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ABSTRACT The management of the uncertainty existing in any production system is fundamental to define
machine scheduling models that allow programming production instances attached to the real world. In this
research, a generalized decision-making system is developed for the management of uncertainty existing
in flow shop machine scheduling models. The system assessment the uncertainty existing in internal and
external factors that influence the decision-making process of production programming experts, and that is
decisive in a final machine scheduling. The system is based on the combination of the Fuzzy Hierarchical
Analysis Process, a membership analysis, and an Artificial Neural Network (ANN). The system allows to
concentrate the experience of experts in machine scheduling and generalize their knowledge. The efficiency
of the system is verified with a Fuzzy Hierarchical Analysis ProcessModel, the ‘‘ANN toolbox’’ preloaded in
MATLAB and variety of structures of an Artificial Neural Network. The results are validated in an industrial
application and the system is contrasted against an expert. The results show the efficiency of the system as it
defines and predicts the final machine scheduling of production instances; the joint assessment of variables
that add uncertainty to the production system allowed to reduce delays in product deliveries.

INDEX TERMS Artificial neural network, decision-making system, flow shop, fuzzy hierarchical analysis
process, machine scheduling, uncertainty.

I. INTRODUCTION
Machine scheduling is responsible for organizing, choos-
ing and scheduling the efficient use of resources in such a
way that products or services are produced within a reason-
able agreement with customer demand. Flow shop machines
scheduling is one of the main models that adapts strongly
of the manufacturing industries [1], [2]. In Mexico, most
companies in the ‘‘leather-footwear’’ manufacturing sector
are characterized by having a flow shop machine scheduling
model, where their main needs are related to the properties
of completion times which seek to avoid late delivery of
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orders. In this sector, much of the production programming
is based on the experience of experts who have to deal with
a complex decision-making process involving external and
internal alterations that affect effective machine scheduling;
these alterations are considered as the uncertainty existing in
the production system.

In the literature review, a dominant trend has been iden-
tified in the formulation of stochastic and deterministic
solution models and procedures, to focus on the machine
scheduling models [3]; these processes do not consider
the inherent uncertainty of production systems. In the
same way, several approaches of multi-criteria assessment
methods have been identified to address decision-making
processes, such as: Analytic Hierarchy Process (AHP),
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Preference Ranking Organization Methods for Enrichment
Evaluations (PROMETHEE), Technique for Order of Prefer-
ence by Similarity to Ideal Solution (TOPSIS) [4]–[6]; such
work is based on the knowledge of experts. The AHP and its
fuzzy AHPD variant stand out in the last decade [7]–[9], its
main applications are oriented to the choice of manufacturing
strategies, flexibility in production processes and action plans
in various circumstances [10]–[16]. Additionally, the works
of [17]–[20] have been identified where uncertainty is used
as a tool that strengthens the solution convergence of solv-
ing methods of machine scheduling models, and not as a
determining variable in the final scheduling. In the literature
review, a transition is being conceived to the development of
research involving production planning models under uncer-
tainty [21]–[23]; it can be said that, tendency purpose is to
generate models that adhere contextualized variables subjec-
tively and that analyze the extent of belonging in which these
variables really influence. This exposes an important area of
research.

On the other hand, the Artificial Neural Networks (ANN)
have tried to position themselves as one of the main expo-
nents to treat decision-making processes in productive sys-
tems [24]; however, they are deficient in addressing resource
allocation problems [25]–[27]. The approaches proposed
by [28]–[31] show areas of opportunity; such approaches
require specific adjustments to both input data and final
results, evidence that their procedures are biased to show
good performance. Approaches that combine ANN and
AHP [32], [33] have been identified that are oriented towards
generalizing the selection of alternatives; one of the important
benefits of combining ANN and AHP is the ability to gener-
alizing the knowledge experts to solve real-world problems.

Under this context, it can be said that uncertainty has
been defined ambiguously and only for specific scenarios
of productive systems, which has made it impossible to
developmethods or tools for a generalized application. There-
fore, the complexity involved in machines scheduling, in a
real-world context, not only involves the development of
algorithms that converge to optimal solutions, but also the
development of systems that support the complex decision-
making process experienced by the production programming
expert. This has motivated the development of this research.

The contribution of this research is a generalized decision-
making system called Fuzzy Neuro Analytic Hierarchy
Process with Extension Analysis (AHPND-‘‘Extent’’). The
system is integrated by the Fuzzy Hierarchical Analysis
Process (AHPD), the principles of a membership analysis
(‘‘Extent Analysis’’) [34], [35] and a Multilayer Percep-
tron Artificial Neural Network (MPANN). The system is
used to assess the uncertainty existing in the flow shop
machine scheduling general model. The system makes it
possible to analyze the extent to which internal and exter-
nal factors influence the decision-making process experi-
enced by production programming experts when issuing
final machine scheduling. Therefore, the system concentrates
the experience of experts and generalizes its knowledge to

define or predict the most appropriate machine processing
sequencing.

After a brief introduction to the topic discussed in
Section 1, the rest of the document is organized as follows.
Section 2 defines the concept of uncertainty variables and
the flow shop machine scheduling model under uncertainty,
referred to in this research; the fuzzy triangular numbers,
the multilayer perceptron and the ‘‘Extent’’ Analysis are
then described. Section 3 shows the decision-making sys-
tem AHPND-‘‘Extent’’. In Section 4, the proposed system
is implemented and validated in an industrial application.
In Section 5, the discussions and conclusions are stated.

II. CONCEPTUAL BASIS
A. UNCERTAINTY VARIABLES
In this research uncertainty is addressed using the possibility
theory which deals with the possible rather than probable
values of a variable, the possibility being a matter of extent
of influence and not a probability of occurrence. Production
programming experts play an important role in assessing the
extent to which a variable that generates uncertainty influ-
ences. Therefore, from the point of view of this research,
an uncertainty variable is a variable that is subjectively con-
textualized by an expert and to which the extent to which
it influences a productive system can be assigned. In this
research, the extent of influence of an uncertainty variable
is quantified by a fuzzy scale and the use of fuzzy triangular
numbers in the range of 0-1.

B. FLOW SHOP MACHINE SCHEDULING MODEL UNDER
UNCERTAINTY DEFINITION
In this investigation, a flow shop machine scheduling model
under uncertainty is defined as a flow shop model that inte-
grates the inherent uncertainty of influential internal and
external variables directly and indirectly when creating a final
processing sequencing. The goal is to minimize processing
completion times by focusing the analysis on the existing
uncertainty.

The manufacture of footwear is one of the main produc-
tions processes of the manufacturing companies of the sector
‘‘leather-footwear’’ which can be represented as a flow shop
machine scheduling model under uncertainty. Considering
the experiences and subjective issues of experts in the pro-
gramming of footwear production, the following uncertainty
variables have been identified for this type of manufacturing
companies:

1) Initial Dispatch Criteria (CDI): Order size (CDI-TP),
Arrival Order (CDI-OLL), and Priority (CDI-P).

2) Customer Payment Criteria (CPC): Prepayment
(CPC-PA), Delivery Payment (CPC-PE), and Funded
Payment (CPC-PF).

3) Materials Supply Criteria (CSM): RawMaterial Supply
(CSM-AMP), and Workforce (CSM-FT).

4) Inventory Criteria (IC):Maquila+ (CI-M+), Maquila -
(CI-M-), Inventory in Process (CI-IP) Delivery
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5) TimeCriteria (CTE): Completion Time (CTE-TF), Due
Date (CTE-DD), and Deadline (CTE-DL).

C. FUZZY TRIANGULAR NUMBERS
The AHPD incorporates fuzzy logic by replacing crisp
numbers with fuzzy triangular numbers [7]. A fuzzy set
can be defined as a convex function. A trapezoidal or
triangular function closely approximates the convex func-
tion. Therefore, fuzzy triangular numbers are convenient in
fuzzy environments due to their computational simplicity
and their ability to promote the representation and process
information [7], [36].

A fuzzy number M in R is a fuzzy triangular number if its
membership function µM (x) : R→ [0, 1] is equal to:

µ (x) =


x

m−l −
l

m−l x ∈ [l,m]
x

m−u −
u

m−u x ∈ [m, u]
0 otherwise

 (1)

where l ≤ m ≤ u, l y u are the lower and upper limits of the
support value of M respectively, and m is the modal value.
The fuzzy triangular number can be defined by (l,m, u). The
support of M is the set of elements x ∈ R|1 < x < u.
When l = m = u is not a fuzzy triangular number,
by conviction. When there are two fuzzy triangular numbers
Ã = (a1, a2, a3) y B̃ = (b1, b2, b3), their operating laws are
as follows:

Ã⊕ B̃ = (a1, a2, a3)⊕ (b1, b2, b3)

= (a1 + b1, a2 + b2, a3 + b3) (2)

Ã⊗ B̃ = (a1, a2, a3)⊗ (b1, b2, b3)

= (a1b1, a2b2, a3b3) (3)

Ã−1 = (1/a3, 1/a2, 1/a1) (4)

λ⊗ Ã = λ⊗ (a1, a2, a3)

= (λa1, λa2, λa3)λ > 0, λ ∈ R (5)

D. ‘‘EXTENT’’ ANALYSIS
The principle of uncertainty assess processes that are carried
out in this research are referred in [34], [35]. Let X =
x1, x2, . . . , xn be a set of objects andU = u1, u2, . . . , um a set
of objectives, each object is taken, and the extension analysis
is performed for each objective, gi, respectively. Therefore,m
‘‘Extent’’ Analysis values can be obtained for each object:

M1
gi,M

2
gi, . . . ,M

m
gi , i = 1, 2, . . . , n (6)

where allM j
gi (j = 1, 2, . . . , n) are fuzzy triangular numbers.

The steps of the ‘‘Extent’’ Analysis can be defined as
follows:

1) THE FUZZY VALUE ‘‘SYNTHETIC EXTENT’’
The fuzzy value ‘‘synthetic extent’’ for the i-th object is
defined as:

Si =
m∑
j=i

M j
gi ⊗

 n∑
i=1

m∑
j=1

M j
gi

−1 (7)

To obtain
m∑
j=1

M j
gi the operation of the Fuzzy addition of

the ‘‘Extent’’ Analysis values m for a particular matrix is
performed, so that:∑m

j=1
M j
gi =

(∑m

j=1
aj,
∑m

j=1
bj,
∑m

j=1
cj
)
,

i = 1, 2, . . . , n (8)

And to obtain

[
n∑
i=1

m∑
j=1

M j
gi

]−1
the Fuzzy addition opera-

tion of M j
gi(j = 1, 2, . . . n) is performed, so that:[∑n

i=1

∑m

j=1
M j
gi

]−1
=

(
1∑n
i=1 ci

,
1∑n
i=1 bi

,
1∑n
i=1 ai

)
(9)

2) THE EXTENT OF POSSIBILITY THAT M2≥M1
The extent of possibility that M2 = (a2, b2, c2) ≥ M1 =

(a1, b1, c1) is defined as:

V (M2 ≥ M1) = sup
⌊
min

(
µM1 (x), µM2 (y)

)⌋
(10)

Equivalent to the following expression:

V (M2 ≥ M1)

= hgt (M1 ∩M2) = µM2 (d)

=


1 if b2 ≥ b1
0 if a1 ≥ c2

a1 − c2
(b2 − c2)− (b1 − a1)

otherwise
(11)

where (d) is the ordinate of the highest point of intersection
D between µM1 and µM2 . To compare M1 and M2 we need
both values of V (M1 ≥ M2) y V (M2 ≥ M1)

3) THE EXTENT OF POSSIBILITY THAT M ≥ Mk
The extent of possibility that i fuzzy convex numbers are
greater than k fuzzy convex numbers Mi, (i = 1, 2, . . . , k)
can be defined by:

V (M ≥ M1,M2 . . .Mk)

= V
[
(M ≥ M1) y(M ≥ M2)y . . . y(M ≥ Mk )

]
= min(M ≥ Mi), i = 1, 2, . . . , k (12)

Assume that:

d ′ (Ai) = minV (Si ≥ Sk )

for k = 1, 2, . . . , n; k 6= i (13)

Therefore, the weight of the vector is given by:

W ′ = (d ′(A1), d ′(A2), . . . , d ′(An))
T (14)

where Ai, (1, 2, . . . , n) are n elements.

4) NORMALIZED VECTOR
The normalized vector is given by:

W = (d(A1), d(A2), . . . , d (An))T (15)

where W is a crisp number.
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E. MULTILAYER PERCEPTRON
The Multilayer perceptron can be conceptualized like a
generic type of network, which can be trained to solve
different non-linear problems. This is achieved by cascad-
ing discriminant nodes called neurons. A neuron with a
d-dimensional input vector s and output rj is mathematically
expressed as follows:

rj = f
(
aj
)
= f

(
d∑
i=0

wji, si

)
(16)

wherewji denotes the weight corresponding to the connection
of the output neuron j to the input neuron i. The function f is
the activation function, and aj is the so-called post-synaptic
potential. The term ‘‘multilayer’’ refers to the existence of
several layers of weights in the network, an example of this
architecture is shown in Fig. 1.

FIGURE 1. Multilayer perceptron structure.

In Fig. 1, there are two layers of weights, one connecting
the feature vector x (input nodes) to the layer vector y (hidden
nodes), and another connecting them to vector z (output
nodes). Finally, to set the suitable weight values, there is
a powerful algorithm for finding a minimum error solution
based on the concept of gradient descent, called error back-
propagation. In Section 4, we delve into the implementation
of this algorithm.

III. AHPND-‘‘EXTENT’’
The AHPND-‘‘Extent’’ system proposed in this research is
shown in Fig. 2. The system is based on the contributions
of [7], [32]–[35], [37]. The system consists of the follow-
ing stages: Stage I: Database; Stage II: Integration of an
AHPD with ‘‘Extent’’ Analysis; Stage III: Integration of an
MAPNN; Stage IV: Decision. Stage I and II concentrate the
experience of experts; Stage III generalizes experience to
define or predict final scheduling; Stage IV makes a decision
on final machine scheduling.

The description of each of the stages that make up the
AHPND-‘‘Extent’’ system is given below.

A. STAGE I: DATABASE
The database is created and fed by production programming
experts; they, in turn, are responsible for deciding to correct or
approve the information. The database contains information
regarding various production instances and information on
uncertainty variables.

B. STAGE II: INTEGRATION OF AHPD WITH ‘‘EXTENT’’
ANALYSIS (AHPD-‘‘EXTENT’’)
The AHPD-‘‘Extent’’ is the result of the integration of the
AHPD with the ‘‘Extent’’ Analysis; allows to assess the
uncertainty existing in the uncertainty variables, thus con-
centrating the knowledge of experts. The stage consists of the
following steps:

1) SELECT EVALUATION CRITERIA
Experts select influential uncertainty variables for a given
production instance.

2) SELECTION OF ALTERNATIVES
Experts select the alternatives that will be considered for
selection and prioritization.

3) DEFINE THE HIERARCHICAL STRUCTURE
Experts define and approve how the general objective of the
study, the evaluation criteria and the alternatives interact and
influence each other.

4) PAIRED COMPARISONS
Each expert performs a fuzzy assessment for each of the
interactions of the hierarchical structure, ‘‘criterion vs crite-
rion’’ and ‘‘criterion vs alternative’’, using the Fuzzy Scale
proposed by [38].

5) OBTAINING EIGENVECTORS
For each expert, the fuzzy values ‘‘synthetic extent’’ corre-
sponding to each comparison are obtained.

6) ALTERNATIVES RANKING
For each expert, the ‘‘d Value ’’ is calculated and the priority
vectors corresponding to each comparison are defined.

7) MATRIX OF PRIORITIES
For each expert, priority vectors are concentrated to deter-
mine the global priority vector of each alternative.

C. STAGE III: INTEGRATION OF AN MPANN
The AHPND-‘‘Extent’’ is the result of the integration of the
AHPD-‘‘Extent’’ with an MPANN and is implemented to
generalize knowledge captured by experts. The stage consists
of the following steps:

1) INPUT VALUES
The priority vectors of the paired comparisons ‘‘criterion vs.
criterion’’ obtained in the ‘‘AHPD-Extent’’ are considered.

2) NUMBER OF NODES IN THE HIDDEN LAYER
The number of nodes in the hidden layer is a function of the
number of input nodes (IN), the number of output nodes (ON)
and the number of samples (NM) [32], [39]:

NHN1 = (IN × ON )1/2 (17)
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FIGURE 2. Decision-making system for a flow shop machine scheduling model under uncertainty.

TABLE 1. Production instance to be programmed in a shoe manufacturing company.

NHN2 =
1
2
(IN + ON ) (18)

NHN3 =
1
2
(IN + ON )+ (SN )1/2 (19)

NHN4 = 2(IN ) (20)

3) OUTPUT VALUES
The global priority vectors of each alternative correspond-
ing to each expert are used as reference values to train the
MPANN.

4) SAMPLES PARTITION
The assessment of the experts are divided to be used in the
training and validation process of the MPANN.

5) MODEL TRAINING
Training designs are a function of the number of hidden
nodes, the transfer function, the training algorithm, different
epochs, and a performance criterion.

6) MPANN VALIDATION
The sample assigned for validation is used. The results
obtained by ‘‘AHPD-Extent’’, the ‘‘toolbox ANN’’ app
preloaded in MATLAB and the training designs of the
MPANN with better performance are compared.

D. STAGE IV: DECISION
At this stage, the results obtained by the AHPND-‘‘Extent’’
system are verified by experts. If this is the case, appropriate

adjustments are made and the process is repeated. Once the
results are approved, the trained MPANN is used to pro-
gram machines from production instances of the production
system.

IV. RESULTS
A. CHARACTERIZATION OF THE APPLICATION
The proposed system was used to solve a real instance of a
‘‘shoe manufacturing’’ company structured as a flow shop
machine scheduling model under uncertainty. A processing
flow was considered to start in the cutting area, followed by
the stitching area, mounting area, and ends in the adornment
area. Five production programming experts Exp_1, Exp_2,
Exp_3, Exp_4, and Exp_5 were considered. The production
programming instance of Table 1 was solved, where it is
observed: the demand for four footwear models, the number
of machines per operation and the estimated time of pro-
cessing in hours, the total estimated time of completion in
days, the total real-time of completion in days, the arrival
order, and the delivery times defined by the customer in
days.

The five experts considered the following uncertainty
variables as selection criteria: CDI: CDI-TP, CDI-OLL;
CPC: CPC-PA, CPC-PF; CSM: CSM-AMP; CTE: CTE-TF,
CTE-DD, and CTE-DL. The objective was to define the best
sequencing order of processing in such a way that lateness L̃j
and tardiness D̃j optimization criteria are minimized, prior to
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FIGURE 3. Hierarchical structure of the AHPD-‘‘Extent’’ for the production programming instance
in Table 1.

TABLE 2. Fuzzy matrix of Exp_1 resulting from the paired comparison of ‘‘selection criteria vs selection criteria’’.

uncertainty assessment existing in uncertainty variables.

LatenessL̃j = C̃j − d̃j (21)

TardinessD̃j = max
{
C̃j − d̃j, 0

}
(22)

where:
L̃j It is a measure of the lateness in the processing comple-

tion time of Model j
D̃j It is a measure of the tardiness in the processing com-

pletion time of Model j
C̃j = s̃j + p̃j It is the processing completion time of

Model j
s̃j It is the processing start time of Model j
p̃j It is the time needed for processing Model j
d̃j It is the time limit by for completing Model j

B. CAPTURE EXPERT KNOWLEDGE
After selecting the uncertainty variables, the experts
approved the hierarchical structure shown in Fig. 3.

The paired comparisons were made with a question-
naire based on the hierarchical structure and the Fuzzy
Scale of [38]. The selection criteria were assessed with
AHPD-‘‘Extent’’. Based on the consideration of 5 experts,
8 selection criteria and 5 alternatives, a total of 45 matri-
ces were obtained. For practical purposes and with a view
to simplifying the procedure of the proposed system, some
examples of Exp_1 estimation are presented. The matrix of
fuzzy paired comparisons established for ‘‘selection criteria
vs selection criteria’’ and ‘‘order size vs alternatives’’ are
shown in Tables 2 and 3. Table 4 shows the uncertainty
assessment obtained from the interaction ‘‘Order size vs alter-
native’’; the vector w shows the extent of influence of the
selection criterion ‘‘Order size’’ for each alternative.

The estimation of the uncertainty assessment was per-
formed as follows.

By equations (7), (8) and (9) we obtain:

S1 = (8, 10, 13)⊗
(

1
29.75

,
1

23.2
,

1
17.92

)
= (0.27, 0.43, 0.73)

S2 = (2.5, 2.67, 4)⊗
(

1
29.75

,
1

23.2
,

1
17.92

)
= (0.08, 0.11, 0.22)

S3 = (1.92, 2.53, 2.75)⊗
(

1
29.75

,
1

23.2
,

1
17.92

)
= (0.06, 0.11, 0.15)

S4 = (5.5, 8, 10)⊗
(

1
29.75

,
1

23.2
,

1
17.92

)
= (0.18, 0.34, 0.56)

By equations (10), (11) and (12) we obtain:

V (S1 ≥ S2) = 1

V (S1 ≥ S3) = 1

V (S1 ≥ S4) = 1

V (S2 ≥ S1) = −0.169

V (S2 ≥ S3) = 1

V (S2 ≥ S4) = 0.14

V (S3 ≥ S1) = −0.56

V (S3 ≥ S2) = 0.92

V (S3 ≥ S4) = −0.15

V (S4 ≥ S1) = 0.77

V (S4 ≥ S2) = 1

V (S4 ≥ S3) = 1
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TABLE 3. Fuzzy matrix of the Exp_1 resulting from the paired comparison ‘‘order size vs alternatives.

TABLE 4. Estimation of the extent of influence of the selection criterion ‘‘order size’’ based on the Exp_1.

TABLE 5. Summary of the sequencing obtained by the five experts.

Finally, by equation (13):

d ′ (A1) = minV (S1 ≥ S2, S3, S4)

= min (1, 1, 1) = 1

d ′ (A2) = minV (S2 ≥ S1, S3, S4)

= min (−0.169, 1, 0.14) = −0.169

d ′ (A3) = minV (S3 ≥ S1, S2, S4)

= min (= −0.56, 0.92,−0.15) = −0.56

d ′ (A4) = minV (S4 ≥ S1, S2, S3)

= min (0.77, 1, 1) = 0.77

Therefore, the weight of the vector is given by (14):

W ′ = (1,−0.169,−0.56, 0.77)T

The normalized vector is given by (15), where W is a crisp
number:

W = (0.96,−0.16, − 0.57, 0.77)T

The final results for the weights of the alternatives and the
corresponding sequences, based on the assessment of the five
experts, are shown in Table 5. It can be observed that the order
of processing is CADB

C. GENERALIZE EXPERT KNOWLEDGE
The training of the MPANN was carried out with the assess-
ment of Exp_1, Exp_2, Exp_3, and Exp_4, and the validation

with the assessment of the Exp_5. The priority vectors of
‘‘criterion vs criterion’’ were considered as input values and
the global priority vectors of each alternative corresponding
to each expert as output values.

The training designs were developed in the MATLAB
based on the input nodes (8 evaluation criteria), the hidden
nodes defined by the equations (17), (18), (19), (20) and the
output nodes (4 models to be processed). For each design,
different hidden nodes and different transfer functions (‘‘sig-
moid tangent’’ and ‘‘logsigmoid’’) considered. The designs
were trained with a feed-forward backpropagation algorithm,
different epochs were considered, the mean square error
was used as performance criteria. Likewise, the parameters
were established empirically after a meticulous experimen-
tation stage, where it was observed that adding more nodes
in the hidden layer implies a higher computational cost
and the results are not significant. The designs are shown
in Table 6.

The validation of the MPANN was carried out with the
assessment of the Exp_5, and the training of the system was
contrasted with the results given by an AHPD, the app ‘‘tool
box ANN’’ preloaded in MATLAB and the structures of N1,
N2, and N3 with better performance. Table 7 shows the con-
centration of the results obtained. The processing sequencing
for each of the methods evaluated is practically the same:
CADB.
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TABLE 6. MPANN training designs.

TABLE 7. MPANN validation using AHPD, MATLAB App and N1, N2 and N3.

D. VALIDATION OF AHPND-‘‘EXTENT’’ RESULTS

The validation of the results produced by the proposed sys-
tem was carried out by comparing the production schedule
defined by AHPND-‘‘Extent’’ versus a ‘‘regular schedule’’
that is normally done by a production programming expert;
this can be seen in Fig. 4.

The results of the optimization criteria related to the num-
ber of late deliveries were as follows.

By equations (10), (11), and (12) we obtain:

1) LATE DELIVERIES GENERATED WITH AHPND-‘‘EXTENT’’
Regarding the ‘‘Due date’’:

L̃A = (5+ 6)− 15 = −4

D̃A = max {(11− 15), 0} = 0

L̃B = (17+ 6)− 20 = 3

D̃B = max {(23− 20), 0} = 3

L̃C = (0+ 5)− 10 = −5

D̃C = max {(5− 10), 0} = 0
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FIGURE 4. AHPND-‘‘Extent’’ production sequencing vs Empirical Model.

L̃D = (11+ 6)− 15 = 2

D̃D = max {(17− 15), 0} = 2

Regarding the ‘‘Deadline’’:

L̃A = (5+ 6)− 18 = −7

D̃A = max {(11− 18), 0} = 0

L̃B = (17+ 6)− 23 = 0

D̃B = max {(23− 23), 0} = 0

L̃C = (0+ 5)− 13 = −8

D̃C = max {(5− 13), 0} = 0

L̃D = (11+ 6)− 17 = 0

D̃D = max {(17− 17), 0} = 0

2) LATE DELIVERIES GENERATED WITH EXPERT
Regarding the ‘‘Due date’’:

L̃A = (0+ 6)− 15 = −9

D̃A = max {(6− 15), 0} = 0

L̃B = (17+ 6)− 20 = 3

D̃B = max {(23− 20), 0} = 3

L̃C = (12+ 5)− 10 = 7

D̃C = max {(17− 10), 0} = 7

L̃D = (6+ 6)− 15 = −3

D̃D = max {(12− 15), 0} = 0

Regarding the ‘‘Deadline’’:

L̃A = (0+ 6)− 18 = −12

D̃A = max {(6− 18), 0} = 0

L̃B = (17+ 6)− 23 = 0

D̃B = max {(23− 23), 0} = 0

L̃C = (12+ 5)− 13 = 4

D̃C = max {(17− 13), 0} = 4

L̃D = (6+ 6)− 17 = −5

D̃D = max {(12− 17), 0} = 0

The scheduling of machines thrown by the proposed sys-
tem AHPND-‘‘Extent’’, regarding the delivery date ‘‘Due
date’’, generated a delay in the delivery for three days for

model B and two days for model D; regarding the delivery
date ‘‘Deadline’’, did not generate a delay. On the other
hand, the scheduling of machines suggested by the ‘‘Expert’’,
regarding the delivery date ‘‘Due date’’, generated a delay in
the delivery for three days for model B and seven days for
model C; regarding the delivery date ‘‘Deadline’’, caused a
delay in delivery for four days for model C. It can therefore be
concluded that the sequencing resulting from the scheduling
of machines based on the AHPND-‘‘Extent’’ decision system
proposed in this research has satisfactory results.

V. DISCUSSION AND CONCLUSION
Given the lack of clarity in the definition of uncertainty
existing in a production system, this research defines the
concept of uncertainty variables in a machine scheduling
context and defines the flow shop machine scheduling model
under uncertainty. The aim is to focus on the assessment
of the existing uncertainty and then defines the best order
of processing sequencing that minimizes the number of late
deliveries.
The selection of the order of processing in a flow shop

machine scheduling model under uncertainty and consistency
with the manufacturing objectives is a problem of fuzzy
multicriteria decision-making that needs the intervention of
the ‘‘subjectivity of experts’’, ‘‘uncertainty assessment meth-
ods’’ and ‘‘artificial intelligence techniques’’. This research
develops the AHPND-‘‘Extent’’ which is a decision-making
system based on a Fuzzy Hierarchical Analysis Process,
a membership analysis and an Artificial Neural Network.
Uncertainty is addressed by the extent of influence and is
quantified by a Fuzzy Scale and the use of fuzzy triangular
numbers in the range of 0-1.
The AHPND-‘‘Extent’’ system is validated in a real pro-

duction instance of a shoe manufacturing company. In an
ordinary instance of production, it has been identified that
despite the fact that there is a definite demand and the pro-
ductive capacity to meet it, it is not possible to finish the pro-
duction on the established dates; which leads to penalties or
cancellations by clients, translated into large monetary losses.
The scheduling obtained by the AHPND-‘‘Extent’’ and a
scheduling normally carried out by an expert are contrasted in
terms of late deliveries. The results show the efficiency of the
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proposed system since the joint assessment of variables that
add uncertainty to the production system allowed to reduce
late deliveries.

System performance depends on four factors. First, uncer-
tainty variables are defined by experts and defined by internal
and external factors that influence fluctuations in the achieve-
ment of manufacturing objectives. Second, the database must
be updated as the subjectivity existing in the uncertainty
variables changes. Third, as the number of MPANN training
data samples increases, performance will improve and with
it, the learning that defines and predicts final processing
sequencing. Fourth, as long as uncertainty variables prevail
and the existing subjectivity does not undergo significant
changes, MPANN can still be used to predict new processing
sequences.

The scope of this work can be extended in different direc-
tions: to attend to machine scheduling model under uncer-
tainty, to consider instances where the optimization criteria
are restrictive and complex. The above are current issues
which we are working with.
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