An improved method for tracing electric flux lines in the vicinity of the overhead high voltage
direct current (HVDC) transmission lines is developed by using parametric curves. Based on the geometric
relation between the electric field vector and the derivative of the parametric curve function, the electric flux
lines can be successfully traced without accumulation of the numerical error caused by the differentiation
for calculating the electric potential. Considering the structural characteristics of the transmission line,
the control points at both ends of the parametric curve can be easily located, and the remaining control points
are modified tominimize an error function defined by the electric field vectors at nodes along the curve. Once
the electric flux lines are traced, a series of flux tubes is created by bundling adjacent flux lines, and the nodal
electric field vectors and space charge densities are iteratively updated. In order to consider the ionized space
charge effect, new flux lines of modified electric field are traced, which in turn affects the existing space
charge distribution. The process is repeated until the effect of the space charge is fully considered. The
performance of the proposed algorithm is verified by comparing the resulting ground profiles of the ion flow
field distribution with the result of the analytical model and the long-term measurement of the full-scale
transmission line.

INDEX TERMS Corona discharge, flux tracing method, HVDC transmission, ion flow field, space charge.

I. INTRODUCTION
The ionized space charges generated by corona discharge
on the surface of the overhead high voltage direct cur-
rent (HVDC) transmission conductors flow into inter-
electrode space under the effect of various types of forces.
In general, the ion trajectories are mainly influenced by
three factors: 1) the electric field distribution determined by
the voltage applied to the conductor and the ionic polarity,
2) the electrostatic force between ionized space charges, and
3) mechanical force exerted by wind of atmospheric air. The
factors listed above will determine the transport direction of
the ionized space charges, and this path can be represented
by a flux line starting from the discharging surface to ground
(or the surface to conductors with the opposite polarity).
Unlike the AC transmission environment, the static electric
field distribution produced by the DC conductor causes the
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ion trajectory to be directed in a constant direction resulting
in a power loss due to the continuous current flow drain from
the source [1].

Since the first approach to obtain an analytical solution
for a concentric cylindrical configuration was developed by
Townsend [2] in the early 1900s, attempts have been made to
analyze the practical conductor-ground configuration. With
several simplifying assumptions, an analytic solution for the
line-to-ground configuration was proposed by Deutsch [3],
and one of the assumptions in this study served as the
basis for the early numerical methods. In general, the early
analytic solutions were mainly focused on obtaining the
voltage-current characteristic of the ion flow field in still
air. As practical interest had extended to the electric field
and space charge distribution in the inter-electrode region,
especially on the ground plane, the first numerical method
based onDeutsch’s assumptionwere developed in 1969. Over
the past half century, numerous studies have been conducted
to define an appropriate numerical analysis model, which
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can be categorized into two types according to their basis:
flux tracingmethods and element-basedmethods. This article
discusses the former in detail to propose an improved version
of flux tracing method.

Maruvada and Janischewskyj [4], [5] developed the first
numerical method based on Deutsch’s assumption, which
supposed that the space charge affects only the magnitude of
the electric field but not its direction. In this method, an effi-
cient evaluation of the electric field and space charge distri-
bution was described using a computational technique, which
is called the flux tracing method (FTM). The FTM introduced
a field modification factor to express the electric field vector
in the presence of space charge. Based on Deutsch’s assump-
tion, the electric field and space charge distributions can be
described with respect to the variation of electric potential
along the flux line. Since the flux lines specifies the transport
direction of the space charges, a two-dimensional problem
can be simplified into a series of one-dimensional equations
and solved along each flux line.

Despite the simplicity and efficiency, a major draw-
back of Deutsch’s assumption had been criticized by many
researchers, leading to widespread use of the element-based
methods. According to the experiment results conducted
in [6]–[8], the result with Deutsch’s assumption is acceptable
when the corona discharge is either negligibly small or strong
enough to be saturated. It was concluded that a distortion
effect on the electric field line influenced by the ionic space
charge distribution cannot be considered and that a signifi-
cant amount of error could seriously affect the accuracy of
calculations.

To consider a non-linearity caused by the fact that an ion
flow field modifies the ionic space charge distribution while
being influenced by the drifting ions, Maruvada improved the
conventional FTMwith an iterative scheme [9]. The repetitive
evaluations and modifications of the electric field lines and
space charge density could successfully describe the ionic
space charge effect on the ion flowfield. This iterativemethod
was subsequently extended by the same author to consider
ambient electric fields produced by atmospheric electricity at
the ground surface [10] and the effect of wind velocity [11].

Several applications of FTM can be found in relatively
recent literatures. Zhang et al. [12] used the FTM in the
estimation of the initial ionic space charge distribution when
developing the method of characteristics. The electric field
lines around the bipolar transmission line were presented
to illustrate the distortion effect by the ionic space charge
distribution. An effort to combine the FTM and the finite
element method (FEM) was made by the same author to
reduce the calculation time of the FEM [13].

Qiao et al. [14] established the non-linear algebraic equa-
tions using the finite-difference method to discretize the dif-
ferential equations based on the FTM. The author showed that
a better convergence in the iterative process can be achieved
with the directly enforce boundary condition. Based on the
previous work, the author developed the iterative FTM for
the AC/DC hybrid transmission lines [15].

The electric flux tracing process has also been utilized
in other studies that are not based on the FTM. Abdel-
Salam and Al-Hamouz [16] proposed a numerical algorithm
for analyzing the unipolar ion flow field in line-to-ground
transmission line configuration based on the finite-element
grid and the flux tubes. The flux tubes, which is composed of
the electric flux lines, are iteratively regenerated to consider
the non-linearity between the electric field and space charge
distribution. Recently, two different methods were presented
by the same author to trace the unipolar flux lines from a
starting point on the conductor surface to the ground [17].
One of the methods depends on the magnitude and direction
of the electric field, and the other relies on the equation
consisting of xy-coordinates and the angle of the starting point
of the flux line.

A general process for tracing the electric flux lines begins
with finding equipotential contours in the inter-electrode
region. By definition, the direction of the electric field vector
must be perpendicular to the equipotential line (or surface)
at any point. Therefore, once the equipotential contours are
successfully defined, the electric flux line can be traced by
starting at a point on the conductor surface and continuing
perpendicular to the equipotential lines until it terminates.
Along the traced flux line, the current continuity equation,
which is one of the governing equations, is to be solved for the
electric potential and space charge density so that the current
conservation law is satisfied.

In the conventional FTM, the governing equations, which
consists of Poisson’s equation and the current continuity
equation, are solved for the scalar electric potentials instead
of the electric field vectors to find the equipotential contours.
Since the current continuity equation is expressed in terms of
the electric field vector, which is defined as the negative gra-
dient of a scalar potential, a numerical differentiation process
is inevitable. As Takuma and Kawamoto [18] pointed out,
however, first-order derivatives included in the potential term
cause a significant numerical error, which is accumulated in
the iteration process, resulting in divergence or oscillation
of the solution. Moreover, an enforced Dirichlet boundary
condition for the potentials on the outermost boundary, which
is not zero in practice, can cause the backpropagation of the
error within the region. In order to overcome the difficulties
regarding the numerical differentiation, the numerical meth-
ods using the integral form of the current continuity equation
have been proposed [19]–[22].

This article proposes a new flux tracing method based on
parametric curve optimization. The flux lines are traced by
minimizing an error function defined by the relation between
the two vectors of the electric field and the gradient of
the parametric curve. Since the derivative of the parametric
curve can be analytically derived, the flux line can be traced
without the numerical differentiation process by aligning two
vectors at any point along the flux line. Once the flux line
is successfully traced, the space charge distribution can be
obtained using the integral form of the current continuity
equation.
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This article is organized as follows. Section I presents a
historical review of published research works on the FTM and
its difficulties. Section II describes the given problemwith the
governing equations and investigates the detailed methodol-
ogy of the proposed flux tracing strategy. Section III provides
the numerical results from the analytic unipolarmodel and the
bipolar line-to-groundmodel to verify the effectiveness of the
proposed method. Finally, Section VI presents a conclusion
to review the main points of the article.

II. PROBLEM DESCRIPTION AND FORMULATION
In this section, the ion flow effect due to overvoltage induced
in the overhead DC transmission line is described by the
governing equations with general assumptions. In order to
avoid the numerical differentiation process, a curve-based
method for tracing flux lines is proposed and investigated
for its physical correctness. Finally, the integral form of
the current continuity equation is solved for the ionic space
charge density, and the modified ion flow field line is traced
iteratively to consider the non-linear interaction.

A. GOVERNING EQUATION
In general, the corona discharge resulting ionization can
be mathematically defined by making several simplifying
assumptions [1], and some assumptions adopted in this article
are listed as follows:
1) The thickness of the ionization layer around coronat-

ing conductor is negligible compared to the distance
between the conductor and ground plane.

2) The electric field remains constant at the corona onset
gradient of the conductor.

3) The constants for ionic mobility depends on the ionic
polarity and assumed to be independent of the electric
field strength.

4) The wind velocity is assumed to be time-invariant.
By the first assumption, the inter-electrode region is

assumed to be filled with the ionic space charges. The second
assumption simplifies the complex ionization process on the
discharging surface in terms of the magnitude of the electric
field [23]. This assumption is used as a forced boundary
condition at the surface of the conductor. The third and fourth
assumptions simplify the expression of the ion current density
in the current continuity equation.

The non-linear relation between the electric field and ionic
space charge distribution can be described by the following
equations [1].

∇ · E =
(ρ+ − ρ−)

ε0
(1)

J± = ρ±

{
µ±E∓

(
D±
ρ±
∇ρ±

)
±W

}
(2)

∇ · J± = ∓
Riρ+ρ−

e
(3)

where E and, J are the electric field and the current density
vectors at any point in space, respectively, ρ is the ionic space
charge density, ε0 is the permittivity of free space, µ is the

ionic mobility,D is the diffusion coefficients of ions,W is the
time-invariant wind velocity vector, Ri is the recombination
coefficient, and e the electron charge. The signs on µ, ρ, and
J are the polarities of the ionic mobility, charge density, and
resulting current density, respectively.

The space charge distribution is influenced by the electric
field produced by the induced voltage on the conductor, and
the modified ionic space charge distribution affects the exist-
ing electric field in space. In the iterative scheme, both E and
ρ are updated to satisfy (1) to (3). In this article, as in other
integral-basedmethods, (1) is discarded, and the integral form
of (3) will be presented in Section II-C.

B. FLUX LINES BASED ON PARAMETRIC CURVE
A Bezier curve is a space curve, which is contained within
the convex hull of the Bezier polygon defined by several
control points. Due to the fact that the tangent vectors at each
end are directed along the first and last span of the polygon,
boundary conditions for the electric field on the conductor
surface and ground plane can be easily satisfied. Also, since
the electric field distribution is continuous and smooth in the
inter-electrode region, the flux lines can be represented by
parametric curves that are assumed to originate from the con-
ductor surface and terminate on the ground plane or the other
conducting surfaces with the opposite polarity. The shape of
the curve can be determined by adjusting the locations of sev-
eral control points. The physical correctness and effectiveness
of the curve-based approach will be discussed in this section.

A parametric Bezier curve of degree M is defined as

B (τ ) =
M∑
i=0

MCiPi (1− τ)M−i τ i (4)

where τ is parameters defined from 0 to 1, i the summation
index, C the binomial coefficient, and Pi the ith control point
out of M points. In the unipolar conductor-plane configu-
ration, the first point P0 and the last point PM are subject
to be located on the conductor surface and on the ground,
respectively. Note that B does not stand for the magnetic field
intensity, which is not considered in this article. A Bezier
curve of degree 3 is shown in Fig. 1(a) for example. In this
case, P0 and P3 are fixed at the conductor surface and the
ground plane, respectively, while the rest of control points
are adjusted to determine the shape of the curve.

The derivative of (4) with respect to τ is well-known and
can be expressed as

B′ (τ ) =
M−1∑
i=0

M (Pi+1 − Pi) bM−1,i (5)

where bM ,i is Bernstein basis polynomials of degreeM and is
equal to MCi(1− τ )M−iτ i. Since B is supposed to be shaped
after the electric flux line,B′ must be tangential to the electric
field vectors at any point along the curve. In addition, B′(0)
andB′(1) must be normal to the conductor surface and ground
plane, respectively.
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FIGURE 1. An example of parametric curve. (a) A Bezier curve of
degree 3. (b) The relative angle difference between E and B′ .

Based on the derivatives and electric field vectors along the
curve, an error function can be defined as follows.

ε =
1
2
(1− cosψ)2 (6)

where cosψ = (E · B′)/(|E|
∣∣B′∣∣) from the relative angle

difference ψ between E and B′ as shown in Fig. 1(b).
The error function above represents the difference in direc-

tions between the tangential components of the curve and
electric field vectors at any point along the flux line. There-
fore, an electric flux line can be successfully traced with the
adjusted control points byminimizing the error defined in (6).

To minimize the error function, various techniques such as
the least square method (LSM), the pattern search method
(PSM), and the steepest descent method (SDM) can be uti-
lized. In this article, in order to deal with the non-linear rela-
tion between the coordinates of PM on the arbitrary shaped
boundary, the SDM-based optimization algorithm is used to
determine the control points.

In the SDM-based algorithm, the local minima for any
given function can be searched by utilizing the steepest gradi-
ent in an iterative manner. The gradient of the error function
with respect to the control points is used to determine the
direction of fastest decrease toward the minimum, and the
searching process is controlled by a relaxation factor. The
updated control points to minimize (6) can be obtained as

Pk+1 = Pk − γ
∇εk∣∣∇εk ∣∣2 · εk (7)

where k represents the iteration number, and γ is the relax-
ation factor which is generally less than or equal to unity.

The gradient of the error function in (7) with respect to the
control point can be derived as

∂ε

∂Pi
= −

(
1− cosψpi

)
·
∂ cosψpi
∂Pi

(8)

∂ cosψpi
∂Pi

=
Epi∣∣Epi ∣∣ ·

[
1∣∣B′pi ∣∣2

(
−
∂
∣∣B′pi ∣∣
∂Pi

B′pi +
∣∣B′pi ∣∣ ∂B′pi∂Pi

)]
(9)

where the subscript Pi indicates the ith control point at which
the error is defined by (6).

Substituting (5) into (9) and simplifying with a parametric
function K , the gradient of the error function at a specific
control point Pi(xi, yi) can be expressed as

∂ε

∂xi
= (1− cosψi)

K ′i
|B′i|2

(
B′xi cosψi −

∣∣B′i∣∣
|Ei|

Exi

)
(10)

∂ε

∂yi
= (1− cosψi)

K ′i
|B′i|2

(
B′yi cosψi −

∣∣B′i∣∣
|Ei|

Eyi

)
(11)

K ′i = τ
i (1− τ)M−i

(
i
τ
+
M − i
1− τ

)
(12)

The space-charge-free electric field used in (6) can be eval-
uated at any point in space from the surface charge density
generated by the conductor voltage. The unknown surface
charge density can be calculated by the method of moment
(MoM). The computational load can be significantly reduced
by concentrating the region of interest on the conductor sur-
face where the charge can actually exist. A detailed MoM
formulation is presented in [22].

The process for tracing the flux line can be described by
the following steps.

Step 1) An initial flux line is assumed by (4) with P0 fixed
at a specific point on the conductor surface and
PM located on the ground plane. P1 and PM−1
are set to satisfy the boundary conditions on the
conductor surface and ground plane.

Step 2) The derivative of the curve is calculated by (5).
Step 3) The error function is defined along the curve

by (6).
Step 4) The coordinates of control points are modified to

minimize the error function.
Step 5) The flux line is traced and represented by the

Bezier curve with new control points modified in
Step 4).

The preceding five steps are repeated for different points
around the conductor surface to obtain the entire flux lines in
the region of interest. The overall procedure of the proposed
algorithm is shown in Fig. 2.

For a unipolar DC line conductor 0.1m in radius suspended
2 m above a ground plane, the flux lines for the electro-
static field are shown in Fig. 3. Gray dotted lines are the
initial curve assumed in Step 1), and solid lines are the final
Bezier curve. In this case of the unipolar configuration, only
y-coordinates of the last control points are restrained to be
zero to ensure that they are properly grounded. Fig. 4 shows
the error defined by (6), which is normalized as a ratio to
the initial value. The normalized amount of error is reduced
to less than 1% of the initial error after 20 iterations, and it
converged to the order of 10−5% of the initial value.

The proposed method is applicable to the bipolar line-to-
ground configuration. In this case, the flux lines can be termi-
nated either the ground plane or the surface of the conductor
with the opposite polarity. In terms of the physical character-
istic of the electric field distribution between the conductors
of two different polarities, however, a single curve may not
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FIGURE 2. Flowchart of the proposed flux tracing algorithm.

FIGURE 3. Traced flux lines around a unipolar DC transmission line based
on Bezier curve optimization.

be sensitive enough to represent the flux line. In addition,
the distorted flux line by the ionic space charge may not
be assumed to be smooth anymore. Therefore, a piecewise
technique must be introduced to trace an arbitrarily shaped
flux line.

FIGURE 4. Amount of error through the SDM iteration normalized to the
initial value.

The piecewise Bezier curve optimization algorithm pro-
vides an ability to trace the flux lines, which are assumed to
be distorted by the physical factors such as the line polarity,
the ionic space charge distribution, and the wind velocity.
In the piecewise algorithm, a set of Bezier curves is used
to trace a single flux line. The x-domain is divided into
m subdomains, the length of which depends on the instan-
taneous rate of change of the flux line. The starting point
of the first curve remains at the conductor surface, but the
last control point is assumed to be located at the end of
the first subdomain. Once the curve is optimized in the first
subdomain, the second curve starts at the end point of the first
curve while maintaining its slope. This process is repeated
for the entire subdomain until the curve reaches the outmost
boundary. The electric flux lines for the bipolar line configu-
ration is presented in Fig. 5. It shows that the abrupt changes
in the electric field distribution, especially near the origin, are
traceable by the piecewise Bezier curve optimization.

FIGURE 5. Traced flux lines for the bipolar line configuration using the
piecewise Bezier curve optimization.

The presence of wind in the transverse direction to the
transmission line will also influence the ion trajectories.
As stated in [11], the current density in (2) can be reorganized
to combine the effects of the electric field and wind velocity
as

J± = µ±ρ±

(
E+

W
µ±

)
. (13)

In this case, the effect of ion diffusion can be neglected
because the ion trajectories are mainly affected by the
mechanical forces, which are relatively strong. Therefore,
the vectors enclosed in parenthesis will be inserted in (6)
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to consider the combined effect of mechanical forces. The
flux tracing result for the line-to-ground configuration with
example wind speed +1 m/s is shown in Fig. 6.

FIGURE 6. Traced flux lines for the unipolar line configuration using the
piecewise Bezier curve optimization with example wind speed 1 m/s.

C. CURRENT FLOW MODEL FOR CONTINUITY
Once the electric flux lines are traced, a series of flux tubes
can be created by bundling adjacent flux lines. Since the space
charges emitted from the conductor surface flow along the
flux lines, the ion flow in the flux tube should be conservative.

Applying the Gauss’ divergence theorem to the integral
form of (3), a current passing through the imaginary surface
Si defined across the flux tube can be defined as

In =
∮
Sn
J · dS. (14)

Combining (2) and (14), the current flows through each
surface can be obtained as

In = µρnE1Sn. (15)

Since the currents in the flux tube are conservative, the ion
charge density at each node on the flux tube can be expressed
in terms of the charge density at the conductor surface as
follows.

ρn = ρe
Eon1S0
En1Sn

(16)

where ρe is the emitting charge density at the conductor
surface, and Eon is the corona onset gradient of the conductor
defined as [24].

Since the space charge always moves along the flux line,
the electric field vectors in (15) can be replaced by their
magnitudes, and the direction is considered by defining 1S
to be perpendicular to each flux line.

Once the space charge distribution is calculated, the elec-
tric field in (6) is updated to trace a new set of flux lines.
To evaluate the ion flow field in space, each flux tube is
divided into triangle elements, and the values for space charge
density are assigned to each node.

The electric field at any point in space can be obtained by
integrating the effect of the surface charges on the conductor
and the space charges flowing through the flux lines. Based
on the Gauss’ law,

E (r) =
1

2πε0

[∫
S ′

σ
(
r′i
)

R2i
R̂ids′ +

∫
�′

ρ
(
r′j
)

R2j
R̂jd�′

]
(17)

where R̂ represents the direction from the source (primed)
to observation (unprimed) coordinates. The charge densities
σ and ρ represent the charges on the conducting surface S
and space domain�, respectively, and they also contain their
image charges to consider the ground effect.

The new set of flux lines based on (17) is used tomodify the
space charge distribution as in (16), and the electric field will
be updated by the modified space charge distribution. It will
be repeated until the space charge density deviates less than
the predefined tolerance δC , and a terminate condition is satis-
fied, which can be expressed in terms of the electric potential
at the conductor surface. Based on a relation between the
electric field and potential, the terminate condition is defined
as

UC = −
∫
0

E · dl (18)

where UC is the induced voltage, and 0 is an arbitrary path
connecting the point with zero potential to the conductor
surface. Once the space charge density converges, the amount
of emitting charge on the conductor surface is iteratively
modified to satisfy the condition in (18). The entire process
for the calculation of ion flow field based on the Bezier curve
optimization is described in Fig. 7.

III. NUMERICAL RESULT AND DISCUSSION
A. CONCENTRIC CYLINDER
To verify the proposed algorithm, the numerical result for
simple electrode configuration is compared to its analytic
solution. The analytic solution for the concentric cylindrical
configuration is derived in [1], which can be expressed in
one-dimensional form using the axial symmetry. The inner
and outer conductor radius values are r0 = 0.1 m and R = 1
m, respectively. The coronating surface of the inner conduc-
tor was divided into 22 segments, and the flux lines were
optimized starting from the inner conductor and terminating
at the outer conductor. The resulting ion current density is
shown in Fig. 8. Due to the axial symmetry, the electric
flux lines were not influenced by the modified space charge
distribution, and the calculation process for the space charge
density turned into a simple two-point boundary value prob-
lem. In Fig. 8, we can see a good agreement between the
calculated result and the analytic solution.

B. SINGLE UNIPOLAR LINE CONFIGURATION
The proposed algorithm was applied to a simple conductor-
plane configuration. For comparison, the experimental setup
in [25] was selected as a reference. A unipolar DC line
with a conductor radius r0 = 0.0025 m are located above
the ground plane with the height h = 2 m. In this case,
a still air condition was assumed for simplicity. The magni-
tude of the corona onset gradient for the given conductor is
Ec = 48.06 kV/cm, based on Peek’s law [24].

The surface of the coronating conductor was divided at an
interval of 5 degrees, and 72 flux lines were traced in the
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FIGURE 7. Flowchart for the entire process of the ion flow field calculation based on the piecewise Bezier curve optimization.

target domain. For the electric field calculation, the solution
domain is divided into 5132 elements with 2640 nodes.

The optimized flux lines for the target configuration is
shown in Fig. 9, and Fig. 10 shows the ground profiles of
electric field strength with the induced voltage of +200 kV
calculated by the proposed method were compared to the
experimental result in [25]. The calculated result shows a
good agreement with the measured value. However, since the
average value of the space charge density was used in each
element to evaluate the electric field in (17), the difference
in the magnitude appeared as the distance from the conduc-
tor increased. The result can be improved by introducing a
interpolate functions to the nodal space charge distribution.

C. BIPOLAR HVDC TRANSMISSION LINE
For a one-year period, long-term measurements of ground
profiles of the electric field were made by Korea Electric
Power Research Institute (KEPRI) for a double bipolar
±500 kV HVDC full-scale test line in Gochang, Korea. The

FIGURE 8. Normalized charge density for concentric cylindrical model.

line configuration contains of two bipolar six-bundled lines
with metallic return conductors. The heights of the lower
and upper conductors are 21 m and 37 m, respectively. Pole
spacings of the lower conductors and the upper conductors
are 23.8 m and 22.8 m, respectively. Six subconductors are
bundled with 30.4 mm diameter and 40 cm bundle spacing.
More detailed tower configuration is presented in [26]. In the
calculation, the value of conductor surface roughness factor
m is assumed to be 0.7.
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FIGURE 9. Optimized flux lines for the unipolar line configuration.

FIGURE 10. Comparison of measured and calculated ground profiles of
unipolar ion flow field strength.

FIGURE 11. Comparison of measured and calculated ground profiles of
bipolar ion flow field strength with space-charge-free field.

The calculated ground profile of bipolar ion flow field
compared to the measurements is shown in Fig. 11. The
difference between themagnitudes of the results ismostly due
to weather conditions. Since different seasons and weather
conditions are considered in the long-term measurement,
the decreased corona onset gradient due to humidity or rough-
ened conductor surface can cause more emission of space
charges [9]. Therefore, it should only be meaningful to under-
stand the overall trend of the results.

To verify the effectiveness, the proposed method was com-
pared with the conventional potential-based method while
changing the size of analysis domain. Since the long-term
measurements contain various uncertainties, it cannot be said

FIGURE 12. Comparison of ground profiles of bipolar ion flow field
strength between two methods for expanded boundary; Method 1:
potential-based FTM; Method 2: integral-based FTM; BD2: expanded
boundary to 150% of BD1.

that the results of numerical analysis are unconditionally
accurate just because they are close to the measurements.
Therefore, it would be helpful to judge the stability of the
analysis method by checking the variation of the calculated
result with the change of the domain rather than the exact
calculation of the absolute value.

The ground profiles of bipolar ion flow field by two dif-
ferent methods are compared in Fig. 12. The conventional
potential-based method is named as Method 1, and the pro-
posed integral-based method is named as Method 2. Both
methods are applied to the same calculation domain BD1,
and the results are drawn with solid lines. Then, the outmost
boundary for BD1 is expanded to 150% and named as BD2.
The results are drawn with dotted lines. As shown in Fig. 12,
the negative peak value in Method 1 was increased by 10.7%
while that of Method 2 increased by 0.375%. This is an error
caused by the outermost boundary condition that forces the
potential to zero on an artificial boundary that is not far
enough. On the other hand, in the case of an integral-based
method that does not require the outermost boundary con-
dition, the dependence on the analysis domain is relatively
low, and the calculation domain can be minimized without
compromising the validity of the results.

IV. CONCLUSION
A new method for tracing the electric flux lines is proposed
based on a parametric curve. Defining an error function using
the relation between the derivative of the parametric curve
and the electric field itself, errors accumulated through the
iterations for the numerical differentiation can be minimized.

Once the electric flux lines are traced, a series of flux tubes
is created by bundling adjacent flux lines, and the nodal elec-
tric field and space charge distribution are iteratively updated.
The space charge distribution can be calculated based on the
current conservation along the flux tube, and the ion flowfield
is obtained by integrating the charge densities.
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The proposed method was applied to calculate the ion flow
field distributions of the concentric cylindrical, a unipolar
line-to-ground, and full-scaled test line model. Since the
proposed method is based on an integral equation, it is pos-
sible to increase the computational efficiency by deriving
a closed-form equation or by using a technique such as
a Gaussian quadrature. However, singularity problems that
occur in the calculation at its own location must be properly
considered to increase the accuracy of numerical integration.

To prove the stability of the proposed method, calculations
were performed while changing the size of analysis domain,
and it was concluded that the dependence on the analy-
sis domain was clearly lower than that of the conventional
method.
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