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ABSTRACT We used an optimal control method involving covariant control equations as optimality
conditions, to command the actuators of robot manipulators. These form a coupled system of second order
nonlinear ordinary differential equations when associated with the robot motion equations. By solving this
system, the control action required to take the robot from an initial to a final state is optimized in a prescribed
time. However, the target set of equations exhibited stiffness. Therefore, an adequate solution could only be
found for short trajectory durations with readily available numerical methods. We examined a time dis-
cretization procedure based on cubic and quintic Hermite finite elements which exhibited superconvergence
properties for interpolation. This motivated us to develop a time integration algorithm based on Hermite’s
technique, where motion and control equations were perturbed to solve the optimal control problem. The
optimal motion of a robotic manipulator was simulated using this algorithm. Our method was compared with
a commercial differential equations solver on the basis of specific indicators. It outperformed the commercial
solver by effectively solving the stiff set of equations for longer trajectory durations, with the cubic elements
performing better than the quintic ones in this sense. The convergence analysis of our method confirmed that
the quintic elements are more precise at the cost of increased computational burden, but converge at a lower
rate than expected. Controlled motion experiments on a robotic manipulator validated our methodology.
Trajectories were smoothly tracked and results exposed further methodology improvements.

INDEX TERMS Differential equations, finite element methods, nonlinear dynamical systems, numerical
simulation, optimal control, robot control.

I. INTRODUCTION
The finite element method (FEM) has become a favored
technique for solving engineering problems relating to the
estimation of stress, strain or wear in elasticmaterials (see ref-
erences [1]–[5] for some examples). Its origins can be linked
to the works of Richard Courant back in 1943 [6]. However,
it has been advocated that the FEM can easily be used as
a general approximation method for solving boundary-value
problems that arise in science and engineering applica-
tions [7], [8]. The basic idea lies in subdividing a sys-
tem, regarded as the domain, into smaller and geometrically
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simpler subdomains that are called finite elements to achieve
spatial discretization. The solution of a particular differen-
tial equation is then approximated over each finite element,
regarded as a domain for which boundary values should be
met. The whole system is modeled by assembling all of the
finite elements into a system of algebraic equations.

The FEM has proved to be computationally accurate, effi-
cient and stable [7]–[11]. It is therefore natural that the FEM
has found applications in the areas of systems control and
robotics. In recent years, FEM has been widely used in
the modeling and control of distributed parameter systems.
The method became important in this field, where systems
can be modeled using partial differential equations (PDE),
and the FEM provides a numerical solution that is useful
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for, among other things, evaluating the performance of the
controllers. For example, the finite element (FE) formulation
presented in [1], is used to achieve the active bending and
torsional control of functionally gradient material plates that
are subject to a thermal gradient. In this work, the bending and
torsional vibration suppression of the plates are accomplished
by using a feedback algorithm. Another good example may
be [12], where an iterative procedure is proposed to update
the FE model of a system. The poles and zeros of a frequency
response reduced order model are determined from a mea-
sured frequency response function. The obtained model is
applicable to the determination and control of unmeasurable
performance variables, which is relevant in the context of
model based control. The robust output regulation of linear
boundary control systems is studied in [13]. Linear finite
elements were used to approximate solutions to sets of PDE
such as convection and beam equations. The study held
in [14] presents a simulation framework that uses the output
signals retrieved from a FEM-based solution of heat flow
equations. This would allow for the testing of different control
strategies on an additive manufacturing process in a virtual
environment.

Soft robotics is a field where the FEM has found appli-
cations for the analysis and control of flexible link manip-
ulators. For example, a numerical integration strategy based
on a FEM with a numerical optimization based on Lagrange
multipliers was conducted in [3]. This was done to obtain the
forward and inverse kinematic models of soft manipulators
in order to perform position control. The FEM proved useful
since the formulation of the problem heavily relied in the use
of continuum mechanics. A nonlinear finite element-based
procedure was studied in [2] and applied to the control of
a single-link flexible manipulator with hydraulic actuation.
This was achieved by using what the authors called Virtual
Decomposition Control which enabled the handling of the
dynamics and control of the hydraulic actuator and the flexi-
ble link separately. As amore traditional application, the FEM
was also used to assist the design of soft robots, for example,
to model their dynamics and predict the controllability of
the points of interest [15]. In contrast with the approach
presented in this document, in all of these previous examples
the FEM is employed to discretize space as opposed to time,
using beam-like models to estimate link deformation during
motion.

An early development involving the FEM for time dis-
cretization in the context of optimal control was proposed by
Cavin and Tandon [16] where heat PDE subject to boundary
conditions were solved using a space-time finite element
formulation. Later, a space-time finite element approximation
scheme for the optimal control problem (OCP) of systems
governed by fractional order PDE was proposed in [17].
The approach considers piecewise constant discontinuous
Galerkin time discretization and linear finite elements for
spatial discretization of the state equation. Nonetheless, only
a few works make use of the FEM to discretize time in the
context of multibody systems dynamics. Control of general

rigid multibody systems commonly involves nonlinear prob-
lem formulations. In this context, shooting procedures are
instead commonly used [11], [18]. However, a finite element
description has proven to be computationally advantageous
for the direct integration of the dynamic equations governing
multibody systems motions. For example, finite elements
have previously been used in [11], [19] for the simulation
of multibody systems motion, to solve nonlinear differential
equations arising in biomechanics and robotics. It was shown
that the required number of steps and CPU-time are lower
for such a FEM-based algorithm when compared to popular
Runge-Kutta (fourth order) and Newmark methods. One of
the advantages of the FEM is that boundary configurations are
exactly satisfied in the solution. This property is particularly
relevant in robotics applications. These promising results led
us to develop a time integration method based in the Hermite
finite elements piecewise basis functions, to solve the OCP
of a robot manipulator.

Optimal control methodologies are aimed at finding sys-
tem controls that optimize a predefined performance index
(usually also called objective function) according to specific
restrictions. Traditionally speaking, solutions to OCP tend
to fall into two main frameworks: Pontryagin’s Maximum
Principle (PMP) and the Bellman approach which led to
Dynamic Programming (DP). Generally, PMP-related meth-
ods involve ordinary differential equations (ODE) whereas
DP-based methods involve PDE. PMP-based methods are
therefore at a numerical advantage and are often easier to
use than DP-based methods in order to solve OCP [20].
With these two methodologies, it is possible to perform
optimal path planning where the optimal controls, according
to a specific performance index, are obtained. Alternatively,
the Linear Quadratic Regulator (LQR), which defines a class
of optimal control methods, operates differently by finding
the controller parameters (usually gains) that will optimize a
specified performance index [21]. It should be noted however
that the LQR methodology is specifically designed for linear
systems because optimal controller parameters are obtained
through the solution of a linear Riccati equation. Therefore,
a much more general approach can be found in what is known
as State-Dependent Riccati Equation (SDRE) control. SDRE
control also requires the solution of a linear Riccati equa-
tion to find optimal controller parameters. However, nonlin-
earities are fully captured and dealt with through extended
linearization [22], [23].

In this work, we propose a FE-based method which can be
applied to obtain the solutions to OCP in which stiff ODE
arise, which is usually the case for PMP-related develop-
ments [24]. Due to the FE nature of our method, it is not
excluded that our algorithm can be adapted to solve PDE that
arise in DP. We will focus in the ODE case of the optimal
control methodology described in [25] which involves covari-
ant control equations. This methodology is similar to PMP,
however, the resulting set of nonlinear ODE are of the sec-
ond order instead, but also exhibit stiffness. The covariant
control equations involved, act as control restrictions that
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bound their intensities. It has been shown that these covariant
control equations define adjoint states in the framework of
PMP [26] thus rendering them compatible with a wide range
of optimal control solution methods. Our proposed FE-based
algorithm should also be of interest for solving ODE that
arise in other optimal path planning and kinematics control
strategies [27], [28].

The organization of the paper is the following. First,
we will establish the selected optimal control methodology in
section II. This methodology results in a two-point boundary-
value problem (TPBVP) and involves covariant control equa-
tions which are conjugate to the robot motion equations,
composing a system of second order ODE (see section II).
The solution of this TPBVP provides the optimal path along
with optimal torques required by such path. We will then
present a time discretization procedure based on Hermite
finite elements piecewise basis functions in section III. There,
two simple examples will illustrate the technique benefits and
accuracy for our purposes. A time integration procedure will
also be proposed, followed by a one dimensional nonlinear
example. Next, we carry out optimal motion simulations
in section IV. For this purpose, we begin by proposing an
optimization procedure in the form of an algorithm, which
involves the perturbation of motion and control equations to
find a suitable finite element-based approximation. Optimal
motion simulation examples are conducted to compare our
method with a commercial ODE solver. It is shown that our
method outperforms this solver by being able to produce
longer simulations. We conclude section IV by performing
a convergence analysis of our proposed method. Our simu-
lations are then followed by controlled motion experiments
conducted on a robotic serial manipulator in section V.
We present our control scheme in this section. Additionally,
we carry out a robustness analysis of our control strategy. The
conducted experiments verify the tractability of our approach
and allow us to identify ways to improve our optimal control
methodology.

II. OPTIMAL CONTROL METHODOLOGY
We have followed the optimal control methodology presented
in [25]. Therefore, this section summarizes the main ideas of
the citedmethodology. The reader is referred to the previously
mentioned document for more details. First, the dynamics of
a roboticmanipulator are derived. The optimal control of such
a system then consists in minimizing an integral functional of
the joint torques. This procedure leads to the establishment of
covariant control equations regarded as optimality conditions.

A. SYSTEM DYNAMICS
We consider serial robotic manipulators with n degrees of
freedom (DOF) which are described by n configuration
parameters qi, and operated by n actuators placed between
two consecutive segments. In the following, tensor nota-
tion and the Einstein summation convention on repeated
indices [29] will be used to establish the robot dynamics.

The robot velocity field is a linear function of the variables
qi time derivatives q̇i (where a superposed dot shall denote
a time differential). The kinetic energy function K (q, q̇) is
quadratic and strictly convex. It is defined with the positive
definite Hessian M (q), commonly called mass tensor, which
is regarded as a Riemannian metric with components Mij.
It expresses as

K =
1
2
Mijq̇iq̇j. (1)

A gravitational potential V (q), defined as the product
between mass, local gravitational field intensity, and center
of mass height models gravity actions. A torque ui is exerted
between two consecutive links by the ith actuator. For any vir-
tual variation δqi, the actuators virtual work uiδqi is invariant,
therefore ui are the covariant components of a torque tensor.
Robot motion is governed by the n Euler-Lagrange equa-

tions
d
dt

(
∂K
∂ q̇i

)
−
∂K
∂qi
= ui −

∂V
∂qi

,

which upon using (1), lead to the explicit expression

Mijq̈j + 0ikl q̇k q̇l +∇iV = ui. (2)

where ∇iV = ∂V
∂qi is the i

th covariant derivative component

of the potential V and 0ikl are Christoffel symbols of the first
kind which derive from theMij components by

0ikl =
1
2

(
∂Mik

∂ql
+
∂Mil

∂qk
−
∂Mkl

∂qi

)
. (3)

Let us introduce the coefficients of the inverse metric ten-
sor M ij, which lead to the Christoffel symbols of the second
kind when multiplied by (3)

0
j
kl = M ji0ikl . (4)

Invoking the above, equations (2) transform into

Mij

(
q̈j + 0jkl q̇

k q̇l +M jk
∇kV

)
= ui,

where the term M jk
∇kV = ∇ jV is the j th contravariant

derivative component of potential V . Upon renaming indices
in the above equation, the contravariant torque tensor compo-
nents reveal

q̈i + 0ijk q̇
jq̇k +∇ iV = ui. (5)

Note that these contravariant torque components were
retrieved by following the rules of tensor calculus in a Rie-
mannian manifold, where ui = M ikuk .

B. OPTIMAL CONTROL
The required torque intensities to bring the robotic system
from an initial state x0 = x(0), to a final state x1 = x(T )
in a prescribed time T , can be constrained by minimizing an
integral functional of the type:

J (u) =

T∫
0

γ (u(t)) dt.
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This integral functional is regarded as the performance index.
The integrand γ is commonly called cost function and is
generally chosen to be convex so that the integral functional J
is reasonable to minimize. It has been noticed that γ is often
chosen so that

γ =
1
2
Aijuiuj,

where Aij is a diagonal matrix with constant coefficients,
usually unitary [11], [30]–[33]. However such a cost func-
tion is not invariant under a change of coordinates. Instead,
as proposed in [25], we select the invariant cost function
γ = 1

2 uiui = 1
2 M ijuiuj so that the performance index

becomes

J (u) =

T∫
0

1
2
uiui dt, (6)

where ui and ui are respectively expressed by equations (2)
and (5) and are functions of parameters qi, q̇i and q̈i. Note
that γ is selected to be a convex and invariant cost function,
involving the inverse mass tensor components M ij, to which
the Euler-Lagrange equations can be applied as

d2

dt2

(
∂γ

∂ q̈i

)
−

d
dt

(
∂γ

∂ q̇i

)
+
∂γ

∂qi
= 0. (7)

By applying the rules of tensor calculus, equations (7)
transform into the covariant control equations

d̂2 ui
dt2
+ Rkjil q̇

jq̇luk +∇i∇lV ul = 0. (8)

The reader is referred to [25], where the complete analysis
of how equations (7) lead to (8), is conducted. These control
equations are nonlinear second order ODE that restrict the
torques during motion. They are regarded as optimality con-
ditions, and it has been shown that these equations define the
adjoint states in the framework of PMP [26]. The left hand
side of these equations involve: the second covariant time
derivative of the covariant torque tensor components ui in the
first term (see equation (2)); the Riemann-Christoffel curva-
ture tensor in the second term; the second covariant derivative
of potential V in the third term; and contravariant torque
tensor components ul in the third term (see equation (5)).
Definitions for these objects can be found in [25], [29] and
have the following expressions:

d̂2 ui
dt2
= üi −

(
∂0kij

∂ql
− 0mji 0

k
ml

)
uk q̇jq̇l

−0kij

(
uk q̈j + 2u̇k q̇j

)
;

Rkjil =
∂0kjl

∂qi
−
∂0kji

∂ql
+ 0mjl 0

k
mi − 0

m
ji 0

k
ml;

∇i∇lV =
∂2V
∂ql∂qi

− 0mil
∂V
∂qm

. (9)

Control equations (8) can be associated to the motion equa-
tions (2), thus providing a coupled system of 2n second order

nonlinear ODE in the dual variables (qi, ui) for resolving the
optimal trajectories and torques:

Mijq̈j + 0ikl q̇k q̇l +∇iV − ui = 0 (10a)

d̂2 ui
dt2
+ Rkjil q̇

jq̇luk +∇i∇lV ul = 0. (10b)

Solving the system of equations (10) minimizes the perfor-
mance index (6). Note that qi and ui are independent vari-
ables and that 4n boundary conditions are required. These
are generally known values of initial and final positions and
velocities: qi(0), qi(T ), q̇i(0) and q̇i(T ), where T denotes
the prescribed trajectory duration. Using these boundary
constraints to solve the ODE system (10), the initial OCP
transforms into a TPBVP. Note also that no boundary con-
ditions are imposed on ui parameters, which are regarded
as conjugate parameters that directly provide motion torque
requirements.

III. TIME INTEGRATION METHOD
In order to solve the nonlinear ODE system (10) in an interval
[0,T ], we perform a time finite element discretization. This
means that the solution domain is discretized and represented
as a mesh of time elements. The unknown variables (con-
figurations and controls in our case) behavior is approxi-
mated over each element by continuous functions expressed
in terms of the nodal values of the unknown and its time
derivatives [16] (more on this along the section). Hermite
piecewise functions [9] are defined over each time finite
element. The collection of these interpolation functions for
the whole domain provides a piecewise approximation to the
sought variables.

A. PIECEWISE HERMITE FINITE ELEMENTS
INTERPOLATION
Hermite finite elements (HFE) are compact piecewise con-
tinuous functions that can be connected in a continuously
differentiable way. Therefore, the values of their derivatives
are also used to characterize the functions that they approxi-
mate [9]. This property is particularly useful for our approach
because the targeted optimal control methodology requires a
continuously differentiable solution. Cubic HFE (CHFE) are
formed by functionsφ andψ , shown in Figure 1a, and defined
by

φ(t) =
{
(1− |t|)2 (1+ 2 |t|) ∀ |t| ≤ 1
0 ∀ |t| > 1;

ψ(t) =
{
t (1− |t|)2 ∀ |t| ≤ 1
0 ∀ |t| > 1.

One can construct higher order HFE functions by follow-
ing prescriptions found in [10]. For example, quintic HFE
(QHFE, using fifth degree polynomials) are formed by func-
tions φ, ψ and χ , shown in Figure 1b, and defined by

φ(t) =
{
(1− |t|)3

(
1+ 3|t| + 6t2

)
∀ |t| ≤ 1

0 ∀ |t| > 1;
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FIGURE 1. Hermite finite elements basis functions: (a) cubic; (b) quintic.

ψ(t) =
{
t (1− |t|)3 (1+ 3|t|) ∀ |t| ≤ 1
0 ∀ |t| > 1;

χ (t) =

{ 1
2
t2 (1− |t|)3 ∀ |t| ≤ 1

0 ∀ |t| > 1.

Considering the prescribed time T in the functional inte-
gral (6), let us construct a uniform time mesh by dividing the
domain [0,T ] into N equal pieces such that the size of each
time finite element is of h = T/N , by the instances tp = p h.
We define the basis functions for 0 ≤ p ≤ N as

φp(t) = φ
(
t
h
− p

)
ψp(t) = ψ

(
t
h
− p

)
χp(t) = χ

(
t
h
− p

)
, (11)

where χp(t) is used only for the QHFE case. The number of
basis functions corresponds to 2N+2 for the CHFE case, and
to 3N + 3 for the QHFE case. Basis functions that overflow
the domain [0,T ] must be truncated on the left for p = 0 or
on the right for p = N . Each configuration parameter qi and
each control parameter ui can then be approximated by the
piecewise CHFE

qih =
N∑
p=0

(
aipφp(t)+ h b

i
pψp(t)

)

uhi =
N∑
p=0

(
x ipφp(t)+ h y

i
pψp(t)

)
, (12)

or alternatively by the QHFE

qih =
N∑
p=0

(
aipφp(t)+ h b

i
pψp(t)+ h

2 cipχp(t)
)

uhi =
N∑
p=0

(
x ipφp(t)+ h y

i
pψp(t)+ h

2 zipχp(t)
)
. (13)

Let us remark for now that coefficients aip, b
i
p and cip

respectively correspond to the values of parameters qi, their
time derivatives q̇i, and their second time derivatives q̈i at
time instance t = p h. Analogously, coefficients x ip, y

i
p and z

i
p

correspond to the values of parameters ui, their time deriva-
tives u̇i, and their second time derivatives üi at time instance
t = p h.

B. INTERPOLATIONS ACCURACY
Let us now consider a one dimensional example in the
approximation of the circular configuration parameter q(t) =
sin t . After following the piecewise HFE interpolation pro-
cedure presented in III-A, the error e(t) = qh(t) − sin t of
the interpolations and their convergence rates are measured
as suggested by [9]. Let us introduce the norms

‖e‖3 =

√∫ T

0

[
(e(t))2 + h2(ė(t))2

]
dt

for the CHFE case, and

‖e‖5 =

√∫ T

0

[
(e(t))2 + h2(ė(t))2 + h4(ë(t))2

]
dt

for the QHFE case. Errors for varied values of h are plotted
in the logarithmic scale. This allows to visualize convergence
rates which correspond to the slope of the error logarithm,
as a function of the logarithm of h. As shown by Figure 2a,
the norm of the error e(t) = qh(t) − sin t reveals to be in h4

for the CHFE case and in h6 for the QHFE interpolation case.
These convergence rates are one degree higher than the order
of the chosen HFE interpolation and is a phenomenon known
as superconvergence. This is due to the mesh uniformity and
the choice of the error norm [9].

C. TIME INTEGRATION PROCEDURE
When the torque history ui(t) is known, the system state
vector x i(t) =

(
qi(t), q̇i(t)

)
can be predicted at any time

instance t after its initial value x i(0) =
(
qi(0), q̇i(0)

)
by
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FIGURE 2. Accuracy of Hermite finite elements interpolations. (a) Interpolations superconvergence: cubic elements convergence is in h4 and quintic
elements convergence is in h6, where h is the step size. (b) Analytical solution q versus CHFE approximation qh of the nonlinear pendulum motion:
the CHFE approximation is as accurate as the analytical solution.

numerically solving the system motion equation (2). How-
ever, when an optimal trajectory is desired, the ODE sys-
tem (10) may be solved instead between boundary values
x i(0) and x i(T ). Motion simulations may be conducted by
following the procedure:
(i) approximate each configuration parameter qi by its

interpolation qih, and each control parameter ui by its
interpolation uhi (12) for the CHFE case or (13) for the
QHFE case;

(ii) express motion and control equations (10) at 2n(N + 1)
time instances for the CHFE case or 3n(N + 1) time
instances for the QHFE case (n is the number of system
DOF and N is the desired nodes quantity):

Mijq̈
j
h + 0ikl q̇

k
hq̇

l
h +∇iV − uhi = 0

d̂2 uhi
dt2
+ Rkjil q̇

j
hq̇
l
huhk +∇i∇lV u

l
h = 0;

after some development, the previous system becomes
an algebraic system with unknowns aip, b

i
p, x

i
p, y

i
p (for

CHFE discretization), cip and zip (for QHFE discretiza-
tion)

Kv = r

where K is a square band matrix containing the basis
functions (11) evaluated at each node and scaled by the
system parameters, v is the vector of unknowns, and
r contains the residual terms given by the boundary
conditions;

(iii) solve the algebraic system Kv = r using generalized
matrix inversion techniques;

(iv) build the approximations qih and uhi ((12) for CHFE
discretization or (13) for QHFE discretization).

In the above procedure, steps (ii) and (iii) are inspired
from the inertial parameters identification method presented
in [34]. Steps (ii) and (iii) show that our FE-based procedure
determines the whole trajectory at once by solving Kv = r.

Steps (i) and (ii) of the above procedure constitute the HFE
time discretization Algorithm 1 shown below. Note that the
above procedure works, as presented, with linear models.
In order to account for nonlinearities, a perturbation method
will be detailed in the next subsection III-D.

Recall that v contains the values of parameters
(qi, q̇i, q̈i, ui, u̇i, üi) at time instances t = p h (last paragraph
of III-A). Because of this important property, reconstruc-
tions (12) or (13) may not be needed if only the values of
these parameters, at nodes, suffice. As a consequence, other
interpolations may be carried out in step (iv) if desired.

In the examples of IV-B and IV-C, boundary conditions
provide with the values of ai0 = qi(0), bi0 = q̇i(0), aiN =
qi(T ), and biN = q̇i(T ).

D. ONE DIMENSIONAL NONLINEAR EXAMPLE
In order to verify the accuracy of our simulation method,
we now study the periodicity and the precision over the period
of the classical one-dimensional nonlinear pendulum. How-
ever, this system motion equation is nonlinear, which is also
generally true for robotic systems. Therefore, a perturbation
method [35] is conducted in order to implement the above
time integration algorithm. This is an iterative process where
increments1q and1u are respectively added to approximate
solutions q and u at each step. Upon perturbation, motion
equations (2) develop in:

Mij

(
q̈j +1q̈j

)
+
∂Mij

∂qk
1qk q̈j

+0ikl

(
q̇k q̇l + q̇l1q̇k + q̇k1q̇l

)
+
∂0ikl

∂qm
q̇k q̇l1qm

+∇iV +
∂2V
∂qj∂qi

1qj = ui +1ui, (14)

where squared ‘‘1’’ terms vanish.
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Algorithm 1 HFE Time Discretization Algorithm
1: procedure HFE(q, u)
2: for i← 1, n do F n is the system number of DOF
3: if CHFE then
4: for m← 0, 2N do F N is the desired nodes quantity

5: qi(tm)← qih(tm) =
N∑
p=0

(
aipφp(tm)+ h b

i
pψp(tm)

)
6: ui(tm)← uhi (tm) =

N∑
p=0

(
x jpφp(tm)+ h y

j
pψp(tm)

)
F Using equation (12)

7: Insert
(
qih(tm), uhi (tm)

)
into the target ODE

8: end for
9: else if QHFE then

10: for m← 0, 3N do F N is the desired nodes quantity

11: qi(tm)← qih(tm) =
N∑
p=0

(
aipφp(tm)+ h b

i
pψp(tm)+ h

2 cipχp(tm)
)

12: ui(tm)← uhj (tm) =
N∑
p=0

(
x ipφp(tm)+ h y

i
pψp(tm)+ h

2 zipχp(tm)
)

F Using equation (13)

13: Insert
(
qih(tm), uhi (tm)

)
into the target ODE

14: end for
15: end if
16: end for
17: Establish the resulting algebraic system Kv = r subject to the required boundary values
18: end procedure

For the present case of a simple pendulum, the motion
equation is q̈ + ω2 sin q = 0 where only initial values for
q(0) = π

6 rad and q̇(0) = 0 rad s−1 are given as boundary
conditions. Note that no torques ui appear in this equation
and thus, no 1u increment is introduced because it vanishes.
Note also that the initial position implies a π

3 rad amplitude
motion (see Figure 2b). For the present one-dimensional
case, the mass tensor has a unique constant component M ,
embedded in the ω parameter. Pendulum length and mass are
such that ω = 3.102 s−1.

For this example, CHFE discretization is used
(see III-A) in the time integration procedure proposed in III-C
with N = 100 interpolation nodes. The implemented pertur-
bation method then leads to the following procedure:

(1) approximate the linear pendulum motion by solving the
equation q̈ + ω2q = 0 with the same initial condi-
tions as the nonlinear pendulum, and let that solution be
called q1;

(2) according to the perturbed motion equation (14) approx-
imate the solution 1q1 of the linear ODE 1q̈1 +
ω2 cos(q1)1q1 = −q̈1 − ω2 sin(q1) with vanishing
initial conditions;

(3) improve the approximation q1 by setting q2 = q1+1q1;
(4) iterate this process until ‖1qi‖3 < 10−5 rad.

A periodic solution qh was found after three iterations and is
shown by Figure 2b. This numerical solution can be compared
to the analytical solution q expressed with Jacobi’s elliptic

function sn [36], [37], also shown by Figure 2b. With our
time methodology, the identified oscillations period was of
2.061 08 s, and is−3× 10−7 s away from the period obtained
with the incomplete elliptic integral of the first kind F [38],

τ =
4
ω

∫ π
2

0

dα√
1−

(
sin2 π

12

)
sin2 α

=
4
ω
F
(π
2
, sin2

π

12

)
.

Naturally, the above reported error can be decreased by fur-
ther increasing the number of interpolation nodes or by using
QHFE instead. The norm ‖ ‖3 of the difference between the
theoretical solution and our numerical solution reveals to be
in h4, again illustrating the superconvergence of the method
(the resulting graph of ln ‖e‖3 versus ln ‖h‖ is similar to the
one shown by Figure 2a). This superconvergence is a conse-
quence of Hermite’s technique and will also occur for more
complex single ODE models [9]. This example validates our
approach for solving second order nonlinear ODE.

IV. OPTIMAL CONTROL OF ROBOTIC MANIPULATORS
A. OPTIMIZATION PROCEDURE
Let us consider the nonlinear ODE system (10). Its solu-
tion provides optimal torques and trajectories. Recall that 4n
boundary conditions qi(0), qi(T ), q̇i(0) and q̇i(T ) are usually
given, thus establishing a TPBVP. Instead of solving the
2n second order ODE (10), we can insert the CHFE or QHFE
approximations (respectively given by equations (12) or (13))
of q and u in (10), and conduct the time integration procedure
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proposed in III-C with the perturbation method introduced
in III-D. Recall that the motion equation (10a) is perturbed
as in equation (14). Analogously, control equation (10b) is
perturbed according to equation (15):

d̂2ui
dt2
+

d̂21ui
dt2

−

(
∂0kij

∂ql
− 0mji 0

k
ml

)(
1q̇jq̇luk + q̇j1q̇luk

)
−

(
∂20kij

∂qp∂ql
−
∂0mji

∂qp
0kml − 0

m
ji
∂0kml

∂qp

)
q̇jq̇luk1qp

−0kij

(
1q̈juk + 21q̇ju̇k

)
−
∂0kij

∂ql
1ql

(
q̈juk + 2q̇ju̇k

)
+Rkjil

(
q̇jq̇luk +1q̇jq̇luk + q̇j1q̇luk + q̇jq̇l1uk

)
+
∂Rkjil
∂qp

q̇jq̇luk1qp +∇i∇lV (ul +1ul)

+

(
∂3V

∂qp∂ql∂qi
−
∂0mil

∂qp
∂V
∂qm
− 0mil

∂2V
∂qp∂qm

)
ul1qp

+∇i∇lV
∂M ls

∂qp
us1qp = 0, (15)

where squared ‘‘1’’ terms vanish.
Therefore, our optimal control procedure consists in adapt-

ing the perturbation method proposed in section III-D, to the
solution of the nonlinear ODE system (10):
(1) approximate the solution of the linearized system (10)

with the same boundary values as for the nonlinear case,
and let the solutions be called (qi1, u

1
i );

(2) approximate the solution of the ODE system composed
of the perturbedmotion equations (14) and the perturbed
control equations (15) with vanishing boundary values,
and let the solutions be called (1qi1,1u

1
i );

(3) improve the approximations (qi1, u
1
i ) by setting qi2 =

qi1 +1q
i
1 and u

2
i = u1i +1u

1
i ;

(4) iterate this process until ‖1qi‖3 <ε (for CHFE dis-
cretization) or ‖1qi‖5 <ε (for QHFE discretization),
where ε is chosen accordingly to the desired accuracy
(10−3 is a reasonable value).

We will refer to this general procedure as HFE/Perturbation,
which denotes two variants: CHFE/Perturbation for CHFE
time discretization, or QHFE/Perturbation for QHFE time
discretization. Note that in step (3), covariant torque compo-
nents ui are being calculated instead of the contravariant com-
ponents ui. Let us emphasize that when conducting motion
control simulations and experiments with HFE discretization,
the ODE system (10) now depends solely on coefficients aip,
bip, x

i
p and y

i
p for the CHFE case, or aip, b

i
p, c

i
p, x

i
p, y

i
p and z

i
p for

the QHFE case. Either way, recall that aip and b
i
p are known

for p = 0 and p = N :

ai0 = qi(0), bi0 = q̇i(0), aiN = qi(T ), and biN = q̇i(T ).

Upon obtaining an approximation of qi(t), recall that approx-
imations of q̇i(t) and q̈i(t) are also automatically being

obtained (see last comment in III-A). The same applies
for optimal torques ui(t) and their first and second time
derivatives. Algorithm 2 presents our HFE/Perturbation
method that combines the HFE time discretization procedure
(Algorithm 1) with the perturbation method presented
above.

Algorithm 2 Time Integration Algorithm Using HFE Time
Discretization and Perturbation Method
1: procedure HFE/Perturbation(q, u)
2: Execute procedure HFE(q, u) to discretize the lin-

earized system (10), with the same boundary values as
for the nonlinear system

3: Solve the resulting algebraic systemKv = r to obtain
solutions (qi1, u

1
i )

4: for s← 1,w do F w is sufficiently large
5: Insert (qis, u

s
i ) into the perturbed motion equa-

tions (14) and perturbed control equations (15)
6: Execute procedure HFE(1qis,1u

s
i ) to discretize

the perturbed motion equations (14) and perturbed con-
trol equations (15) with null boundary values

7: Solve the resulting algebraic system Kv = r to
obtain solutions (1qis,1u

s
i )

8: qis+1← qis +1q
i
s

9: us+1i ← usi +1u
s
i

10: if ‖1qs‖ ≤ ε then
11: Break
12: end if
13: end for FWhere ε is chosen accordingly to the

desired accuracy
14: end procedure

B. OPTIMAL CONTROL OF A 1-DOF ROBOTIC
MANIPULATOR
In order to illustrate and validate our optimization procedure,
we shall consider a simple robotic manipulator with oneDOF.
To resolve optimal trajectories and torques, the solution of the
governing motion and control equations must be obtained:{

M (q̈+ ω2 sin(q)) = u
ü+ ω2u cos(q) = 0,

(16)

where M = 1.384 kgm2 is the unique component of the
mass tensor; system link length and mass are such that
ω = 2.609 s−1. The prescribed trajectory duration is set to
T = 1.0 s. Boundary values are given by

q(0) = 0, q̇(0) = 0, q(T ) =
π

3
, q̇(T ) = 0. (17)

According to the optimization procedure proposed in
the previous section, the solution to the above second
order nonlinear ODE system must first be approximated
by solving the following linear ODE system (step (1),
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FIGURE 3. Optimal trajectory provided by Mathematica’s NDSolve and the proposed HFE/Perturbation algorithm approximation, for the optimal motion
simulation of a 1-DOF robotic manipulator: (a) position and velocity; (b) torque.

lines 2 and 3 of Algorithm 2){
M (q̈+ ω2q)−u = 0
ü+ ω2u = 0,

subject to the above mentioned boundary conditions, where
CHFE approximations of q and u are inserted. This provides
with solutions (q1, u1) that are used as a starting point to
further solve the perturbation of (16). This perturbation is
composed of equations (14) and (15) (step (2)), which for
instance reduce to

M (1q̈1 + ω2 cos(q1)1q1)−1u1

+M (q̈1 + ω2 sin(q1))− u1 = 0
1ü1 + ω2 cos(q1)1u1 − ω2u1 sin(q1)1q1
+ ü1 + ω2 cos(q1)u1 = 0.

Following steps (3) and (4) of the optimization procedure
proposed in IV-A (lines 5 to 9 of Algorithm 2) leads to
approximate the solution of the initial nonlinear problem (16).
Note that Algorithm 1 implies an approximation of the above
systems of ODEwith rectangular matrix equations. The latter
is solved by using generalizedmatrix inversion. Note also that
this procedure minimizes the performance index J (uh) (see
equation (6)).

Algorithms 1 and 2 were implemented in Wolfram
Mathematica R© using N = 50 nodes for both the
CHFE/Perturbation and QHFE/Perturbation time integration
algorithms, and led to an acceptable solution after three
iterations of Algorithm 2. For reference, the nonlinear ODE
system (16) was also solved using the built-in NDSolve ODE
solver, set up to operate with shooting methods. Solutions
obtained with our algorithm and solutions obtained with
NDSolve are displayed in Figures 3a and 3b.

The optimal trajectory positions and velocities provided
by our HFE/Perturbation solvers and NDSolve are indis-
tinguishable on Figures 3a and 3b, thus indicating that our
method provides reasonable results. Note that both solutions

TABLE 1. Solver performance for the solution of equations (16) for the
optimal motion simulation of a 1-DOF robotic manipulator subject to
boundary conditions (17) where T = 1 s. Lower values of performance
index (PI, equation (6)) and error norms indicate better performance.

successfully satisfy position and velocity boundary values
that lead to the desired motion (Figure 3a).

Recalling that the initial goal is to minimize the perfor-
mance index (6), by solving the set of equations (10) for
robotic manipulators, the performance of our algorithm can
be assessed by evaluating the performance index value for the
calculated trajectory. Additionally, let us define ‖f m‖ as the
error norm of the left hand side of equation (10a):

‖f m‖ =

√∫ T

0

(
Mijq̈j + 0ikl q̇k q̇l +∇iV − ui

)2 dt. (18)

Analogously, let us define ‖f c‖ as the error norm of the left
hand side of equation (10b):

‖f c‖ =

√√√√∫ T

0

(
d̂2 ui
dt2
+ Rkjil q̇

jq̇luk +∇i∇lV ul
)2

dt. (19)

These error norms evaluate the accuracy of our proposed
method to solve the ODE system (10). In the following, our
algorithm will be compared with Mathematica’s NDSolve
solver on these terms.

As shown by Table 1, when NDSolve is set up to operate
with shooting methods, error norms ‖f m‖ and ‖f c‖ evaluate
to fairly large values as compared to the other methods.
Therefore, it was alternatively set up to use a Runge-Kutta
(RK)method for time integration in order to increase its accu-
racy. Note that both our HFE/Perturbation algorithms lead to
the same performance index value as bothNDSolve solutions,
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FIGURE 4. Performance index evolution for growing values of trajectory duration T for the optimal motion simulation robotic manipulators: (a) 1-DOF
subject to boundary conditions (17); (b) 2-DOF subject to boundary conditions (20). Comparison of four solvers. NDSolve (Shooting) is unable to
produce results for T > 9 s for the 1-DOF manipulator, and for T > 4.7 s for the 2-DOF manipulator. HFE/Perturbation is able to produce results for
longer trajectory durations than NDSolve.

thus exhibiting adequate performance. QHFE/Perturbation
does however display lower error norm values, further ver-
ifying the accuracy of our method. This occurs because
QHFE/Perturbation directly computes position and torque,
along with their first and second derivatives at each node,
which are then used to calculate norms ‖f m‖ and ‖f c‖.
NDSolve provides with (q, u) as an output, so these have to be
differentiated afterwards in order to compute ‖f m‖ and ‖f c‖.
It is important to remark that the precision of our methods can
be augmented by increasing the total number of interpolation
nodes (which was of N = 50 for this example).
Additionally, it is possible to verify the stability over the

trajectory duration of each solver by conducting simulations
with increasing values of T , where boundary conditions
on position and velocity are kept equal. Naturally, solvers
struggle more with longer simulation periods. We have
therefore conducted the following test: equations (16),
subject to boundary conditions (17), were solved using
the four solvers NDSolve (Shooting), NDSolve (RK),
CHFE/Perturbation and QHFE/Perturbation, for increasing
values of T going from 1 s to 20 s. It resulted that three solvers
were equally stable: NDSolve (RK), CHFE/Perturbation and
QHFE/Perturbation all were able to give a solution up to
T = 20 s. However, NDSolve (Shooting) was only able to
provide an adequate solution up to T = 9 s. For every value
of T > 9 s, NDSolve (Shooting) was unable to provide a
solution to (16) that meets boundary conditions (17). This is
shown by Figure 4a where the curve for NDSolve (Shooting)
truncates at T = 9 s. The other three solvers returned prac-
tically the same performance index values for this particular
example for T > 9 s.
Interestingly, we could also verify that as T grows,

the performance index tends to zero, which is in accordance
with our optimization goal, i.e., the minimization of (6)
(see Figure 4a). For example, at T = 20 s, J = 0.481 and the
RMS torque for the trajectory evaluates to 0.258Nm. Upon
extending duration up to T = 60 s, the performance index

goes down to J = 0.158 and the RMS torque for the trajectory
drops to 0.085Nm, and at T = 100 s, we obtain J =
0.095 and an RMS torque of 0.051Nm thus confirming that
both RMS torque and performance index follow a similarly
decreasing pattern.

C. OPTIMAL CONTROL OF A 2-DOF ROBOTIC
MANIPULATOR
The previous results indicate that our HFE/Perturbation algo-
rithms can be successfully applied for the optimal path plan-
ning of robotic manipulators, and also illustrate how our
method is applied. However, the previous 1-DOF example has
a single constant mass tensor component, and such a robotic
manipulator does not exhibit centrifugal and Coriolis effects
embedded in the second term of motion equation (2).

We therefore now apply our method to the optimal path
planning of a 2-DOF robotic manipulator with revolute
joints which exhibits most complexities and nonlinearities
that are characteristic of realistic robotic systems such as:
configuration-dependent mass tensor components, centrifu-
gal and Coriolis effects, and inertia effects mutually induced
by each link. We conducted our simulations on a 2-DOF
robotic manipulator platform for which the corresponding
parameters are reported in [39] (see Figure 7). For this robot,
the system of 2n second order nonlinear ODE (10) translates
into a TPBVP involving a set of 4 ODE subject to 8 boundary
values.

In this case, our simulation exercise was similar to the one
we held in the previous section. It consisted in taking the
robotic manipulator from an initial state, to a final state with
increasing prescribed time T values. Boundary conditions
were set to

(
q1(0), q2(0)

)
= (0, 0) rad(

q̇1(0), q̇2(0)
)
= (0, 0) rad s−1(

q1(T ), q2(T )
)
= (0.8, 1.0) rad(

q̇1(T ), q̇2(T )
)
= (0, 0) rad s−1.

(20)
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These simulations were conducted with Mathematica’s
NDSolveODE solver set up to operate with shootingmethods
first, and then set up to operate with a RK time integration
algorithm to obtain alternative results. Simulations were then
conducted with both our HFE/Perturbation methods with a
fixed number of nodes set to N = 60 for each case. Recall
that QHFE provide with positions, velocities and accelera-
tions at each node and show higher precision than CHFE
(see section III-B and Table 1). These features might be desir-
able depending on the experimental platform requirements
and thus QHFE might be favored over CHFE.

Figure 4b shows the performance index evolution for
increasing values of T for the optimal motion simulation
of the 2-DOF manipulator subject to boundary values (20).
It compares the performance index values obtained with four
solvers and is the analog of Figure 4a but for the 2-DOF
robot case. As opposed to the 1-DOF case, we now see that
neither NDSolve (Shooting) nor NDSolve (RK) are able to
complete the required trajectory past T = 4.7 s in Figure 4b.
This situation occurs because the system of equations (10)
is more complicated to solve for a 2-DOF robot than it is
for a 1-DOF robot. Therefore, this example shows that our
proposed HFE/Perturbation algorithms are more stable with
respect to an increasing trajectory duration.

In fact, for T > 2.8 s, no performance index values are
obtained with NDSolve (Shooting). This is because with
this method, position or velocity boundary values could not
be met (depending on the case) and therefore the desired
trajectory could not be completed. Using the RK option for
this solver, ensures that boundary values are met for higher
values of T . However, for prescribed times greater than 4.7 s,
this is no longer the case because the solver indicates that the
system is suspected to be stiff. It has been noticed that opti-
mal control methodologies often lead to complex numerical
problems [40]. Stiffness is a common numerical issue that
arises in the control of nonlinear systems [24]. We therefore
set up NDSolve to account for stiffness but the outcome did
not change.

As opposed to these methods, our HFE/Perturbation suc-
cessfully achieves a trajectory that meets boundary con-
ditions (20) even for specified times T ≥ 5.0 s with
acceptable accuracy. Interestingly, performance index values
tend to be slightly lower with CHFE/Perturbation. However,
as T grows, its accuracy diminishes indicating that more
nodes may be required. Additionally, CHFE/Perturbation
usually requires more iterations of Algorithm 2 than
QHFE/Perturbation, which is in accordance with Figure 2a.
Nevertheless, the precision of our HFE/Perturbation methods
increases by raising the number of nodes as demonstrated in
section III-B (see Figure 2a).
Figure 4b also shows that no performance index values

are obtained with the QHFE/Perturbation for T > 10 s.
Interestingly this method struggles for trajectory durations
that approach T = 10 s for the 2-DOF robot manipula-
tor. Afterwards, the solutions obtained with this solver do
meet boundary values, because of the nature of the FEM,

but ‖1qs‖ increases instead of decreasing to a value lower
than ε in Algorithm 2. On the contrary, CHFE/Perturbation
is able to provide solutions up to T = 12 s implying that
the CHFE/Perturbation solver is more stable with respect to
trajectory duration.

Interestingly, since our HFE/Perturbation algorithms allow
to calculate optimal trajectories with durations of T ≥ 5 s,
it is now possible to analyze the behavior of our system
as T grows. Figures 5a and 5c show the optimal positions
(q1h, q

2
h) for three different values of T . Note how for T = 1 s,

the joints reach the goal with one swing, whereas it requires
more swings as T grows. This behavior was observed for both
robot joints in our simulations. A tendency for the optimal
position can thus be appreciated: as T grows, the robot links
will oscillate ever approaching the desired goal value.

Now, consider Figures 5b and 5d which shows the optimal
torques (u1h, u2h) for three different values of T . Note how as
T grows, torque values tend to oscillate around zero. Again,
this behavior was observed for both joints in our simulations.
This occurs because our optimization method focuses in min-
imizing a performance index (6) for which the integrand is a
function of the joint torques. It is therefore natural that torques
oscillate around the zero value.

D. HFE/PERTURBATION METHOD CONVERGENCE
ANALYSIS
The results presented in the previous section indicate that
our HFE/Perturbation algorithms are more stable with respect
to the trajectory duration T than the NDSolve solver. How-
ever, the convergence of both our proposed HFE/Perturbation
solvers shall be analyzed for our practical case. Indeed,
a superconvergence of the HFE interpolations was demon-
strated in section III-B. However, solving equations (10) is
more complicated than a simple interpolation.

In order to determine the convergence of our algorithms to
solve equations (10), we follow the methodology proposed
in [9], which for our case articulates in the following steps.
1) Establish themost converged solutions to equations (10)

subject to fixed boundary values following Algorithm 2
with a large number of nodes N . Solutions are denoted
(q∗, u∗) and serve as a reference against which other
‘‘less converged’’ solutions are compared with.

2) Obtain other ‘‘less converged’’ solutions to equa-
tions (10) subject to the same boundary values as for
step 1) with a growing number of nodes N . In this step,
the maximum number of nodesN should be chosen such
that both ‖q∗−qh‖ ≤ ζ and ‖u∗−uh‖ ≤ ζ . In our case,
we have settled with ζ = 10−5.

3) For each case of N , compute the logarithm of ‖q∗−qh‖,
‖u∗ − uh‖, ‖f m‖ and ‖f c‖. Establish curves of these
values against the corresponding value of log(h), where
h is the step size.

4) Fit the resulting curves with a first degree polynomial to
obtain the convergence rate.

These steps were followed for the optimal motion simu-
lation of both a 1-DOF robotic manipulator and a 2-DOF
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FIGURE 5. Optimal motion simulations of a 2-DOF robotic manipulator with QHFE/Perturbation for three different values of T . Figures show the
tendency as T increases for: (a) optimal configurations q1

h; (b) optimal controls u1h; (c) optimal configurations q2
h; (d) optimal controls u2h.

robotic manipulator. For both robots, we performed a tra-
jectory where T = 1 s. Boundary values (17) were taken
for the case of the 1-DOF robotic manipulator, and (20) for
the case of the 2-DOF robotic manipulator. For the 1-DOF
robot, we set N = 1500 to calculate (q∗, u∗) (step 1) above)
with both CHFE/Perturbation and QHFE/Perturbation. For
the 2-DOF, we set N = 1000 to calculate (q∗, u∗) with both
HFE/Perturbation algorithms.

Starting with the 1-DOF robotic manipulator, Figure 6a
shows the various norm values plotted against the step size
in the logarithmic scale for CHFE/Perturbation. This fig-
ure shows a curve with equation 25h3 located between norms
‖f m‖ and ‖f c‖ for reference. Convergence of these norms
resulted to be in h3. The same figure also shows a curve
with equation 2h3.5 located between norms ‖q∗ − qh‖ and
‖u∗−uh‖ for reference. Convergence of these norms resulted
to be in h3.5. Analogously, Figure 6b displays the same
norms plotted against the step size also in the logarithmic
scale for QHFE/Perturbation. This figure shows a curve with
equation 30h4 located between the norms ‖f m‖ and ‖f c‖ for

reference. Convergence of all norms resulted to be in h4 for
QHFE/Perturbation.

In the case of the 2-DOF robotic manipulator, Figure 6c
shows the various norm values plotted against the step size
in the logarithmic scale for CHFE/Perturbation. This fig-
ure shows a curve with equation 200h3 located between
norms ‖f m‖ and ‖f c‖ for reference. Convergence of these
norms resulted to be in h3. The same figure also shows a curve
with equation 25h3.5 located between norms ‖q∗ − qh‖ and
‖u∗ − uh‖ for reference. Convergence of these norms resulted
to be in h3.5. Analogously, Figure 6d displays the same norms
plotted against the step size also in the logarithmic scale for
QHFE/Perturbation. This figure shows a curve with equation
30h4 located between norms ‖q∗ − qh‖ and ‖u∗ − uh‖ for
reference. Convergence of all norms resulted to be in h4 for
QHFE/Perturbation.

Let us remark that convergence rates were the same for
both manipulators. This is significant because it indicates that
our HFE/Perturbation method convergence rates are not sys-
tem dependent. Instead, these rates depend on the target ODE
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FIGURE 6. Convergence of HFE/Perturbation for the optimal control of robotic manipulators: (a) CHFE/Perturbation for a 1-DOF robot;
(b) QHFE/Perturbation for a 1-DOF robot; (c) CHFE/Perturbation for a 2-DOF robot; (d) QHFE/Perturbation for a 2-DOF robot. Convergence rates are
equal for both manipulators.

structure. As a summary, Table 2 presents the convergence
rates for both CHFE/Perturbation and QHFE/Perturbation.

Table 2 reports two main facts:
1) that the superconvergence of HFE interpolations is not

inherited to the case of solving equations (10);
2) that with QHFE/Perturbation, error norms did converge

at a higher rate than with CHFE/Perturbation, but at a
lower rate than expected.

Regarding the first issue, superconvergence was estab-
lished for a simple interpolation case in section III-B.
Admittedly, this motivated us to develop the presented
HFE/Perturbation method. However, we must emphasize that
the set of ODE (10) is not as simple. These target equations
are second order nonlinear ODE. Nevertheless, we must also
emphasize that for CHFE/Perturbation, the convergence rate
of the evaluated norms is at least in the order of the chosen

TABLE 2. Norm convergence rates with the proposed HFE/Perturbation
method upon solving the second order nonlinear set of equations (10)
subject to boundary values for both a 1-DOF and a 2-DOF robotic
manipulators. Scalar h denotes the step size.

cubic interpolations. In fact, error norms ‖q∗ − qh‖ and
‖u∗−uh‖ converge at a rate which is half a degree higher than
the order of the cubic interpolations. Regarding the second
issue, surprisingly, the evaluated error norms revealed to
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converge at a rate which is one degree lower than the order of
the chosen quintic interpolations with the QHFE/Perturbation
method.

Recall that QHFE require one more basis function
than CHFE (see section III-A). This means that to
solve equations (10), QHFE/Perturbation computes 2nN
more unknowns than CHFE/Perturbation according to
Algorithm 1. This is beneficial when second time deriva-
tives of (q, u) are required at each node. However, CHFE/
Perturbation reveals to be more cost effective (computa-
tionally speaking) whenever first time derivatives of (q, u),
at each node, suffice.

These results illustrate the performance and accuracy of
our approach for the optimal path planning of robotic manip-
ulators, and encourage us to perform motion control experi-
ments to validate our proposal.

V. EXPERIMENTAL VALIDATION
In order to validate our approach, we conducted controlled
motion experiments on a 2-DOF robotic manipulator plat-
form presented in [39], [41] and located at the Instituto
Tecnológico de La Laguna, Mexico, previously used in [25].
The robotic manipulator is actuated by direct-drive brush-
less servo motors operated in torque mode. These act as
torque sources, receiving analog voltages as torque reference
signals. This property is ideal because it is thus possi-
ble to directly feed the optimal torques obtained with our
HFE/Perturbation method as an input reference signal. Opti-
mal positions and velocities are compared to the positions
and velocities fed back from the robot. A 32-bit DSP micro-
processor receives joint positions obtained via incremental
encoders. The control algorithm is executed in a sampling
period of 2.5 milliseconds on a host computer running the
WinMechLab environment presented in [42].

A. CONTROL SCHEME
The control law used to implement the optimal trajectories
may be divided into two operation modes, an optimal reach-
ing phase, which is active if 0 ≤ t ≤ T , and a holding phase
that is active if t > T , with T given as in (20).

The control scheme used to implement the optimal reach-
ing phase follows the structure of a Proportional-Derivative
(PD) control plus a feed-forward term. Its purpose is to
make the system follow a prescribed optimal trajectory which
attains a specific value on a fixed prescribed time. The control
law during this phase is described by the equation

τ = uh + Kpq̃+ Kv ˙̃q,

where τ ∈ Rn is comprised of the torques that are applied on
each link of the n-DOF robot, and q̃ = qh − q represents the
position error with qh as the desired optimal position of the
links. The matrices Kp and Kv are diagonal positive definite
matrices of dimension n × n. A schematic representation of
this section of the control law may be seen in Figure 8.
The feed-forward term is denoted as uh and its value is

the optimal torque obtained from the optimization method

FIGURE 7. Robotic manipulator platform used for the experimental
validation. It is a 2-DOF manipulator actuated by direct-drive brushless
servo motors operated in torque mode.

previously described. In the absence of external disturbances
and parametric uncertainties, and if the initial conditions at
time t = 0 are precisely the ones that are used as boundary
conditions, the output of the control law is precisely the feed-
forward term, i.e., the optimal torque.

In practice, it may be that the initial conditions for the
system deviate by a small amount due to measuring error.
The PD part of the controller corrects this deviation. A devi-
ation from initial conditions that is big in magnitude may
be corrected by selecting appropriate values of the initial
conditions (20). The PD term also adds robustness in the case
where vanishing disturbances arise during operation or when
manipulator parameters are not properly identified.

After the prescribed time T , the holding phase is active.
During this phase, the control law becomes a PD plus grav-
ity compensation controller. The equation that describes the
control law can be written as

τ = Kpq̃− Kvq̇+ g(q),

where g(q) is the gravitational torque vector of the robot, and
q̃ = qh − q, with qh a constant vector that contains the
values of the boundary conditions at t = T . On this phase
the PD term serves the same purpose as in the previous phase
and gravity compensation is used to keep the manipulator in
place.

In summary, the overall control law may be written as

τ =

{
uh + Kpq̃+ Kv ˙̃q if 0 ≤ t ≤ T
Kpq̃− Kvq̇+ g(q) if t > T

Friction compensation was also used during each phase to
cancel the effect of kinetic friction. On the prototype, kinetic
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FIGURE 8. Schematic representation of the controller.

friction was modeled as Coulomb friction (as described
in [43]) and the compensation that was used is as follows. Let
τexp denote the torque that is actually applied to the manipula-
tor during the experiment. The applied control torque, in the
experiment, may be expressed as

τexp = τ + FCsign(q̇)

where τ denotes the torque produced by either the opti-
mal or reaching phase control laws, and FC is a diagonal
matrix containing the coulomb friction coefficients. Since
friction coefficients were previously identified, this strategy
effectively cancels out the effects of the most predominant
nonconservative forces affecting our prototype.

We used the same control scheme as in [25], where its
stability was formally analyzed.

B. THE EFFECT OF EXTERNAL DISTURBANCES
We now analyze the effect of external disturbances on the
closed loop system. To quantify the effect of external distur-
bances, it is possible to consider each phase independently
(optimal reaching and holding), as it is done to show the
stability of the closed loop in [25]. The overall disturbance
effect depends on the controller gains and the disturbance’s
upper bound.

As it was shown in [25], it is possible to express the solution
uh of equation (10) as a function of qh in the following way:

uh(t) = M (qh)q̈h + C(qh, q̇h)q̇h + g(qh)

where M is the inertia matrix of the manipulator, C is a
matrix that captures the effect of centrifugal and Coriolis
forces and g is a vector that contains the torques on the system
that are due to the effects of gravity. Further details on this
representation of the dynamical model may be found in [44].

Throughout this section, the external disturbance is
assumed to be additive, that is, the motion equations of the
mechanical system may be expressed as

M (q)q̈+ C(q, q̇)q̇+ g(q) = τ (t)+ d(t)

where τ is the torque applied to each link (which is the sum
of a PD term and uh), and d is the external disturbance on
each link. It is also assumed that the norm of the external
disturbance can be bounded by a positive constant δd such
that ‖d(t)‖ ≤ δd for all t ≥ 0.
With this in mind, it is possible to state that the closed loop

system takes the following form during the optimal reaching
phase:

d
dt

[
q̃
˙̃q

]
=

[
˙̃q

M (q)−1
[
−Kpq̃− Kv ˙̃q+ z1(t)

]]
, (21)

where

z1(t) = −C(q, q̇) ˙̃q− h(t, q̃, ˙̃q)− d(t),

and h denotes the residual dynamics given by

h(t, q̃, ˙̃q) = [M (qh)−M (qh − q̃)]q̈h
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+ [C(qh, q̇h)− C(qh − q̃, q̇h − ˙̃qh)]q̇h
+ g(qh)− g(qh − q̃).

Consider now the function

V (t, q̃, ˙̃q) =
1
2
˙̃qTM (q) ˙̃q

+
1
2
q̃TKpq̃+ γ tanh(q̃)TM (q) ˙̃q, (22)

which satisfies the bounds α1‖x‖2 ≤ V (t, q̃, ˙̃q) ≤ α2‖x‖2

with x = [q̃T ˙̃qT ]T and constants α1, α2 > 0, whose exis-
tence is ensured by the tuning conditions presented in [25],
given by

α1 = λmin{P1},

α2 = λMax{P2},

where λmin{P1} and λMax{P2} denote the smallest and largest
eigenvalues, respectively, of matrices P1 and P2 that are
defined as

P1 =
[

Kpm −γKMM

−γKMM KMm

]
and

P2 =
[
KpM γKMM

γKMM KMM

]
.

Constants Kpm ,Kvm ,KMm denote lower bounds on the
eigenvalues of matrices Kp,Kv and M (q), respectively. Con-
stants KpM ,KvM ,KMM denote upper bounds of the eigenval-
ues.

The time derivative of (22) along the trajectories of (21)
satisfies

V̇ ≤ −γ
[
‖tanh(q̃)‖
‖ ˙̃q‖

]T
Q1

[
‖tanh(q̃)‖
‖ ˙̃q‖

]
+ δd‖ ˙̃q+ γ tanh(q̃)‖ (23)

with

Q1 =

 Kpm − kh2 −a−
1
γ

kh2
2

−a−
1
γ

kh2
2

1
γ

[
Kvm − kh1

]
− b

 .
Now, consider a domainDr = {x ∈ R2n

: ‖x‖ ≤ r}, where
x = [‖q̃‖ ‖ ˙̃q‖]T . On Dr , by defining ε =

tanh(r)
r , a positive

constant that depends on the size of Dr , it is possible to state
that ‖q̃‖ ≥ ‖tanh(q̃)‖ ≥ ε‖q̃‖ on Dr . Therefore, on Dr it is
true that

V̇ ≤ −γ λMax{Q1D}‖x‖2 + δd max{γ, 1}‖x‖ (24)

where

Q1D =

 ε2(Kpm − kh2) −a−
1
γ

kh2
2

−a−
1
γ

kh2
2

1
γ

[
Kvm − kh1

]
− b

 .

Notice that V̇ ≤ 0 if µ1 ≤ ‖x‖ ≤ r , where µ1 is given by

µ1 =
δd max{γ, 1}
γ λMax{Q1D}

.

To ensure that function (22) is positive definite and its
time derivative is non-positive on a subset of the domain Dr ,
the same tuning conditions that were presented in [25] should
be met along with an additional one given by

Kpm >
[2γ a+ kh2]2

4ε2γ
[
Kvm − kh1 − γ b

] + kh2
where kh1 and kh2 are defined in [44], and constants a and b
are given by

a =
1
2

[
KvM + kC1 ‖q̇h‖M + kh1

]
,

b = KMM +
√
nkC1 .

Under these given conditions and invoking Theorem 4.18
from [45], it is possible to state that that there exists a time
TC such that every solution with initial conditions

‖x0‖ ≤ r0

√
α1

α2

where r0 < r , satisfies

‖x(t)‖ ≤ µ1

√
α2

α1
, ∀t ≥ t + TC . (25)

In other words, during the optimal reaching phase, if an
external disturbance is present, solutions enter a set that
can be made arbitrarily small with appropriate tuning as a
function of the upper bound on the disturbance.

If the switching time T is greater than TC , that is T > TC ,
then solutions will converge and remain inside the set
described by (25) until the switching time. After switching
occurs, another transient state might ensue depending on the
used gains during the holding phase. Therefore, to completely
describe the effects of the external disturbance, the behavior
during the holding phase must first be analyzed. To this end,
notice that during the holding phase, the closed loop system
may be expressed as

d
dt

[
q̃
˙̃q

]
=

[
˙̃q

M (q)−1
[
−Kpq̃− Kv ˙̃q+ z2(t)

]]
, (26)

where

z2(t) = −C(q, q̇) ˙̃q− d(t).

Notice also that after the switch, solutions at time t = T
take the value of the initial conditions for the system evolu-
tion (26).

By using the same function (22), assertions can be made
regarding the stability of the solutions to (26). It can be
shown that the time derivative of V along the solutions of (26)
satisfies

V̇ ≤ −γ λMax{Q2D}‖x‖2 + δd max{γ, 1}‖x‖ (27)
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on Dr with Q2D given by

Q2D =

 ε2Kpm −
1
2
KvM

−
1
2
KvM

1
γ
Kvm −

√
nkC1 − KMM

 .
This ensures that function (22) has a non-positive time

derivative on a subset of the domainDr given byµ2 ≤ ‖x‖ ≤
r , where µ2 is defined as

µ2 =
δd max{γ, 1}
γ λMax{Q2D}

,

under the same tuning conditions that were presented in [25]
with an additional one given by

4ε2KpmKvm
K 2
vM + 4ε2 Kpm

[√
nkC1 + KMM

] > γ.

Just as for the optimal reaching phase, under these given
conditions and invoking Theorem 4.18 of [45], it is possible
to state that there exists a time TF such that every solution
with initial conditions

‖x0‖ ≤ r0

√
α1

α2

where r0 < r , satisfies

‖x(t)‖ ≤ µ2

√
α2

α1
, ∀t ≥ t + TF . (28)

This means that if an external disturbance is present, solu-
tions during the holding phase also enter a set that can be
made arbitrarily small with appropriate tuning.

Controller gains during the holding phase can be differ-
ent from the ones used during the optimal reaching phase.
Consequently, values for α1, α2 may be different for the
holding phase. This also implies that if, for the optimal
reaching phase, TC < T and the region of convergence is
smaller for the holding phase than for the optimal reaching
phase, another small transient might be present. On the other
hand, if TC > T , then the solutions can still be expected to
fulfill (28).

In summary, if a bounded external disturbance is present
it is possible to establish that there will be a deviation from
the optimal trajectory that may be corrected up to a certain
degree depending on the controller gain values.

C. EXPERIMENTAL RESULTS
We have conducted three experiments with different
prescribed trajectory durations.
• Experiment 1: duration T = 1 s and boundary val-
ues (20) were taken.

• Experiment 2: duration T = 3 s; initial positions and
initial and final velocities of (20) were taken but q(T ) =
(1.2, 1.1)T rad instead.

• Experiment 3: duration T = 5 s and boundary val-
ues (20) were taken.

Note that the only difference between experiments 1 and 3 is
the trajectory duration.

TABLE 3. Performance index values for the controlled motion
experiments held on a 2-DOF robotic manipulator subject to boundary
conditions.

Figure 9 compares the robot trajectory positions and
torques with the input signals during the three exper-
iments. Figures 9a, 9b and 9c correspond to experi-
ment 1. Figures 9d, 9e and 9f correspond to experiment 2.
Figures 9g, 9h and 9i correspond to experiment 3. Note
that for the three experiments, the trajectory position
was smoothly tracked. Negligible positioning errors were
recorded along each trajectory. Final goal positions were
attained with relative errors in the order of 10−3 rad at each
joint for the three experiments. Note also that the experiments
were extended past the prescribed trajectory duration T ; after-
wards, torque values remain constant so that the robot remains
in its goal position.

As per equation (21), our control strategy compensates
friction effects online during the experiments by taking into
account the robot parameters. The applied control law in
the experiment took these effects into account in order to
cancel them out. The reader is referred to [25] for more
details on this procedure. In order to analyze the impact
of this compensation on the input signal, we have recorded
the robot torques both with and without friction compensa-
tion. Let us remark that torques without friction compensa-
tion do not produce the required motion, these are just the
robot torques with friction compensation to which we sub-
tracted friction terms in (21) for analysis purposes. Therefore,
Figures 9b, 9e and 9h show robot torques with friction com-
pensation for experiments 1, 2 and 3 respectively. Addition-
ally, Figures 9c, 9f and 9i show robot torques without friction
compensation for experiments 1, 2 and 3 respectively.

When comparing robot torques with friction compensa-
tion against torques without friction compensation for each
trajectory, we can see that this compensation does increase
the required torques in order to produce the desired motion.
We note that torques with friction compensation do follow the
tendency of the optimal input signal, but noticeably modify
its value. Online friction compensation naturally affects the
performance index values for the experiment (see Table 3),
which are larger for the actual robot motion (column 3) than
for the simulation case (input signal, last column of Table 3).
However, maximum output torque values u remain very low
compared to the maximum output that our robot can generate
in all three experiments. Let us now present the specifics of
each experiment.
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FIGURE 9. Controlled motion experiments on a 2-DOF manipulator platform. Experiment 1: T = 1 s; final positions q(T ) = (0.8, 1)T rad; (a) trajectory
position; (b) torque with friction compensation; (c) torque without friction compensation. Experiment 2: T = 3 s; final positions q(T ) = (1.1, 1.2)T rad;
(d) trajectory position; (e) torque with friction compensation; (f) torque without friction compensation. Experiment 3: T = 5 s; final positions
q(T ) = (0.8, 1)T rad; (g) trajectory position; (h) torque with friction compensation; (i) torque without friction compensation. Trajectory positions were
smoothly tracked for each experiment.

1) EXPERIMENT 1
Optimal input signals (qh, uh) were calculated with the four
solvers used in section IV (NDSolve (shoot), NDSolve (RK),
CHFE/Perturbation andQHFE/Perturbation) according to the
strategy described therein. For this particular example, differ-
ences between solvers were negligible and thus we retained
the solution obtained with our QHFE/Perturbation method.
This provided with optimal torques uh, used as input signals,
and optimal positions qh and velocities q̇h that are compared
with the feedback signals.

Figure 9a displays the optimal position qh, used as refer-
ence for feedback, compared with the output system position
q during the experiment. As previously mentioned, the tra-
jectory was smoothly tracked, following the reference during

the experiment. Negligible positioning errors were recorded
along the trajectory. Figure 9b compares the optimal torque
uh with the system output u. Table 3 reports the performance
index (PI) values obtained for this experiment in the first row.
The increase in the performance index for the experiment
(column 3) compared against the simulation case (column 5)
is noticeable (almost five times as large) but results from the
online friction compensation as previously mentioned.

2) EXPERIMENT 2
For this experiment, we also calculated optimal input sig-
nals (qh, uh) with the four solvers used in IV (NDSolve
(Shooting), NDSolve (RK), CHFE/Perturbation and QHFE/
Perturbation). However, as shown by Figure 4b, NDSolve
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(Shooting) could not calculate the required motion because
final conditions on position and velocity could not
be met. The remaining three solvers (NDSolve (RK),
CHFE/Perturbation and QHFE/Perturbation) successfully
calculated the required motion, satisfying all bound-
ary conditions with little differences as shown also by
Figure 4b. Here, we retained the solution obtained with our
CHFE/Perturbationmethod. Note that we could have retained
either of the other two solution methods for this experiment
without affecting the outcome of the experiment because the
obtained solutions are so similar.

Figure 9d displays the optimal position qh, used as refer-
ence for feedback, compared with the output system position
q during the experiment. Again, the trajectory was smoothly
tracked with negligible positioning errors along the trajec-
tory. Figure 9e compares the optimal torque uh with the
system output u. Table 3 reports the performance index values
obtained for this experiment in the second row. The increase
in the performance index for the experiment (column 3)
compared against the simulation case (column 5) is also
noticeable (this time being twenty times as large) and also
results from the online friction compensation as previously
mentioned.

3) EXPERIMENT 3
For this final experiment, we calculated optimal input signals
(qh, uh) with the three solvers that succeeded experiment 2:
NDSolve (RK), CHFE/Perturbation and QHFE/Perturbation.
However, this time, NDSolve (RK) could not calculate the
required motion because boundary conditions could not be
met, as shown by Figure 4b. Both our CHFE/Perturbation
and QHFE/Perturbation methods successfully calculated the
required motion, exactly satisfying all boundary condi-
tions. Here, we retained the solution obtained with our
QHFE/Perturbation method. Note that we could have instead
retained the CHFE/Perturbation method solution for this
experiment without affecting its outcome.

Figure 9g displays the optimal position qh, used as refer-
ence for feedback, compared with the output system position
q during the experiment. Again, the trajectory was smoothly
tracked with negligible positioning errors along the trajec-
tory. Figure 9h compares the optimal torque uh with the
system output u. Table 3 reports the performance index
values obtained for this experiment in the third row. The
increase in the performance index for the experiment (col-
umn 3) compared against the simulation case (column 5) is
large (this time being one hundred times as large) and also
results from the online friction compensation as previously
mentioned.

4) EXPERIMENTS DISCUSSION
All of the experiments were extended past the prescribed
trajectory durations T ; afterwards, torque values remain con-
stant so that the robot remains in its goal position. As men-
tioned before, the discrepancy between the robot torques
required for motion and the optimal input signal is noticeable.

Table 3 shows that when suppressing friction compensation
from the output signal, the torque discrepancy with respect
with the input signal does diminish. It does however stay large
specially for experiment 3 (third row of Table 3).
We had previously established that the performance index

should decrease as T increases (see Figures 4a and 4b
in section IV) when the boundary conditions on position
and velocity stay equal. Surprisingly, this feature was not
recovered in the experimental case, as shown by Table 3.
Experiments 1 and 3 had the same final positions but the
performance index with friction compensation is larger for
experiment 3 where T is five times longer.

Therefore, we hypothesize that these problems could be
solved by incorporating nonconservative forces (such as fric-
tion effects) into our model (10) as prescribed in section 2.3
of [25]. By doing this, an online friction compensation could
be avoided, thus reducing the absolute value of the required
robot torques to produce optimal motion. This could result
in preserving optimal input torques up to a certain degree
and recovering a decreasing performance index whenever T
increases.

Another source of uncertainty that may cause the exper-
imental performance of the controller to be different from
the theoretical one may be the discretization error induced
by the experimental setup. Measurements from the sensors
embedded in themanipulator are taken every 2.5milliseconds
and the control law is computed with the same frequency.
Although the overall effect of this phenomenon on the per-
formance of the control scheme should not be as important
as friction, it may also have an impact on the discrepancies
found between theoretical results and the experiments.

We should emphasize however that even in the experi-
mental case, all of the trajectories were tracked with good
accuracy. Also, while the trajectory for experiment 1 could be
calculated with all of the solvers, experiment 2 could not be
held with the NDSolve (Shooting) solver, and experiment 3
could not be held with either NDSolve (Shooting) or its RK
variant. On the contrary, our proposed CHFE/Perturbation
and QHFE/Perturbation solvers were able to complete all of
the experiments required trajectories.

These results show that the optimal trajectory obtained
with our proposed HFE/Perturbation method can be tracked
with good accuracy and thus validate our approach. We now
proceed to conclude our paper by recalling the main advan-
tages of our proposed method, as well as summarizing our
findings in the next section.

VI. CONCLUDING REMARKS
Upon establishing a coupled set of second order, nonlin-
ear, covariant ODE controlling torques and trajectories that
involve the covariant derivatives of the gravitational potential
and the Riemann-Christoffel curvature tensor, an algorithm
has been elaborated for finding the optimal torques and tra-
jectories. This algorithm consists in solving the system of
ODE that minimizes an objective functional of the torques,
regarded as a performance index.
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Our procedure approximates the configuration parame-
ters and the torques by piecewise HFE interpolations in
the framework of the FEM. CHFE and QHFE are pro-
posed as a more precise alternative. Physical interpretation
of finite elements coefficients are given: approximations of
position, velocity and acceleration are directly obtained at
each node. Two examples illustrate the superconvergence of
these interpolations when simulating the torques and trajec-
tories. A perturbation method involving Hermite finite ele-
ments for time integration was proposed. Therefore, explicit
expressions for perturbed motion and control equations were
given.

The presented HFE/Perturbation method was specifically
designed and applied to solve the OCP of a robotic manip-
ulator. However, it can be easily adapted to solve general
nonlinear second order ODE arising in multibody systems
dynamics. Solutions approximations obtained with our algo-
rithm were compared with those obtained with a commercial
ODE solver, on the basis of specific performance indicators,
and reveal to provide better performance overall, provided
that sufficient nodes are being used. Additionally, accuracy of
the obtained solutions approximations can be easily increased
as required. Note also that stiffness does not affect ourmethod
for fairly large trajectory durations, thus enabling further
analysis of the optimal control procedure. Therefore, when
compared with the commercial ODE solver, our FE-based
method has the following advantages:
• it directly provides with optimal positions and torques,
along with their respective first (with CHFE) and sec-
ond (with QHFE only) time derivatives at each
node;

• due to the nature of the FE interpolation, there is no need
to shoot the final conditions nor to rebuild the control
variables;

• lower error norms can be obtained because further dif-
ferentiation of positions and torques is not required;

• longer duration trajectories can be calculated.
With respect to this last point, i.e., in terms of stability with

respect to trajectory duration, CHFE/Perturbation resulted to
be the most stable. Our solver was able to provide solutions
for durations of up to 12 s for the optimal motion of a 2-DOF
robotic manipulator, where the commercial ODE solver could
not go further than 4.7 s.

A convergence analysis of our proposed HFE/Perturbation
algorithms revealed that the superconvergence of HFE inter-
polations is not inherited when applied to our optimal control
methodology. However, convergence of the evaluated norms
with CHFE/Perturbation resulted to be at least in the order
of the cubic interpolations and even higher for errors of q
(position) and u (torques). Interestingly, convergence of the
evaluated norms with QHFE/Perturbation were lower than
expected, at a rate of one degree lower than the order of the
quintic interpolations.

Generally speaking, CHFE/Perturbation is more stable
with respect to trajectory duration, and more cost effec-
tive (in the numerical sense) than QHFE/Perturbation.

However, the latter still displays higher convergence rates
and may be desirable whenever first and second time
derivatives of positions and torques are required at each
node.

Finally, experiments were conducted with a robotic manip-
ulator by directly feeding optimal torques obtained with
our method, as inputs. This resulted in the generation of
smooth trajectories that met specified boundary conditions,
thus validating our approach. Our algorithm is therefore well
suited for efficiently generating optimal motion for robotic
systems. However, and unlike what we had established for
optimal motion simulations, the performance index did not
decrease when the trajectory duration increased. On the con-
trary, online friction compensation and parametric uncer-
tainties noticeably affected the performance index so that
it increased with trajectory duration instead. Therefore, our
optimal control method could be improved by taking non-
conservative forces into account in our model. This should
result in preserving optimal input torques up to a certain
extent, directly leading to lower experimental torques values
for motion. This will be the object of further research for
which the presented HFE/Perturbation method shall be used
to solve the arising nonlinear ODE.

The control scheme was shown to have robustness prop-
erties with respect to external disturbances. Namely, it was
shown, using Lyapunov based analysis, that if a bounded
external disturbance is present it is possible to establish that
there will be a bounded deviation from the optimal trajectory.
This also implies that in spite of the external disturbance,
the closed-loop solutions remain bounded. In practice, this
means that external disturbances would not render the system
unstable.

In summary, we have presented a time FE-based method
that effectively solves the optimal control problem of robotic
manipulators involving covariant control equations as opti-
mality conditions; the proposed control scheme provides the
optimized control action required to take the robot from an
initial to a final state in a prescribed time. This FE-based
method was compared with a commercial ODE solver and
revealed to be more stable for extended prescribed trajectory
times. Experimental results on a robotic manipulator system
validated our theoretical proposal. Motion trajectories were
smoothly tracked and results exposed further methodology
improvements.
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