
Received July 7, 2021, accepted July 17, 2021, date of publication July 26, 2021, date of current version August 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3099370

Live Migration of Virtual Machine and Container
Based Mobile Core Network Components:
A Comprehensive Study
SHUNMUGAPRIYA RAMANATHAN 1, (Graduate Student Member, IEEE),
KOTESWARARAO KONDEPU 2, (Senior Member, IEEE), MIGUEL RAZO1, (Member, IEEE),
MARCO TACCA1, (Senior Member, IEEE), LUCA VALCARENGHI 3, (Senior Member, IEEE),
AND ANDREA FUMAGALLI1, (Senior Member, IEEE)
1Open Networking Advanced Research (OpNeAR) Laboratory, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas,
Richardson, TX 75080, USA
2Indian Institute of Technology Dharwad, Dharwad 580011, India
3Scuola Superiore Sant’Anna, 56127 Pisa, Italy

Corresponding author: Shunmugapriya Ramanathan (sxr173131@utdallas.edu)

This work was supported in part by the NSF under Grant CNS-1405405, Grant CNS-1409849, Grant ACI-1541461, and
Grant CNS-1531039T; and in part by the EU Commission through the 5GROWTH Project under Grant 856709.

ABSTRACT With the increasing demand for openness, flexibility, and monetization, the Network Function
Virtualization (NFV) of mobile network functions has become the embracing factor for most mobile
network operators. Early reported field deployments of virtualized Evolved Packet Core (EPC) — the
core network (CN) component of 4G LTE and 5G non-standalone mobile networks — reflect this growing
trend. To best meet the requirements of power management, load balancing, and fault tolerance in the cloud
environment, the need for live migration of these virtualized components cannot be shunned. Virtualization
platforms of interest include both Virtual Machines (VMs) and Containers, with the latter option offering
more lightweight characteristics. This paper’s first contribution is the proposal of a framework that enables
migration of containerised virtual EPC components using an open-source migration solution which does
not fully support the mobile network protocol stack yet. The second contribution is an experimental-based
comprehensive analysis of live migration in two virtualization technologies — VM and Container — with
the additional scrutinization on the container migration approach. The presented experimental comparison
accounts for several system parameters and configurations: flavor (image) size, network characteristics,
processor hardware architecture model, and the CPU load of the backhaul network components. The
comparison reveals that the live migration completion time and also the end-user service interruption time
of the virtualized EPC components is reduced approximately by 70% in the container platform when using
the proposed framework.

INDEX TERMS C-RAN, virtual EPC, VM, Docker, container, live migration, CRIU, CloudLab, OAI.

I. INTRODUCTION
The 3GPP standards for the 5G mobile communication and
the ETSI Network Function Virtualization (NFV) [1] are
two key enablers for 5G virtualization. The Non-Standalone
version of the 5G and the 4G LTE systems have the Evolved
Packet Core (EPC) as the backhaul network for providing
converged voice and data communication. Many ongoing
5G research activities focus on the NFV version of the EPC
(referred to as virtualized EPC — vEPC) that is expected

The associate editor coordinating the review of this manuscript and

approving it for publication was Adao Silva .

to improve system flexibility and scalability while reducing
operation cost ofMobile Network Operators (MNOs) [2], [3].
Well-established virtualization orchestration platforms exist
that support both the Virtual Machine (VM) and the
Container-based hardware virtualization such as OpenStack,
VMware vCenter, and Open Source MANO (OSM) [4]–[6].
While these virtualization platforms are widely used with
commercial off-the-shelf (COTS) hardware, some open chal-
lenges remain to be addressed [7]. One of these challenges
is to achieve the Quality of Service (QoS) that is required by
the carrier-grade Service Level Agreement (SLA) [8]. Many
believe that the vEPC compute platformmust include features

105082 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4604-539X
https://orcid.org/0000-0003-0184-1218
https://orcid.org/0000-0002-6695-5032
https://orcid.org/0000-0002-7008-6773


S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

such as live migration, snapshot, and rebirth to ensure that
the SLA requirements are finally met in terms of security,
reliability, and total cost of ownership. In particular, live
migration is the process of migrating VNFs from one node to
another one while guaranteeing zero or minimal impact to the
connectivity service offered to mobile network users. Being
able to live migrate the VNFs of the vEPC offers a number of
significant advantages, including (i) achieving load balancing
in the compute nodes [9] by timely redistributing VNFs to
sparsely loaded servers, (ii) effectively performing regular
maintenance— such as upgrading OS versions and changing
network configurations — and (iii) effectively handling fault
management. These features may also prove to be of the
essence to cope with the highly fluctuating mobile traffic that
is expected in real-time networks.

Realizing the importance of timely offering vEPC solu-
tions with built-in capability for VNF live migration,
this paper describes the open-source experimental settings
designed toward this goal. Two virtualization techniques are
considered, one based on VMs and the other based on Docker
containers. In the former platform, live migration of VNFs
running as VMs is achieved through Kernel-based Virtual
Machine/Quick EMUlator (KVM/QEMU) with the libvirt
API [10]. In the latter platform, live migration of VNFs
running as Docker containers is achieved through Checkpoint
and Restore In Userspace (CRIU) [11]. Even though it is
highly beneficial to have containerized vEPC because of its
relatively small footprint that minimizes both the storage
and processing capability requirements, the main challenge is
envisioning the containerized core network that comes with
the inherent migration limitations discussed in Section IV-A.
We leverage open software and standard solutions when-
ever possible, and address the container migration challenges
by implementing additional custom software packages that
are necessary to complete the required NFV/SDN archi-
tecture. The ultimate objective is to validate the feasibility
and compare the performance of a few plausible NFV/SDN
architectures, which provide live migration of vEPC func-
tions with reduced connectivity disruption to the mobile
user. Specifically, EPC as a Service (EPCaaS), for which
live migration is tested, has three main core network com-
ponents, namely Home Subscriber Server (HSS), Mobility
Management Entity (MME), and Serving and Packet Gate-
way (SPGW). In our study, these vEPC components are
implemented by using the OpenAirInterface (OAI) software
package. To the best of our knowledge, this is the first system-
atic study of live migration of core network components in
the containerized environment and head-to-head comparison
with the VM environment.

II. LIVE CORE NETWORK MIGRATION: MOTIVATION AND
BACKGROUND
This section provides a brief description of the relevant back-
ground and motivation of our work.

A. CORE NETWORK MIGRATION
The Mobile Carrier Cloud relies on a few key technologies
such as NFV, SDN, and Cloud Computing which, combined,
enable the implementation of vEPC as a service (EPCaaS)
in the cloud. To ensure optimal connectivity to the end-users
while at the same time offering flexibility and cost reduction,
vEPC presents many challenges in deploying and relocating
its VNF components across the underlying federated cloud.
A number of studies has focused on determining the optimal
number of vEPC components and their deployment relocation
to best sustain QoS [12]. Also, to handle crises such as
disaster recovery, periodic checkpoints of the application’s
state information are required, which are then used during
the relocation. This relocation (live migration concept) has
been studied for various user services [13], [14], but not
for EPCaaS.

The telco-supported core network services are quite dif-
ferent from the general application’s supported protocol and
operating system, and require a dedicated study of core
network migration under various virtualization platforms.
The main challenge is maintaining a relatively short ser-
vice downtime and migration time to retain the benefits of
EPCaaS in the cloud. Lightweight migration is one of the
promising techniques that is expected to reduce the migration
time.

B. VM VS CONTAINER
VMs provide OS, kernel, and hardware-level virtualization
while the containers make use of OS-level virtualization
to produce VNFs. Docker-based containers [15] have been
gaining traction in recent years due to their reduced resource
usage and lower virtualization overhead. Container offers
near-native performance to the application because of its
execution within the Host-OS environment. It must be noted
that CRIU with the widely-used runC based containerized
software package (available in Docker, Containerd, LXC,
Kubernetes Clusters) does not offer two key migration
functionalities [16]: i) support for the Stream Controlled
Transmission Protocol (SCTP) used in the LTE network to
guarantee message delivery between MME and eNB, and
ii) GPRS Tunneling Protocol (GTP) device-specific informa-
tion needed by the SPGWsoftware to provide tunneling of the
user data traffic. These functionalities are required to support
the telco-core network live migration while preserving the
connectivity with the RAN components. To overcome these
containerized core network migration limitations, two cus-
tom solutions — described in Section IV-A — are proposed
and integrated into the experimental settings. Although it
is well-known that containers are lightweight compared to
VMs, a quantitative study of their effect on the core network
migration performance does not exist in the literature. The
container-supported middleware described in Section IV-A
enables us to come up with this quantitative study and draw
further insights.

VOLUME 9, 2021 105083



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

C. MIGRATION TYPES AND DECISION OPTIMIZATION
Stateless and Stateful migrations are two categories of Ser-
vice migration. Based on the migration needs, a new instance
of the application is instantiated at the destination node.
In Stateless migration, the current running state of the
application is not moved to the destination node. Stateless
migration is helpful when there is no need to store and retrieve
the application states. On the other hand, the core network
components must keep track of their respective state in order
to guarantee continuity of their active interactions with the
other Radio Access Network (RAN) components. We, there-
fore, consider Stateful migration of vEPC components in our
study. Once the Service disruption caused by the stateful
migration process is quantified experimentally, previously
proposed [17]–[19] and newly designed optimization algo-
rithms can be more effectively applied to decide when and
where to migrate the VNFs.

III. RELATED WORK
EPC resiliency has already been addressed independently
from the fact that EPC functions are virtualized or not.
In [20], the 3rd Generation Partnership Project (3GPP) spec-
ifies different resiliency mechanisms for EPC components.
It also reports how to handle failures with the help of Echo
Request/Response timer messages. In addition, methodolo-
gies for recovering VNFs have been proposed. For example,
in [21], multiple approaches are proposed for recovering
VNF through replication and migration of network func-
tions when outages affect compute resources. Well-known
methods are available for regaining connectivity between
VNFs that has been disrupted by a network failure, includ-
ing those that resort to a Software Defined Network (SDN)
controller [22]. More advanced solutions combine VNF
replication/migration with network connection rerouting for
improved resiliency [23].

More recently, methods have been proposed to specif-
ically address failures when 5G functions are virtualized.
In [24], a two-step resiliency scheme is proposed to over-
come soft failures of optical circuits (lightpaths) carrying the
fronthaul traffic. When not enough resources are available
along the backup lightpath, the next generation eNB (gNB)
functional split is dynamically reconfigured to reduce the
fronthaul capacity requirements. In [13], the authors evalu-
ated the container-based live migration of the blank and video
applications to meet the Multi Access Edge (MEC) comput-
ing requirements during radio handover. The VNF migra-
tion of virtualized Central Unit/virtualized Distributed Unit
(vCU/vDU) over Wavelength Division Multiplexed (WDM)
network using CRIU is briefly discussed in [25]. This study
focuses on the resource orchestration framework for forward-
ing control and VNFmanagement, but does not provide a full
description of the design and implementation choices made.

To the best of the authors’ knowledge, there have been
no findings addressing the implementation and providing
a detailed performance evaluation of NFV-SDN systems

carrying out live migration of VMs and containers supporting
core network functions.

IV. LIVE MIGRATION OF VIRTUALIZED CORE NETWORK
FUNCTIONS: TECHNIQUES, LIMITATIONS,
AND SOLUTIONS
This section describes the migration strategies exploited,
the key implementation challenges faced, and the custom
software solutions developed for successfully performing
core network live migration. For more details, the reader is
referred to the Appendix sectionVII.

A. DOCKER CONTAINER MIGRATION WITH CRIU
Platforms for managing containerized workloads and ser-
vices, such as Kubernetes, resort to runC [26] to spawn
and run containers. runC is a lightweight, portable container
runtime, initiated by the Open Container Initiative (OCI)
and utilized bymany container-based virtualization solutions,
such as Docker and Containerd. To implement container
live migration in Linux operating systems, runC resorts to
Checkpoint Restoration InUserspace (CRIU), which is a soft-
ware component offering checkpoint/restore functionality
for Linux applications [11]. CRIU features several methods
for container migration including StopandCopy, PreCopy,
PostCopy, and HybridCopy. Unfortunately, such methods do
not natively support virtualized mobile core functions. Here
below, the main limitations [16] are listed along with the
solutions adopted in this study to overcome them.

1) SPGW CONTAINER LIVE MIGRATION
In the LTE mobile network, IP packets are exchanged
between User Equipment (UE) and SPGW component1

through GTP tunnels. Here, the base station (i.e., the eNB)
acts as the Serving GPRS Support Node (SGSN), and the
SPGW acts as the Gateway GPRS Support Node (GGSN).
Tunnel Endpoint Identifier (TEID) values are mutually
exchanged between the base station and the SPGW to ensure
correct data traffic flow. The SPGWmaintains an updated list
of the active GTP tunnels — TEID with UEs and base station
relevant information.

The utilized OAI SPGW software implements the afore-
mentioned data plane connectivity by using the rtNetlink
socket in the Linux Kernel GTP tunneling module. This
kernel module creates the GTP device interface (gtp0) for
tunneling the user data traffic to the Packet Data Network
(PDN). Unfortunately, with the current open software plat-
forms (OAI, CRIU), the gtp0 device and TEID information
are not carried over onto the destination node during the
SPGW migration. Also, the rtNetlink socket is deactivated
at the source node once the checkpoint is initiated. Thus,
after migration, the end-user connectivity is lost, and the
entire UE connection re-establishmentmust take place again.

1In general, Serving Gateway (S-GW) and Packet Gateway (P-GW) are
two separate components of the LTE-A core network, but in this study, they
are implemented as a single entity as in Openairinterface.

105084 VOLUME 9, 2021



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

FIGURE 1. Proposed containerized core components module.

Appendix A presents a detailed description of these limi-
tations. To overcome the above-discussed migration limita-
tions, this study implements the solution depicted in Fig. 1.
The proposed architecture introduces a new module called
middleware, which containsGTPModule Initializer andGTP
Tunnel Handler.

The GTP Module Initializer takes the prime responsibil-
ity of configuring the GTP device interface required by the
SPGW application. Its high-level functions are:

1) to set the GTP kernel module and create the GTP tunnel
device using rtNetlink socket;

2) to read the interface information such as name, address,
mask, UE-MTU size, and SGi interface name with the
masquerading option from the SPGWconfiguration file;

3) to send the list of system commands to configure the
GTP interface as per the SPGW application’s require-
ments; and

4) to use the created GTP interface by the SPGW
application.

Since the rtNetlink socket connectivity is now associated
with this GTP Module Initializer, the SPGW application
checkpoint does not deactivate the associated Netlink Socket.
With the proposed GTP Module Initializer, the SPGW appli-
cation can be restored on the destination node with the
GTP interface and active Netlink Socket. Consequently,
the GTP Module Initializer resolves the GTP Interface and
the rtNetlink Socket issues in the existing system. The GTP
Tunnel List Handler is responsible for storing current active
tunnel information of the running SPGW application. Two
design strategies are possible, i.e., a global proactive-based
approach and a local reactive-based approach. In the for-
mer approach the list handler is placed in a shared central
node, whereas in the latter the list handler is placed in each

node, where the SPGW application is running. During the
SPGW checkpoint process, the tunnel list of the running
SPGW container is read by the handler and added to the
stored metadata file used by the restore procedure. This
solution successfully takes care of the metadata concerning
the tunnel list information. More details can be found in
Appendix B. The user-level implementation of the modules
that support the GTP tunnel migration is available in a public
repository [27]. The GTP link and tunnel modules in the
user-level implementation — present in the repository —
run along with the vSPGW container that performs the GTP
Module Initializer and Tunnel List Handler functionalities
mentioned above. The GTP Tunnel List Handler implementa-
tion is based on the local reactive-based approach. In addition,
the migration script file — also placed in the repository —
reads the active tunnel list information from the source node,
before initiating the SPGW container checkpoint process.

2) MME CONTAINER LIVE MIGRATION
The MME component makes use of the SCTP to exchange
S1-MME messages with multiple eNBs. One of the main
differences between TCP and SCTP is that TCP has a single
association in the given socket connectivity, whereas SCTP
has multiple associations with the single socket connection.

The SCTP is not supported in the current version of the
container checkpoint software (i.e., CRIU). Consequently,
migration of the MME component cannot be executed suc-
cessfully. The additional custom software, called migrator,
described next, has been designed and developed to overcome
this limitation.

The migrator is the CRIU software with the addition
of SCTP support (along with the required kernel changes)
for achieving MME container migration. Fig. 2(a) shows

VOLUME 9, 2021 105085



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

FIGURE 2. SCTP support in the migrator flowchart.

the migrator flowchart to support the SCTP migration at
the source node. Once migration is initiated at the source
node, if any SCTP socket connection is present, the migrator
retrieves the SCTP socket information from the application
inode [28]. Upon retrieving the SCTP information about the
active association, if the SCTP socket status is established,
the migrator stores the socket status, stream, and event details
in a file. If the SCTP socket status is connected, it stores
the socket end-point information (IP address and port detail)
along with the socket status, stream, and event in the persis-
tent file. Moreover, the migrator informs the Linux Kernel to
turn ‘‘ON’’ the SCTP repair mode to avoid the repetition of
the SCTP handshake process at the destination node for the
connected SCTP sockets.

Fig. 2(b) shows the flowchart of the restore instance
process at the destination node. Upon restore initiation,
the migrator reads the SCTP persistent file and checks
whether SCTP socket details are available in the trans-
ferred metadata. If that is the case, the migrator retrieves
SCTP-associated information from the metadata and takes
action based on the SCTP socket status. If the SCTP

socket status from the metadata is successfully established,
the migrator binds the request with the Linux Kernel, and
continues with other restore steps. If the SCTP socket status
is connected, the migrator updates the SCTP repair mode
to the kernel module and initiates the bind and connection
request with the associated endpoint. Then, the migrator
continues with the normal restore process to resume appli-
cation activities. The migrator support is added to the CRIU
version 3.12. The user-level implementation of the SCTP
migrator support-based CRIU code is available in a public
repository [29]. The README document in the repository
provides the list of modules added to save and restore the
SCTP socket during vMME migration consistently with the
flowchart in Fig. 2.

The SCTP module of the kernel code is customized with
the SCTP REPAIR MODE option. If the repair mode is
enabled for a socket,
• during the checkpoint process at the source node,
the SCTP socket is closed at the source node with-
out initiating the SCTP_SHUTDOWN or ABORT
message;

105086 VOLUME 9, 2021



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

• during the restore process at the destination node,
the SCTP socket status is changed to connected with-
out requiring to re-instantiate the SCTP handshake
procedure.

The kernel module changes will ensure that both socket con-
nectivity and association remain active at the other endpoint
of the SCTP association during the migration. The feature
changes are considered for the SCTP server scenario match-
ing with the MME requirement. The kernel module changes
are done on Ubuntu Mainline Kernel version 5.4.1 and are
available in a repository [30].

3) HSS CONTAINER LIVE MIGRATION
TheHSS component establishes a TCP socket at the start time
and stores relevant user information in a MySQL database.
A TCP connection is required between HSS andMME. Upon
performing the HSS component’s migration, the application
needs to copy the database information into the memory
page and restore the TCP connectivity at the destination node
without disturbing the peer end connection state on the MME
side. The tcp-established mode [31] must be set in the runC
configuration to ensure TCP connection re-establishment at
the destination node. This feature option is supported starting
from version 3.5 of the Linux kernel mainline. No additional
custom software is required.

4) CONTAINER MIGRATION TECHNIQUE ANALYSIS
Fig. 3 depicts the different phases of the container migration
based on the StopandCopy method: checkpoint, transfer, and
restore. During the checkpoint, CRIU freezes the running
container at the source node (node A) and collects metadata
about the CPU state, memory content, and information about
the process tree [32] associated with the running container
service. During the transfer phase, the collected metadata
information is transferred to the destination node (node B).
The restore phase resumes the container service from the
frozen point with the transferred metadata at the destination
node. The container migration time can be expressed as:

Tcm = Tc + Tt + Tr (1)

where:
• Tcm is the total container migration time,
• Tc is the checkpoint time,
• Tt is the metadata transfer time from the source to the
destination node, and

• Tr is the restore time.
For the StopandCopy method, Tcm also corresponds to the

service downtime because the running container service is
interrupted at the start of the checkpoint phase, and the service
is restored only after the successful restoration.

The PreCopy method shown in Fig. 4 is another container
migration approach. It consists of pre-dump, dump, pre-
dump/dump data transfer, and restore phases. The applica-
tion checkpoint at the source node (node A) is split into
pre-dump and dump phases. The pre-dump phase collects all
the container state and memory information, and the dump

FIGURE 3. Container StopandCopy method of migration.

FIGURE 4. Container PreCopy method of migration.

phase collects the modified memory pages information only.
In the transfer phase, the collected metadata is transferred to
the destination node (node B), and in the restore phase the
application service is restored.

The container migration time in the PreCopy approach can
be expressed as:

Tpcm = Tpd + Tpdt + Td + Tdt + Tr (2)

where:
• Tpcm is the PreCopy based total container migration,
• Tpd is the pre-dump time,
• Tpdt is the pre-dump data transfer time,
• Td is the dump time, and
• Tdt is the dump data transfer time.
The advantage of the PreCopy method is that the container

service remains responsive during the pre-dump phase of col-
lecting the process id, memory pages, and the execution state.
As depicted in Fig. 4, the container service gets interrupted
only at the start of dump phase — carrying the modified
memory pages. In this case, the container PreCopy downtime
Tpcd can be expressed as:

Tpcd = Td + Tdt + Tr . (3)

The core network elements need permanent socket connec-
tivity with their peer elements for the control and data plane
services. To avoid socket termination, the floating IP address
needs to be configured to enable its seamless transfer from
the source node to the destination node during migration.
In our evaluation, the VPN configuration handles this floating
IP requirement, adding extra time to the network setup at the
destination node. The IP address dependability is explained
in Appendix C. Both the PreCopy and the StopandCopy
approaches are evaluated in the result analysis section to

VOLUME 9, 2021 105087



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

show the impact of the migration technique chosen within the
container core network components.

5) CONTAINER MIGRATION INTERRUPTION ANALYSIS
While in process, the container live migration might be inter-
rupted due to certain common failures such as inadequate
resources, root file system size mismatch, and network inter-
ruption. These most common container migration failures are
simpler to correct, as discussed below.
• Inadequate resources - During the memory page trans-
fer, file synchronization is enabled to keep track of the
copied memory pages. To expedite this step only the
difference between the source and destination node files
is transferred. File synchronization aborts if the destina-
tion disk is full causing the live migration to fail. In this
situation, the administrator must either select a different
destination node or free-up the hardware resources on
the current destination node before repeating the live
migration.

• Root file system size mismatch - The container image
is placed in the root file system that contains the system
specific configuration files. At run time, the temporary
log files inside the root file system might change in
the source node based on the application requirement.
This log changes lead to a container image size mis-
match between the source and destination nodes. During
such occasions, the restore phase fails resulting in an
unsuccessful migration. This problem could be allevi-
ated using the temporary file system mechanism while
creating the container image. More details are available
in Appendix C.

• Network interruption - Unexpected problems in the net-
work connecting the source and destination nodes may
lead to data packet loss during a live migration, which
would prevent successful resumption of the applica-
tion at the destination node. The file synchronization
method helps to detect the mismatch of files and directo-
ries between the two locations. During such occasions,
the memory copy process could be re-initiated using
the multiple sub-flows for a connection to improve the
performance and reliability of the migration process as
discussed in [33].

For both the StopandCopy and PreCopy based con-
tainer migrations, the custom shell script uses the rsync
command-line utility [34] to achieve file synchronization.
The advantage of this implementation is that when there is a
failure in the container live migration, the migration process
can roll back to the source and resume the application from
the frozen point in the source node to avoid user service inter-
ruption. Live migration can be re-initiated after correcting the
problem.

Table 1 summarizes the resume phases of the VNF at
the source node in the three migration interruption scenar-
ios. The different phases of the migration are explained in
the Figs. 3, 4 for the Container StopandCopy and PreCopy
methods, respectively. The evaluation of both the interruption

TABLE 1. Container migration failure scenarios.

time (downtime) and UE service recovery time during suc-
cessful core networkmigration can be found in Sections VI-B
and VI-C, respectively.

B. VM MIGRATION WITH THE KVM/QEMU HYPERVISOR
In the Virtual Machine (VM) migration, the entire operat-
ing system along with the application is migrated from one
physical machine to another. Several virtualization frame-
works are available, either open-source or commercial, such
as Kernel-based Virtual Machine (KVM), VirtualBox, and
VmWare. They all are based on a hypervisor that is a
software-based virtualization layer between the physical
machine (node) and the VM guests running on it. The
hypervisor takes care of scheduling and allocating compute
resources to the VM guests. KVM hypervisor is a kernel
module integrated with version 2.6.20 of mainline Linux
Kernel, and it is used in OpenStack [10] for providing the
virtualization infrastructure. The QEMU-KVM module pro-
vides VMmanagement such as spawning and migrating VMs
using the guest execution mode.

Thanks to its maturity, the KVM/QEMU hypervisor [35]
supports the live migration of VM components running core
network elements. Only a few additional precautions are
necessary to ensure correct migration execution in the Open-
Stack environment. Here, layer-2 network connectivity is
provided by default using the Open Virtual Switch (OVS)
integration bridge [36]. Even though the OpenStack security
rule supports the SCTP protocol, the OVS firewall blocks
the SCTP packets preventing them from reaching the hosts.
SCTP messages must be encapsulated inside UDP frames by
using Open Virtual Private Network/Virtual Extensible LAN
(OpenVPN/VXLAN) connectivity to circumvent this draw-
back. The resulting UDP frames are not blocked by the OVS
firewall. In our VM study, the SCTP protocol communication
between MME and CU is achieved through an OpenVPN
configuration in the S1-MME communication interface [37].

1) VM MIGRATION TECHNIQUE ANALYSIS
During VMmigration, the CPU state, memory state, network
interfaces, and disk image of the entire VM are migrated
from the source to the destination node. During the process
of copying memory pages, the dirty pages (i.e., modified
memory pages) are iteratively transferred (referred to as push
phase) while the VM is still running at the source node.

105088 VOLUME 9, 2021



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

Once the maximum iteration count is reached, the VM is
temporarily stopped at the source node, all the main memory
pages are copied to the destination, and finally the VM is
resumed at the destination node. This process of memory
page coping is referred to as PreCopy method and illustrated
in Fig. 5.

FIGURE 5. VM PreCopy method of migration.

The VM Migration time can be expressed as:

Tvm = Tpre + Tl + Tpost (4)

where:
• Tvm is the total VM Migration time,
• Tpre is the pre-live time,
• Tl is the live transfer time, and
• Tpost is the post-live time.
As shown in Fig. 5, the pre-live phase considers the

pre-selection of destination node and resource reservation
at the destination node – such as preparing the destination
node with the VNF instance details of keypair association
and network interface information. In this pre-live phase,
the hardware architecture compatibility validation takes place
between the source and the destination nodes. The live phase
does the iterative memory page copy from the source node to
the destination node— referred to as the push phase— in the
VMPreCopymethod. The push phase is followed by the stop-
and-copy phase, where the VNF is suspended at the source
node and the final dirty pages and processor state informa-
tion is transferred to the destination node. The downtime is
observed during this stop-and-copy phase of VM migration.
The post-live phase performs post-operation — referred as
commit — after the live migration. It updates the running
VM state in the MySQL and updates the Neutron database
with the node information and port details. Once the migra-
tion is completed successfully, the hypervisor resumes the
VNF in the destination node.

2) VM MIGRATION INTERRUPTION ANALYSIS
In real-time deployment, several possible events might cause
the VM live migration to fail. In such cases, the application
continues to run at the source node. Some of the most com-
mon VM live migration interruptions [38] are similar to that
of container migration interruption. However, the VMmigra-
tion failure handling mechanisms are quite different as dis-
cussed next.

TABLE 2. VM migration failure scenarios.

• Incompatible processor - A successful VM migration
requires that all physical host processors must belong to
the same processor family. The pre-live phase ensures
the compatibility before it initiates the live migration
phase. For instance, the live migration cannot be carried
out successfully from a host with Intel processor to a
host with AMD processor.

• Insufficient resources - Destination node must have ade-
quate physical resources to accommodate the incom-
ing VM. The resource reservation process of the pre-live
phase performs this validation and stops the live copy
process if this condition is not met.

• Network interruption - VM migration is a resource
intensive process which consumes significant network
bandwidth while transferring disk information. It could
saturate the network link when migrating VMs from
the source to the destination node. To circumvent
this problem shared storage type of migration would
be preferred in datacenters that deploy Storage Area
Network (SAN) [39].

For the Pre-copy VM migration, the VM application run-
ning in the source node is released only after the successful
completion of the stop-and-copy phase. Only then the hyper-
visor in the destination node starts the VM and resumes nor-
mal operation. Table 2 summarizes the resume phases of the
VNF at the source node under the three VMmigration failure
scenarios. The performance indicators during a successful
VM migration are discussed in the forthcoming sections.

V. EXPERIMENTAL EVALUATION
This section describes the testbed used to experimentally
evaluate the vEPCmigration feasibility and performance. The
considered performance parameters and influencing factors
are also detailed.

A. TESTBED
The live migration solutions in Section IV are implemented
in a geographically distributed testbed where the RAN com-
ponents are hosted in the UTDLab (Dallas) and the CN com-
ponents are hosted in CloudLab (Utah) [40]. The UTDLab
and CloudLab are connected via Internet2. The CloudLab
testbed provides the opportunity to validate and test the
portability of the applied software configuration changes,
new utility program, and CRIU code changes as detailed
in Section IV-A using an open environment beside the
in-house UTDLab setting.

VOLUME 9, 2021 105089



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

FIGURE 6. The UTDallas-CloudLab testbed.

In the UTDLab, a hydrid LTE-A/5G RAN is implemented
by using OAI [41]. All the experiments make use of gNB
option 2 split [42] into Distributed Unit (DU) and Central
Unit (CU), according to which both Packet Data Conver-
gence Protocol (PDCP) and Radio Resource Control (RRC)
services run on the CU. The components UE, DU and
CU run on dedicated physical machines. The radio units
(RU) are implemented by using NI B210 radio prototyping
boards [43], as shown in Fig. 6. The OAI software version for
the RAN units - the UE, DU and the CU is v2019.w25, and
the version for the core network is v0.5.0-4-g724542d. The
interface between the radio unit (i.e., B210) and the UE/DU
is USB 3.0.

Compute nodes in the CloudLab testbed are co-located to
test intra-datacenter virtualized EPC component migration.
The container hosts are deployed on top of Ubuntu-16 VM
hosts in the OpenStack environment. The migration proce-
dure is carried out through the OpenStack dashboard when
using VMs, through Docker CLI shell script commands when
using Container StopandCopy, and runC CLI shell script
commands when using the Container PreCopy approach.

The CloudLab testbed provides a virtualized platform that
is controlled by OpenStack [4] and is not orchestrated by
an ETSI MANO [44] compliant orchestrator. As a result,
the proposed solution uses custom shell scripts to migrate
vEPC components while addressing the migration limita-
tions described in Sections IV. SomeETSIMANO-compliant
orchestrators such as Open Baton [45] provides a middleware
solution based on TOSCA templates, which can be used to
extend the proposed solution for orchestration compliance
using custom scripts. Similarly, Cloudify [46] offers script
plugins that can be used to run shell scripts as part of the
migration orchestration process. The CloudLab system con-
figuration details are reported in Table 3.

B. PERFORMANCE INDICATORS
The chosen key performance indicators are the Migration
time, Downtime, UE service recovery time, and Migration

TABLE 3. CloudLab system configuration.

data size [47]–[49]. These performance indicators are eval-
uated while migrating the CN components and keeping one
UE connected. Their definitions are as follows:
• Migration time is defined as the required time to migrate
a VNF from one node to another node. In the VMmigra-
tion experiment, the considered migration time Tvm in
Eq. (4) is evaluated from the OpenStack nova-compute
log on the source node. For the Container Stopand-
Copy and PreCopy methods the migration time — in
Eqs. (1) and (5), respectively — is measured with mil-
lisecond resolution using the shell script that automates
the migration process.2

• Downtime is defined as the amount of time the
VNF functionality is paused and unavailable. In the
VM migration experiment, the downtime is associated
with the stop-and-copy phase, where the final dirty

2Eq. (5) is detailed in Appendix C

105090 VOLUME 9, 2021



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

pages and processor state information are transferred
from the source node to the destination node. In the
Container StopandCopy migration experiment, migra-
tion time and downtime have the same value as defined
in Eq. (1). In the Container PreCopy migration exper-
iment, the downtime is given in Eq. (3). In all three
experiments the downtime is measured using the ICMP
non-responsive ping of the VNF IP with millisecond
resolution.

• UE service recovery time is defined as the time that is
required by the UE to regain mobile connectivity from
the moment the UE service is temporarily paused due
to the migration of one of the EPC components. The
service recovery relies on the reactivation of the Control
and Data services. The UE Control Plane (CP) service
is momentarily interrupted during the MME migration.
Similarly, during the SPGW service migration, the UE
data uplink and downlink are temporarily disrupted.
In all experiments, the UE service recovery time is mea-
sured using the ICMP ping from the UE gtp interface IP
to both the MME CP and SPGW gtp interface IP, with a
resolution of one hundred milliseconds.

• Migration data size is defined as the amount of data
transferred from the source node to the destination
node during the migration. In the VM migration experi-
ment, the migration data accounts for the transfer of the
CPU state, memory state, network state, and disk state.
Its size is measured using the system monitoring tool
named ‘‘iftop’’ [50]. In the container migration experi-
ment, the migration data accounts for the process tree,
the CPU state, memory page, namespace, and control
group (cgroup) information. It is the size of metadata
files taken during the application checkpoint process.

C. INFLUENCING PARAMETERS
The performance of the VNF migration is affected by a num-
ber of additional factors beside the migration method used.
In OpenStack, the VMmigration data flows through the man-
agement network, whose transmission data rate may affect
the migration required time. Conversely, while migrating a
container the OpenStack tenant network is used to transfer
the metadata and its transmission data rate may affect the
migration required time.

In addition, in the container migration experiment the
checkpoint and restore services heavily relay on the node
hardware architecture, cache size, and number of cores used.
Similarly, in the VM migration experiment the hypervisor
must copy the memory pages of the CN component, which
also depends on the node architecture in terms of memory
access speed and bandwidth. The flavors of the computing
instances (compute, memory, and storage capacity) may also
affect the time required to migrate both VMs and containers
to the new node. Table 4 reports three flavors that are applied
in this study.

In summary, the impact on migration performance is eval-
uated for the following parameters:

TABLE 4. OpenStack flavors used.

• Image flavor,
• Processor hardware architecture model,
• Network Interface Card (NIC) data rate, and
• CPU load.

The experiments related to the influencing factors consider
the standalone vSPGW component migration to evaluate
the impact of migration performance for the fault handling
use-cases such as periodic checkpoint and data backup [51].

VI. RESULT ANALYSIS
This section reports the experimental data collected using
the testbed. Each experiment is repeated five times totalling
overall three hundred trials. The mean value along with the
confidence interval at the 95% confidence level and the
coefficient of variation are reported for each performance
indicator, accounting for the stochastic variations due to the
network, I/O, and processing delays.

A. MIGRATION TIME ANALYSIS
The migration time plays an important role in supporting
ultra-reliable and low latency applications. Fig. 7 reports the
migration time of the virtualized HSS, MME, and SPGW
instances for the VM PreCopy, Container StopandCopy and
Container PreCopy methods. OpenStack Flavor Small is
considered in the CloudLab testbed operating with Broad-
well architecture and 10G NIC rate. As expected, in terms
of migration time, the container based migration is con-
sistently better compared to that of VM. The file system
and in-memory contents of the container are mainly deter-
mined by the application. For the VM, there are additional
background process-related files and memory contents that
require a larger image size to be migrated. When migrating
containers, the PreCopy method requires considerably less
time for all the core network components when compared
to the StopandCopy method. Even though the metadata size
remains the same for both container migration methods, the
tool used to initiate the migration process affects the overall
required migration time. In the StopandCopy method migra-
tion is triggered from the Docker CLI, which interacts with
the Docker daemon, Containerd, and runC to carry forward
the migration process. In the PreCopy method the migration
process is initiated from the runC CLI.

Table 5 shows the time taken by each phase of the
VM migration approach. In the live migration phase, since
the VM image size is the same for all the OAI-based core
network components, the memory content transfer takes
approximately the same time for the HSS, MME, and SPGW
components. Since the post-live phase involves the database

VOLUME 9, 2021 105091



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

FIGURE 7. Migration time comparison for three migration methods.

TABLE 5. VM PreCopy method: Migration time breakdown.

update, all the CN components take approximately 4 seconds
in the CloudLab Broadwell environment.

For the Container StopandCopy method of migration,
the checkpoint and the restore time are relatively high for the
HSS component as shown in Table 6. The difference in timing
is mainly due to the metadata information processing for
the container application. For the HSS service, the container
metadata stores the user information in the MySQL database.
As the number of UE client information increases, the HSS
metadata size increases as well. On the contrary, the metadata
of both the MME and SPGW applications comprises mainly
control-plane and data-plane socket connection information,
thus requiring comparatively lesser persistent data content
leading to the faster checkpoint and restore time than that of
the HSS container.

Table 7 reports the migration time breakdowns of the Con-
tainer PreCopymethod. Accounting for theHSS application’s
metadata described earlier, the pre-dump, dump, and restore
phases of the HSS service are marginally longer when com-
pared to the MME and SPGW applications. The VPN update
time is the time taken in setting up the OpenVPN connec-
tivity at the destination node. The GTP tunnel update func-
tionality applies only to the SPGW application data-plane
communication.

Meantime, 95 % Confidence Interval (CI), and Coef-
ficient of Variation (CV) of the migration time of the
three core network components are presented in Table 8
accounting for the three migration methods. The Con-
tainer PreCopy method avoids the inter-process delay
and provides fastest migration when compared to that of
the Docker CLI-based StopandCopy method. All methods
applied to the three components show a modest coefficient of
variation.

TABLE 6. Container StopandCopy method: Migration time breakdown.

TABLE 7. Container PreCopy method: Migration time breakdown.

TABLE 8. Migration time comparison for different migration methods.

B. DOWNTIME ANALYSIS
Downtime is one of the prominent performance indicators
for many mobile applications. Fig. 8 reports the downtime
of the virtualized core network components for each of the
three migration methods. Significant reductions of the VNF
downtime is achievable when using the Container PreCopy
method. Compared to the VM PreCopy method these down-
time reductions are 70%, 77.86%, and 72.11% for HSS,
MME, and SPGW instances, respectively. Combined, theVM
dirty page transfer and setting up of the new port configura-
tion requires more time than what is required for the final
dump and restore phase of the container. First, the compact
nature of the container requires a relatively smaller num-
ber of dirty pages. Second, the dump phase metadata of
the Container PreCopy method is in the order of few tens
of Megabytes in contrast to the Gigabytes needed in the
VM page copy, therefore leading to a significant reduction
of the application downtime value as reported.

Compared to the Container StopandCopy method,
the application downtime caused by the Container PreCopy
method is reduced by 84.6%, 67.59%, and 71.6% for the
HSS, MME, and SPGW applications, respectively. Dur-
ing the pre-dump phase in the Container PreCopy method,
the instance is fully functional compared to the StopandCopy
method, which instead freezes the application once the dump-
ing process is initiated.

105092 VOLUME 9, 2021



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

FIGURE 8. Application downtime caused by the three migration methods.

TABLE 9. Downtime comparison for different migration methods.

For the Container PreCopy approach, most of the meta-
data collection happens in the pre-dump phase totaling hun-
dreds of Megabytes compared to only tens of Megabytes of
dirty page information involved in the dump phase. Since
the application service is not interrupted during both the
pre-dump phase and the pre-dump transfer phase — with the
values specified in the breakdown Table 7 — the application
downtime is significantly shorter in the Container PreCopy
method, provided that the container migration problems are
addressed as mentioned in Section IV-A.
Meantime, 95 % CI, and CV of the VNF downtime

are reported in Table 9 for the three network components
and three migration methods. The longest downtime when
migrating the HSS component is experienced by the Con-
tainer StopandCopy method, mainly caused by its demand-
ing total memory page copy procedure. Overall, the results
in Table 9 clearly show that the Container PreCopy method
yields the shortest downtime values thanks to its sequence
of pre-dump and dump phases. The VM method presents the
highest CI variation because of its dirty page size that varies
from experiment to experiment.

C. UE SERVICE RECOVERY TIME
The UE service recovery time must account for both control
plane and data plane connectivity. The control plane traffic
considered in our study comprises the UE attach and detach
requests, which are sent to the MME through both the DU
and CU units. The data plane traffic consists of the UE data
packet transactions, which are sent to the PDN through the
SPGW GTP interface.

TABLE 10. UE service recovery time for different migration methods.

Table 10 reports the UE service recovery time information
for the three migration methods subject to the following
definitions:
• DP_GTP - Data Plane traffic through the GTP interface
connecting UE and SPGW (SPGW migration);

• DP_SGi - Data Plane traffic through the SGi interface
connecting PGW and PDN (SPGW migration);

• CP_S1-MME - Control Plane traffic through the
S1-MME interface connecting UE and MME
(MME migration).

The UE service recovery time is less than the migration
time of the core network components for the PreCopymethod
of migration because the communication between the UE and
the network beyond the core network is still possible within
part of themigration process (i.e., outside the stop and copy of
the dirty pages). Thanks to the newly developed middleware
modules (i.e., GTP Module initializer and the GTP tunnel
handler) migration of the container running the SPGW com-
ponent is now possible yielding a DP_GTP service recovery
time that is 77.77% (when using StopandCopy) and 81.77%
(when using PreCopy) shorter when compared to theVMPre-
Copy method. Similarly, migration of the container running
the MME component is now possible yielding a CP_S1-
MME service recovery time that is 31.67% (when using
StopandCopy) and 77.86% (when using PreCopy) shorter
when compared to the VM PreCopy method.

D. MIGRATION DATA SIZE
The migration data sizes for the considered migration meth-
ods reported in Table 11 help us ascertain the reason for
the migration time and downtime differences across these
methods. The migration data size is in the order of Giga-
bytes (GB) for the VMs and in the order of Megabytes (MB)
for the containers. With the OAI implementation all three
components (HSS, MME, and SPGW) require the same disk
image size to accommodate other background processes.
Conversely, the migration data size for the containers varies
from component to component and is also affected by the
method applied (StopandCopy or PreCopy). The HSS com-
ponent presents the most significant difference between the
two container-based migration methods. With the Docker
CLI-based StopandCopy method the HSS database informa-
tion is entirely copied, whereas only part of the modified
information is copied when applying the PreCopy method.

The migration data transmission time for each of the core
network components is detailed in Table 12 along with the
pre-dump and dump information for the Container PreCopy
method. In our experiments, the SPGW VM with its data

VOLUME 9, 2021 105093



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

TABLE 11. Migration data size.

TABLE 12. Migration data size and transmission (Tx) time for all methods.

plane communication creates more dirty pages compared
to HSS and MME VMs, causing a modest increase of the
migration data transmission time. When left running for an
extended period of time the VM application increases its
internal data storage (in terms of MB) due to the application
logs. This data storage increase may cause a slight variation
of the VMmigration data size. As noted earlier, the pre-dump
process in the Container PreCopymethod dumps a significant
portion of the entire metadata size. The ‘‘rsync’’ command is
then applied to synchronize the metadata between the source
and destination nodes during the following dump phase.

E. IMPACT OF IMAGE FLAVOR ON MIGRATION OF EPC
COMPONENTS
Fig. 9(a) shows the migration time as a function of flavor
size. The flavor size influences both the memory and the
number of CPU cores allocated to each VM/Container. For
the VM, increasing the number of CPU cores does not influ-
ence the migration time since the migration is performed
on the compute node hosting the VM. However, increasing
the storage size increases the overall VM image size thereby
increasing the migration time when the flavor is upgraded.
For the container, in the StopandCopy method, an increased
number of CPU cores reduces the checkpoint and restoration
time required. With more cores the inter-process communi-
cation time among Docker daemon, Containerd, and runC is
reduced, thus accelerating the container migration performed
using the Docker CLI. On the contrary, for the Container
PreCopy method, increasing the CPU cores tends to increase
the checkpoint and restore time due to inter-core interference,
which occurs due to shared resources among the cores [52].

Fig. 9(b) shows the influence of RAM/storage size on
the migration time, keeping the number of CPU cores
fixed (1 vCPU core). The VM migration performance trend
remains the same for both (a) and (b) scenarios since the num-
ber of CPU cores has not much influence on the VM migra-
tion. However, for the Container PreCopy method, keeping

FIGURE 9. Impact of flavor and memory influence on the migration time.

the CPU core to one avoids CPU data propagation delay,
and increasing the RAM size helps reduce the number of
memory page copies during the pre-dump phase. Overall,
the migration time decreases as the memory size increases
for the Container PreCopy method. Note that this observation
applies explicitly to the RAN and core network whereby the
CPU inter-core interference impacts the performance.

F. IMPACT OF PROCESSOR HARDWARE ARCHITECTURE
MODEL
Fig. 10 shows the influence of the processor hardware archi-
tecture on themigration time. TheNIC speed is set to 10Gbps

FIGURE 10. Processor hardware architecture model influence on
migration.

105094 VOLUME 9, 2021



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

FIGURE 11. Network speed influence on migration.

for all the considered hardware models, which are Sandy
Bridge E5-2450, Broadwell D-1548, and Skylake 6126. The
CPU frequency is 2.1 GHz, 2.0 GHz, and 2.6 GHz for the
SandyBridge, Broadwell, and Skylake model, respectively.
The SandyBridge and Broadwell models have 8 cores run-
ning in the Cloudlab testbed [40], while the Skylake model
has 12 cores running in POWDER testbed [53]. The RAM
speed of the Broadwell processor is 800MHz faster com-
pared to that of the Sandy Bridge model. When running the

VM-PreCopymethod, the migration time is highly dependent
on the used hardware architecture with more than a 50%
reduction between Sandy Bridge and Broadwell. Despite its
slower CPU frequency, the increased RAM speed of the
Broadwell processor yields superior performance. Overall,
the Skylake model outperforms the other thanks to is superior
CPU frequency, number of CPU cores, and RAM speed.
It should also be noted that the Container PreCopy method
has much less hardware dependency when compared to the
VM PreCopy method.

G. IMPACT OF NIC SPEED ON MIGRATION OF EPC
COMPONENTS
Fig. 11 shows the impact of the NIC speed on the migration
time for two hardware architectures (i.e., Sandy Bridge and
Broadwell). The NIC influence is assessed by changing the
management network speed for the VM migration and the
tenant network speed for the container migration, as detailed
in section V-C. In the VM PreCopy method, as expected,
increasing the NIC speed helps to reduce the VM migra-
tion time to a great extent (in terms of seconds) with the
live copy phase transferring the bulk of disk images. In the
two container methods, the NIC speed variation influences
the stateful information transfer rate, and the information

FIGURE 12. CPU load influence on migration.

VOLUME 9, 2021 105095



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

required to be transferred is in MB. Thus, for both container
approaches, the NIC speed influence on the migration time is
only in the order of milliseconds.

H. IMPACT OF CPU LOAD ON MIGRATION OF EPC
COMPONENTS
Fig. 12 shows the impact of the CPU load at the source and
destination node on the migration time of the SPGW com-
ponent. Fig. 12(a) shows the migration time while varying
the source node CPU load from 10% to 75% and keeping
the destination node at 10% CPU load. This experiment is
explicitly considered to provide insights into the migration
behavior when performing CPU load balancing across hosts.
In the VM PreCopy method, changing the CPU load has no
tangible impact. Conversely, the container checkpoint time
increases with the increase of CPU load in the StopandCopy
method up until around 50%. After that, the migration time
remains practically unchanged. For the Container PreCopy
method, only a slight time rise in the pre-dump and dump
phases is observed while increasing the source node CPU
load. Figs. 12(b) and (c) depict the migration time in a typical
fault handling or disaster recovery scenario. Fig. 12(b) shows
the migration time when the source node CPU load is set
to 50%, and destination node CPU load is varied from 10%
to 75%. In these experiments the two container methods show
little dependence on the varying destination CPU load. The
restore phase of the container migration shows a modest
increase in its completion time when the CPU load of the
destination node is increased up to 50%. Fig. 12(c) shows the
migration time when both source and destination node CPU
loads are varied. In these experiments the checkpoint/dump
and restore times of the two container methods are affected by
the CPU load with an increase as high as 50%. The VM Pre-
copy method continues to be unaffected by the CPU loads
of both source and destination nodes being jointly varied. All
three considered CPU load scenarios reveal that the container
migration methods are affected up until 50% CPU load, but
remain practically unaffected at higher CPU loads.

VII. CONCLUSION AND FUTURE WORK
This paper reports the first set of public experiments about
the live migration of three open-source (OAI) EPC com-
ponents — HSS, MME, and SPGW — virtualized through
both VM and Container technologies. In all experiments the
migration of any of these components is successfully com-
pletedwithout causing permanent loss of the UE connectivity.
To successfully carry out the container live migration of the
virtual EPC components, the authors designed and imple-
mented several custom functions that overcome the current
limitations of the open software packages used to implement
the EPC components. The newly added software packages
and upgrades are tested on the federated CloudLab testbed
for full validation on a third-party and distributed platform.

More specifically, migration time and service downtime
performance indicators for the two virtualization technolo-
gies (VM and Container) are discussed, while accounting

for a number of system factors like flavor type of the com-
puting instances (compute, memory, and storage capacity),
processor hardware architecture model, and data rate of the
network interface applied. The Container PreCopy method
of migration is found to consistently outperform the other
two methods (VM PreCopy and Container StopandCopy).
It is however negatively affected by the dependencies in the
kernel code and mobile network transport protocol support.
Outside the scope of this paper and possible subject of future
work, live migration of virtualized CU/DU (vCU/vDU) in
the RAN and virtualized 5G Core Network (CN) in the
5G standalone architecture using both VM and Container
technologies are additional critical functionalities of modern
mobile networks. With the 3GPP recommended functional-
ity split options, the RAN and 5G CN modules must cope
with the transport network dependency and meet the desired
mobile network service latency and throughput. The required
software changes must be handled carefully to account for
the network requirements (e.g., fronthaul latency) and the
transport layer security functionalities. Another aspect that
remains to be investigated is the possible reduction of service
downtime using hybrid migration techniques and the use of
artificial intelligence to optimize migration performance.

Finally, several additional open challenges in the RAN
and other core network components remain to be addressed
before achieving a completely flexible and fully virtualized
mobile network solution that is capable of handling the live
migration of all of its components. This paper’s contribution
takes open-source C-RAN one step closer to the ultimate goal
of achieving power management, load balancing, and fault
tolerance when implementing RAN NFV in the cloud and
edge environments.

APPENDIX
The three sections of this Appendix A, B, C describe the
SPGW container migration related limitations, GTP Tunnel
List Handler design approaches, and miscellaneous issues
related to IP address dependability and container root file
system.

APPENDIX A
SPGW CONTAINER MIGRATION LIMITATIONS
The issues associated with the SPGW container migration
failure are categorized as follows:
(i) No Active GTP Interface: The data plane connectivity

of the SPGW module uses the GTP device interface
(gtp0) for the S1-U communication between the gNB
and the SPGW and also for masquerading the packet
to the SGi interface to reach the PDN. Since the con-
tainer checkpoint software does not include the device
interface-specific information in its metadata, the GTP
interface information is lost in the restored node. With-
out the GTP interface, the SPGW application function-
ality is affected in the considered scenario of stateful
container migration. Fig. 13 shows the Wireshark (net-
work traffic analyzer) capture taken at the UE side by

105096 VOLUME 9, 2021



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

FIGURE 13. UE communication failure with the partially restored SPGW application.

FIGURE 14. Normal GTP communication in SPGW.

using Ping utility, where the Internet Control Message
Protocol (ICMP) packets are exchanged between the UE
and the core network. Starting from packet number: 882,
the capture shows the UE communication disruption
due to the partial SPGW application restoration at the
destination node with the given checkpoint software
limitations.

(ii) Lost Tunnel list: The Tunnel list in the SPGW module
stores the SGSN address, UE address, and the TEID
of the base station as referred in Section IV-A1. This
information is required to validate the authenticity of the
received GTP message from the base station. However,
since this tunnel list is associated with the GTP interface,
the metadata created during the application checkpoint
did not carry the GTP Tunnel list information. Thus,
the SPGW application during the restoration at the desti-
nation node does not have any existing Tunnel list data to
re-establish the communication with the attached UEs.

(iii) rtNetlink Socket deactivation: rtNetlink Socket belongs
to the Linux Netlink Socket family that carries the
inter-process communication between the Kernel and
the User Space. The rtNetlink Socket is used for carrying
the GTP decapsulated message from the GGSN Kernel
module. Once the application is checkpointed, the asso-
ciated Netlink Socket is deactivated immediately, but
the GTP interface remains active (in the Source node).
This socket connectivity problem is verified by restor-
ing the SPGW container application from the frozen
point (using the metadata file) in the same node. The
experiment confirmed that the GTP interface is active

(since running in the same node), and the UDP encapsu-
lated GTPmessage from theUE is received at the SPGW
node but the rtNetlink Socket was not active to forward
the GGSN decapsulated IP Payload. This observation
shows that the checkpointed SPGW application cannot
be restored successfully on a different node and even
on the same node with an active GTP interface and the
tunnel list data.

Fig. 14 shows theWireshark capture of the regular GTP com-
munication. Here, packet number 2581 indicates the ICMP
encapsulated GTP message received from the base station
(with theGreen box) showing the SGSN address and (with the
blue box) the GTP information. The packet is decapsulated
by the GGSN module and the Netlink Socket forwarding
the ICMP packet request is shown in packet number 2582.
Fig. 15 shows the Wireshark capture after the partial SPGW
migration in the same node. The capture shows that the ICMP
encapsulated GTP message is received from the base station.
However, there is no further action taken to forward the
decapsulated packet due to the rtNetlink Socket deactivation
of the checkpointed application.

APPENDIX B
GTP TUNNEL LIST HANDLER DESIGN
Two design approaches — proactive and reactive-based tun-
nel list storage are considered in the study.
• Global approach: The nomenclatures, namely master
node and GTP nodes, are considered. The SPGW
application-hosted servers are considered GTP nodes
with one master node in the cluster of nodes. The Tunnel

VOLUME 9, 2021 105097



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

FIGURE 15. GTP communication failure in partially restored SPGW.

FIGURE 16. UE communication re-established with the restored SPGW application.

list handler service in the master node carries out the
periodic health check of the assigned GTP nodes by
reading the GTP tunnel information and stores it in
its memory. Also, when the tunnel list information is
modified, the GTP node will update the master. This
method is a pro-active approach to store the tunnel list
information to handle any type of sudden failure.

• Local approach: In this method, the handler service is
started in each node where the SPGW container service
is running. At the time of checkpoint, the tunnel handler
opens a general socket, lookup for the GTP family, and
then reads the active tunnel information associated with
the GTP interface and store it in a file. This method is
a reactive approach where the tunnel list information is
read when the migration is initiated.

Fig. 16 shows the Wireshark capture of the UE communi-
cation during the migration process with the proposed mid-
dleware components. Packet number 1724 of the Wireshark
capture confirms the successful restoration of the UE com-
munication during the stateful live migration of the SPGW
application. Some preliminary groundwork about the SPGW
migration constraints alone was presented in [54]. This article
provides a comprehensive discussion with the experimental
analysis on the virtualization orchestrator platform.

APPENDIX C
MISCELLANEOUS ISSUES
Additional generalized challenges exist in the container envi-
ronment, and appropriate deployment strategies are required
for resolving them.

A. IP ADDRESS DEPENDABILITY
Docker container creation comes with the default bridge net-
work - a software-based link layer for forwarding the traffic

between network subnets. This software bridge allows the
containers connected to the same bridge to communicate with
each other providing better isolation from the outside net-
work. When there is a need for the container to communicate
with the external node, there is an option of assigning the node
network to the container. Some applications, such as the core
network elements, require permanent socket connectivity
with other clients. This creates an IP Address dependability
situation to be taken care of during the container migration,
which, by default, does not carry the underlying node network
information in its metadata.

This IP address dependability is addressed with the over-
lay network (namely OpenVPN) - a logical network dis-
tributed on top of the physical network. The OpenVPN helps
to tie up the multiple networks in two different sites with
proper encryption. Once the migration process is initiated,
for the container application to maintain the same IP address,
the node taking over the container application (the destina-
tion node) configures the OpenVPN address (of the Source
node). This approach helps to solve the IP address depend-
ability at the time of migration. For instance, considering
the PreCopy approach, due to this overlay network addition,
the overall container migration time stated in the equation (2)
becomes:

Tpcm = Tpd + Tpdt + Td + Tdt + Tn + Tr (5)

where Tn is the network setup time at the destination
node. Tn time constraint is needed only for applications
such as core network which has the IP address depend-
ability when being migrated. And, there are multiple ways
to optimize this Tn value with several networking strate-
gies such as Virtual Extensible LAN (VXLAN), Float-
ing IP, and the investigation is outside the scope of this
study.

105098 VOLUME 9, 2021



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

B. ROOT FILE SYSTEM
The root file system is the top-level directory on top of which
the other file systems are mounted during the system boot-
up. The root file system contains the critical files required
for system operation, including the program for system boot-
ing. In the Docker container, the root file system is to be
considered as the ‘golden image’ [55] since it is prone to
security attacks. During the restoration procedure, the con-
tainer’s root file system in the source node should match
with the destination node’s root file system. An application
such as SPGW software modifies specific existing log files
residing in the root file system during its execution during
new tunnel creation, UE attachment. This modification even-
tually causes the file size mismatch in the container image
of the source node and the destination node, which triggers
restoration failure.

This size mismatch problem can be addressed by mak-
ing the root file system read-only that solves the security
attack. However, setting this read-only configuration would
crash the application’s requirement (such as the SPGW case
above-mentioned) of updating a specific file at run time.
The temporary file system (tmpfs) configuration is needed
during the container’s runtime to overcome this issue. The
tmpfs option makes the non-persistent data write to the root
file system, thereby satisfying the application requirement
of modifying the file at run time. This configuration option
enables successful restoration during the migration process
since the root file system’s persistent file size is not affected.

ACKNOWLEDGMENT
This article provides a comprehensive discussion with
the experimental analysis on the virtualization orchestrator
platform.

REFERENCES
[1] G. Carella, A. Edmonds, F. Dudouet, M. Corici, B. Sousa, and Z. Yousaf,

‘‘Mobile cloud networking: From cloud, through NFV and beyond,’’ in
Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw.
(NFV-SDN), Nov. 2015, pp. 7–8.

[2] NFV Report Series Part 1: Foundations of NFV: NFV Infrastructure and
VIM, SDN Central Producer Rep., 2017. Accessed: Jan. 2, 2021. [Online].
Available: https://sdx.io/nfvi-vim-report-2018

[3] V. G. Nguyen, A. Brunstrom, K.-J. Grinnemo, and J. Taheri, ‘‘SDN/NFV-
based mobile packet core network architectures: A survey,’’ IEEE Com-
mun. Surveys Tuts., vol. 19, no. 3, pp. 1567–1602, 3rd Quart., 2017.

[4] OpenStack. OpenStack Cloud Infrastructure. Accessed: Mar. 2, 2021.
[Online]. Available: http://openstack.org

[5] VMWare. VMWare Orchestrator. Accessed: Mar. 2, 2021. [Online]. Avail-
able: https://www.virtualizationworks.com/datasheets/VMware-vCenter-
Orchestrator-DS-EN.pdf

[6] OSM. Open Source MANO. Accessed: Mar. 2, 2021. [Online]. Available:
https://osm.etsi.org/

[7] P. Rost, I. Berberana, A. Maeder, H. Paul, V. Suryaprakash, M. Valenti,
D. Wäbben, A. Dekorsy, and G. Fettweis, ‘‘Benefits and challenges of
virtualization in 5G radio access networks,’’ IEEE Commun. Mag., vol. 53,
no. 12, pp. 75–82, Dec. 2015.

[8] D. Wang and J. Wu, ‘‘Carrier-grade distributed cloud computing:
Demands, challenges, designs, and future perspectives,’’ IGI Global, USA,
Tech. Rep., 2014, ch. 92.

[9] J. Zhang, F. R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu, ‘‘Load balancing
in data center networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 3, pp. 2324–2352, 3rd Quart., 2018.

[10] OpenStack. (Sep. 2015). Hypervisor Support Matrix. [Online]. Available:
https://wiki.openstack.org/wiki/HypervisorSupportMatrix

[11] CRIU Community. (2019). Checkpoint/Restoration In UserSpace (CRIU).
[Online]. Available: https://criu.org/

[12] M. Bagaa, T. Taleb, A. Laghrissi, and A. Ksentini, ‘‘Efficient virtual
evolved packet core deployment across multiple cloud domains,’’ in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[13] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck, ‘‘Fast
service migration in 5G trends and scenarios,’’ IEEE Netw., vol. 34, no. 2,
pp. 92–98, Mar. 2020.

[14] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, ‘‘On enabling 5G
automotive systems using follow me edge-cloud concept,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 6, pp. 5302–5316, Jun. 2018.

[15] Docker. Accessed: Jan. 21, 2021. [Online]. Available: https://docs.docker.
com/get-started/overview

[16] CRIU Team. (2019). CRIU What Cannot be Checkpointed. Accessed:
Jan. 21, 2021. [Online]. Available: https://criu.org/What_cannot_be_
checkpointed#Devices

[17] A. Ceselli, M. Premoli, and S. Secci, ‘‘Cloudlet network design optimiza-
tion,’’ in Proc. IFIP Netw. Conf., May 2015, pp. 1–9.

[18] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
‘‘Dynamic service placement for mobile micro-clouds with predicted
future costs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4,
pp. 1002–1016, Apr. 2017.

[19] D. Amendola, N. Cordeschi, and E. Baccarelli, ‘‘Bandwidth manage-
ment VMs live migration in wireless fog computing for 5G networks,’’
in Proc. 5th IEEE Int. Conf. Cloud Netw. (Cloudnet), Oct. 2016,
pp. 21–26.

[20] Technical Specification Group Core Network and Terminals; Restoration
Procedures, document TS 23.007 16, 3GPP, Mar. 2020.

[21] F. Carpio and A. Jukan, ‘‘Improving reliability of service func-
tion chains with combined VNF migrations and replications,’’ CoRR,
vol. abs/1711.08965, pp. 1–6, Nov. 2017.

[22] A. Giorgetti, A. Sgambelluri, F. Paolucci, F. Cugini, and P. Castoldi,
‘‘Demonstration of dynamic restoration in segment routing multi-
layer SDN networks,’’ in Proc. Opt. Fiber Commun. Conf., 2016,
pp. 1–3.

[23] L. Valcarenghi, F. Cugini, F. Paolucci, and P. Castoldi, ‘‘Quality-of-service-
aware fault tolerance for grid-enabled applications,’’Opt. Switching Netw.,
vol. 5, nos. 2–3, pp. 150–158, Jun. 2008.

[24] K. Kondepu, A. Sgambelluri, N. Sambo, F. Giannone, P. Castoldi, and
L. Valcarenghi, ‘‘Orchestrating lightpath recovery and flexible functional
split to preserve virtualized ran connectivity,’’ J. Opt. Commun. Netw.,
vol. 10, no. 11, pp. 843–851, Nov. 2018.

[25] J. Feng, J. Zhang, Y. Xiao, and Y. Ji, ‘‘Demonstration of containerized
vDU/vCU migration in wdm metro optical networks,’’ in Proc. Opt. Fiber
Commun. Conf., 2020, Paper Th3A.4, pp. 1–3.

[26] Runc Blog. Accessed: Jan. 24, 2021. [Online]. Available: https://www.
docker.com/blog/runc/

[27] Handling GTP Interface of SPGW. Accessed: Apr. 20, 2021. [Online].
Available: https://bitbucket.org/PriyaRamanathan/spgw_gtp/

[28] Wikipedia. Inode-DataStructure. Accessed: Mar. 24, 2021. [Online].
Available: https://en.wikipedia.org/wiki/Inode

[29] SCTP Support in CRIU. Accessed: Apr. 20, 2021. [Online]. Available:
https://bitbucket.org/PriyaRamanathan/sctp_criu/

[30] SCTP Changes in Kernel. Accessed: Apr. 20, 2021. [Online]. Available:
https://bitbucket.org/PriyaRamanathan/sctp_kernel/

[31] (2019). CRIU TCP Connection. [Online]. Available: https://criu.org/
TCP_connection

[32] Linux Man. Accessed: Jan. 26, 2021. [Online]. Available: https://linux.
die.net/man/1/pstree

[33] Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, ‘‘Experimental evaluation
of LXC container migration for cloudlets using multipath TCP,’’ Comput.
Netw., vol. 164, Dec. 2019, Art. no. 106900.

[34] Phoenixnap. (2019). Rsync Command Line. [Online]. Available:
https://phoenixnap.com/kb/rsync-command-linux-examples

[35] W. Hu, A. Hicks, L. Zhang, E. M. Dow, V. Soni, H. Jiang, R. Bull, and
J. N. Matthews, ‘‘A quantitative study of virtual machine live migration,’’
in Proc. ACM Cloud Autonomic Comput. Conf. New York, NY, USA:
Association for Computing Machinery, 2013, pp. 1–10.

[36] OpenVSwitch. OpenVSwitch. Accessed: Jan. 26, 2021. [Online]. Avail-
able: https://www.openvswitch.org/

VOLUME 9, 2021 105099



S. Ramanathan et al.: Live Migration of VM and Container Based Mobile CN Components

[37] S. Ramanathan, K. Kondepu, B. Mirkhanzadeh, M. Razo, M. Tacca,
L. Valcarenghi, and A. Fumagalli, ‘‘Performance evaluation of two service
recovery strategies in cloud-native radio access networks,’’ in Int. Conf.
Transparent Opt. Netw. (ICTON), 2019, pp. 1–5.

[38] A Guide to VM Migration. (2014). Common Causes of a Failed Hyper-
V Live Migration. [Online]. Available: https://searchservervirtualization.
techtarget.com/tip/Common-causes-of-a-failed-Hyper-V-live-migration

[39] TechTarget. (2019). Storage Area Network. [Online]. Available:
https://searchstorage.techtarget.com/definition/storage-area-network

[40] D. Duplyakin, R. Ricci, A. Maricq, and G. Wong, ‘‘The design and
operation of CloudLab,’’ in Proc. Annu. Tech. Conf. (ATC), Jul. 2019,
pp. 1–14.

[41] (Oct. 2014). OpenAir Interface: A Flexible Platform for 5G Research.
[Online]. Available: https://www.openairinterface.org/

[42] Study on New Radio Access Technology; Radio Access Architecture and
Interfaces, document vol. 2.0.0, 3rd Generation Partnership Project, 2017.

[43] Ettus. Accessed: Jan. 25, 2021. [Online]. Available: https://www.
ettus.com/all-products/ub210-kit/

[44] ETSI GS NFV-MAN 001. (2014). Network Functions Virtualisation
(NFV); Management and Orchestration. [Online]. Available:
https://www.tacc.utexas.edu/systems/stampede

[45] Open Baton: A Framework for Virtual Network Function Management
and Orchestration for Emerging Software-Based 5G Networks. Accessed:
Jan. 18, 2021. [Online]. Available: https://openbaton.github.io/

[46] Cloudify. Script Plugin. Accessed: Jul. 18, 2021. [Online].
Available: https://docs.cloudify.co/latest/working_with/official_plugins/
configuration/script/

[47] M. Galloway, G. Loewen, and S. Vrbsky, ‘‘Performance metrics of virtual
machine live migration,’’ in Proc. IEEE 8th Int. Conf. Cloud Comput.,
Jun. 2015, pp. 637–644.

[48] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. F. De Rose, ‘‘Performance evaluation of container-based virtualiza-
tion for high performance computing environments,’’ inProc. 21st Euromi-
cro Int. Conf. Parallel, Distrib., Network-Based Process., Feb. 2013,
pp. 233–240.

[49] C. Puliafito, C. Vallati, E.Mingozzi, G.Merlino, F. Longo, andA. Puliafito,
‘‘Container migration in the fog: A performance evaluation,’’ Sensors,
vol. 19, no. 7, p. 1488, Mar. 2019.

[50] Tecmint. (2019). Linux Network Bandwidth Monitoring Tool. [Online].
Available: https://www.tecmint.com/iftop-linux-network-bandwidth-
monitoring-tool/

[51] Cloudian. Data Backup. Accessed: Jul. 26, 2021. [Online]. Available:
https://cloudian.com/guides/data-backup/data-backup-in-depth/

[52] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar,
‘‘Bounding memory interference delay in COTS-based multi-core sys-
tems,’’ in Proc. IEEE 19th Real-Time Embedded Technol. Appl. Symp.
(RTAS), Apr. 2014, pp. 145–154.

[53] J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, M. Hibler, D. Johnson,
and S. K. Kasera, ‘‘POWDER: Platform for open wireless data-driven
experimental research,’’ in Proc. 14th Int. Workshop Wireless Netw.ork
Testbeds, Experim. Eval. Characterization (WiNTECH), Sep. 2020,
pp. 17–24.

[54] S. Ramanathan, K. Kondepu, M. Tacca, L. Valcarenghi, M. Razo, and
A. Fumagalli, ‘‘Container migration of core network component in cloud-
native radio access network,’’ in Proc. 22nd Int. Conf. Transparent Opt.
Netw. (ICTON), Jul. 2020, pp. 1–6.

[55] Cloud Scale Monitor. Containers Root File System as Read Only.
Accessed: Jul. 26, 2021. [Online]. Available: https://docs.datadoghq.com/
security_monitoring/default_rules/cis-docker-1%.2.0-5.12/

SHUNMUGAPRIYA RAMANATHAN (Graduate
Student Member, IEEE) is currently pursuing the
Ph.D. degree with The University of Texas at
Dallas (UTD). She worked as a Technical Lead in
embedded firmware development withHoneywell.
Her research interests include 5G, the Internet
of Things (IoT), fault management, and software
design in embedded platforms.

KOTESWARARAO KONDEPU (Senior Member,
IEEE) received the Ph.D. degree in com-
puter science and engineering from the Insti-
tute for Advanced Studies Lucca (IMT), Italy,
in July 2012. He is currently working as an Assis-
tant Professor with the India Institute of Tech-
nology Dharwad, Dharwad, India. His research
interests include 5G, optical networks design,
energy-efficient schemes in communication net-
works, and sparse sensor networks.

MIGUEL RAZO (Member, IEEE) received the
Ph.D. degree in computer science from The
University of Texas at Dallas, in 2009. He is
currently a Research Associate with the Open
Networking Advanced Research (OpNeAR) Lab-
oratory and a Senior Lecturer with the Com-
puter Science Department, Erik Jonsson School of
Engineering and Computer Science. His research
interests include network planning, fault protec-
tion, telecommunication software design, protocol

design and network modeling, emulation, and simulation.

MARCO TACCA (Senior Member, IEEE)
received the Laurea degree from the Politecnico
di Torino, in 1998, and the Ph.D. degree from
The University of Texas at Dallas, in 2002. His
research interests include aspects of optical net-
works, high-speed photonic network planning,
fault protection and restoration, and performance
evaluation.

LUCA VALCARENGHI (Senior Member, IEEE)
has been an Associate Professor with the Scuola
Superiore Sant’Anna of Pisa, Italy, since 2014.
He published almost 300 articles (source Google
Scholar, May 2020) in international journals and
conference proceedings. His main research inter-
ests include optical networks design, analysis, and
optimization, communication networks reliability,
energy efficiency in communications networks,
optical access networks, zero touch network and

service management, experiential networked intelligence, 5G technologies,
and beyond. He received a Fulbright Research Scholar Fellowship, in 2009,
and a JSPS ‘‘Invitation Fellowship Program for Research in Japan (Long
Term),’’ in 2013.

ANDREA FUMAGALLI (Senior Member, IEEE)
received the Laurea and Ph.D. degrees in elec-
trical engineering from the Politecnico di Torino,
Torino, Italy, in 1987 and 1992, respectively.
From 1992 to 1998, he was an Assistant Profes-
sor with the Electronics Engineering Department,
Politecnico di Torino, Italy. He joined UT-Dallas,
as anAssociate Professor of electrical engineering,
in August 1997, and was elevated to the rank of a
Professor, in 2005. He is currently a Professor of

electrical and computer engineering with The University of Texas at Dallas.
He has published about 250 technical articles in peer-reviewed refereed
journals and conferences. His research interests include aspects of wireless,
optical, the Internet of Things (IoT), cloud networks, and related protocol
design and performance evaluation.

105100 VOLUME 9, 2021


