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ABSTRACT The demand for collaborative robots is growing in industrial environments due to their
versatility and low prices. Thus, more collaborative solutions are emerging for industrial scenarios. However,
implementing scenarios where robots work autonomously while synchronizing their operations in a safe
industrial environment with shopfloor workers is not easy. To fill the gap existing in the safe implementation
of industrial collaborative scenarios, this manuscript presents a review based on five identified challenges
that gathers the primary vital aspects to bear in mind while developing applications for them. Thus, a four-
level classification is proposed, which collects the identified challenges and the previous developments in
the field of human-robot interaction. The five identified challenges pretends to be the missing enabling key
for implementing industrial collaborative scenarios in modern industrial plants. Lastly, a discussion and
conclusion are exposed to analyze the degree of development in the field and its potential growth.

INDEX TERMS Cobots, human-robot interaction, HRI challenges, industrial collaborative scenarios,

industrial safety, review.

I. INTRODUCTION

With the expansion of Industry 4.0 (or Connected Industry),
industrial innovation requires more autonomous, adaptive,
and flexible production systems [1], [2]. Autonomous and
adaptive industrial production systems can be achieved
through enabling technologies such as Digital Twins, IIoT
(Industrial Internet of Things), or the CPS (Cyber-Physical
Systems) [3], among others. However, the limited adaptabil-
ity to unknown events or faults during production points out
the lack of manufacturing flexibility [4]. To overcome this
issue, the combination of robots and shopfloor workers in
production lines is proposed as a suitable solution for flexible
production in industrial environments [5].

In this scenario where human and robot coexists, tech-
nologies such as collaborative robots (cobots) grow on its
importance to guarantee on-floor workers safety [6]. Thanks
to the safe design, versatility, and lower prices of the cobots,
industrial factories perceive economic, spatial and productiv-
ity benefits [7], [8]. These benefits are perceived in industrial
processes through the lack of spatial reconfiguration or safety
fences when installing one or several cobots [6].
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In these shared environments, it is relevant to install cobots
instead of regular industrial robots for preserving the safety of
operators at any time, as the main key factor for collaborative
scenarios [9]. Thus, a protection fence-free space can be
implemented entirely, allowing collaborative working modes
between the shopfloor operators and the cobots [6]. This
scenario is where human-robot interaction (HRI) makes all
the sense to establish a proper way to ease and enable the
safe interaction between humans and robots. In this manner,
the HRI can also be considered as the tool to allow the
completion of tasks that require the combination of human
and robot skills in industrial environments [10].

However, implementing an industrial collaborative sce-
nario takes more than a protection fence-free space or safe
interaction modes. It requires the whole application to be
harm-proof to guarantee shopfloor safety in any situa-
tion [11]. Therefore, real industrial collaborative scenarios
must watch out for any risk source such as tool morphol-
ogy or load characteristics. The literature shows that assuring
shopfloor safety on a protection fence-free area in industrial
environments is a growing concern [1], [12]-[14] for an
adequate implementation of a collaborative application.

Even when the industrial panorama is evolving into a
safer environment where the machines and robots can operate
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FIGURE 1. Collaborative scenarios: integration levels and challenges.

autonomously and collaboratively surrounded by operators,
industrial collaborative scenarios are still far to be reached on
current shopfloor layouts. The main reason why this happens
is because of the lack of guarantee in safety while implement-
ing advanced human-robot interactive capabilities in these
environments. In order to assure the required levels of safety
during collaborative modes of operation, this manuscript
identifies five challenges to bear in mind while developing
collaborative scenario applications. Since the basics of this
kind of interaction are considered enough developed by the
scientific community ([1], [12]-[14], among other possible
references), this new complementary classification exposed
in this work pretends to settle the requirements collaborative
scenarios need to allow fluid and intuitive industrial collab-
oration. Therefore, their goal is to highlight the critical facts
for enabling high-level safe interaction on industrial scenarios
between the robots and the workers. Also, this work aims
to gather solutions to beat this challenge sustainably, being
aligned with levels 8 and 9 of SDGs (Sustainable Develop-
ment Goals) [15], in the evolution to an autonomous and
collaborative industry.

The remainder of this paper is distributed as follows.
In section II, a brief description of the five identified chal-
lenges is exposed. Section III details every key aspect of
each challenge by reviewing the solutions of the literature.
Section IV shows a brief discussion of the main facts to
consider while developing collaborative scenarios. Lastly,
section V contains the conclusion and highlights a scope of
the most promising research fields.

Il. MODERN COLLABORATIVE SCENARIOS CHALLENGES

Safety is the most leading criteria to guarantee in a human-
shared industrial environment. By assuring that, collaborative
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applications can be deployed combining skills of shopfloor
operators and robotics systems. In such a panorama, HRI
appears to be a suitable tool to achieve safety through contin-
uous communication and operation between the robot and the
on-floor operator. However, HRI application is not a simple
task due to the unpredictable behavior of shopfloor work-
ers, which might cause collisions and dangerous or harmful
situations around the robot [16]. Thus, HRI is a topic that
has attracted more attention in the latest year by the sci-
entific community, who has gathered several examples and
approaches of diverse classifications about the different ways
they consider this interaction should happen in industrial
environments [1], [12], [13], [17]-[19].

The interaction at this essential level, as these sorting
proposed, is necessary but not enough to enable implemen-
tation in real industrial environments of collaborative work
cells. These scenarios require reactive methods to respond
to uncertainties and unexpected behaviors to achieve fluid
communication and workflow between operators and robots.
Therefore, section Il introduces a novel classification divided
into four levels which are the task design, operation, work
cell, and industrial process levels as shown in FIGURE 1.
The lower level (task design) is the closest to direct human-
robot interaction. This level is responsible for collecting the
required safety aspects and level of automation, and essen-
tial human-robot interaction relations. It also defines a task
as the elemental piece of action that a robot can execute.
The immediate upper level, the operation level, gathers all
actions the robot can handle, which are an association of
several tasks. It focuses on handling aspects of direct interac-
tion to achieve fluid workflow between humans and robots,
such as the physical interaction or the collision avoidance
during operation. Stepping up a level, the work cell level
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encapsulates the management and coordination of several
groups of operations (from both robots and operators) to
describe an industrial subprocess. This level is responsible for
the proper distribution of operations among robots and oper-
ators to optimize the workflow of the successive industrial
subprocesses to reduce bottlenecks due to non-productive
times and minimize the potential risky situations. The last
level that handles the management of different subprocesses
is the industrial process level. Its mission relies on coordinat-
ing the several autonomous and collaborative subprocesses
to accomplish a satisfactory production. This classification
responds to the five identified challenges: physical contact
management, object handling, environment avoidance, task
scheduling and management, and task scheduling adaptation
challenges, also pictured in FIGURE 1. The first three chal-
lenges belong to the operation level, while the last two suit the
work cell level. These challenges, detailed in section III, pre-
tend to complement this classification, unraveling the current
needs to develop industrial collaborative scenarios.

Therefore, the subsection below describes the different lev-
els in detail and briefly illustrates the challenges and why they
are only classified in two of the four levels. Thus, an overall
idea of the proposed classification can be obtained.

A. INTEGRATION LEVELS FOR COLLABORATIVE
SCENARIOS

From all the levels developed below, the one that the literature
extends the most is the task design level. For that reason,
it will be the one more explained in the current section, while
the others that address the challenges will be more detailed in
section III of the paper.

1) TASK DESIGN LEVEL

The first level represented in FIGURE 1 corresponds to task
design aspects for collaborative robots. In this work, a task is
considered the minor action where a robotic system operation
can be split to achieve a goal. Therefore, a task can be as
simple as moving the robot between two positions, giving a
command to the tool, or planning an obstacle-free trajectory
path. They represent the minimum expression to bear in mind
while designing robotic applications.

In a collaborative scenario, these tasks must be safe-
oriented and do not only involve the robotic system. A shared
task requires the distribution among shopfloor workers and
cobot tasks, minding that safety must prevail in every action
each executes. Thus, this low level of integration leans on
various safety standards as the basics where the proposed
classification starts. This classification relies on the sorting
made by ISO 12100:2010 [20], where the various safety
standards are divided into Type A, B, or C, from general
ones to collaborative robotics-specific ones [5], [14], [21].
Supporting the general-purpose safety standards such as ISO
13849 [22], IEC 61508 [17], or ISO 8373:2012 [23], which
are also backed up by the literature [3], [12], [24], [25],
this level focuses on particular aspects for assuring safety in
collaborative robotics.
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FIGURE 2. Collaborative working modes based on ISO
15066 standard [14], [28].

ISO 10218-1:2011 [26] and ISO 10218-2:2011 [27] stan-
dards detail cobots safe design characteristics to assure not
harming the operator, while ISO 15066:2016 [28] defines
collaborative aspects to bear in mind while designing shared
tasks, such as the collaborative working modes. The last
standard proposes the following four modes depicted in
FIGURE 2: SMS (Separation Monitoring Stop), HG (Hand
Guiding), SSM (Speed and Separation Monitoring), and PFL
(Power and Force Limiting) [12], [21], [25], [29].

FIGURE 1 shows another goal this level targets based
on whether the tasks are more oriented for an autonomous
operation than for a collaborative model. In this sense, the lit-
erature proposes the levels of automation as an approach
to define the task’s autonomy degree. Compared to classi-
cal approaches that only include levels between automated
and autonomous [12], [30] to fulfill their mission deliber-
ately [31]-[34], this topic considers the chance of an operator
to intervene during autonomous operation. Thus, the levels
of automation gather the latest tendencies that fade between
autonomy, cooperation, and handling [35]. This way, the tra-
ditional levels are evolving to Levels of Robot Autonomy
(LORA) [4] which adds the automation to a specific frame-
work for developing HRI applications.

On the other hand, FIGURE 1 also defends the impor-
tance of proper management of human-robot relations. This
fact highlights that working modes for safe interaction
are supported by synchronization among various tasks to
ensure shopfloor safety [36]-[38]. This last topic refers to
the different ways humans and robots can share both the
workspace and the task operations [25], [39]. The litera-
ture exposes different classifications that differ in the num-
ber of proposed levels between three [29], [40]-[42], four
[13], [39], [43], or five [18], [44] levels as the most accepted
approaches.

The three-level classification divides de HRI into
human-robot coexistence (HRCx), human-robot cooperation
(HRCp), and human-robot collaboration (HRC) [29]. During
an HRCx task, neither the operator nor the robot shared
task nor space [45], [46]. Therefore, this level is also called
coaction [47] or coexistence [18]. On an HRCp task,
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the operator and the robot operate in the same workspace.
Nevertheless, they do not share the task [45], [46] limiting
the synchronization to collision avoidance [16], [29], [48].
Additionally, HRC happens in a scenario where both, the task
and the workspace, are shared simultaneously [29], [43], [47].
It allows completing complex tasks together between robot
and operators [16] that only can be achieved by assuring the
coexistence and safety first [29], [36], [49]-[51]. Three levels
classification is accepted by several researchers who might
name each level differently; however, the idea underneath
each prevails [40]-[42]. Under the HR relation criterion,
four and five level classifications which add groups to the
levels mentioned above, such as isolation (no-coexistence)
[13], [39], [43] and synchronization (sharing a task but not
the workspace), respectively [18], [44] can also be found.
An approach of a five-level classification can be appreci-
ated in FIGURE 3. In this representation, the collaborative
working modes (as HRC safety implications) meet with the
interaction levels without disregarding the change of multi-
human or multi-robot teams. Thus, whenever the complexity
of agents which participate in an industrial operation grows,
so does the complexity of a proper HRC [18].

HRC safety implications

Power & force limiting

e

ot

FIGURE 3. Architecture model for human-robot collaboration by Malik
and Bilberg [18].

Some of the different classifications also consider higher
interaction level topics such as pHRI (physical Human-Robot
Interaction), cHRI (cognitive Human-Robot Interaction),
safety in industrial environments, of CPS (Cyber-Physical
Systems) for HRI [1], [14], [29]. However, in this work, they
are not considered part of this level because they require the
interaction of several factors in a more developed manner.
So they have been included in higher levels of the presented
classification instead.

Finally, the first of the proposed levels collects various
classifications about the deployment of safe tasks. Imple-
menting autonomy levels, human-robot relation criteria, and
standard-based robotics makes it possible to program risk-
free isolated actions for manufacturing applications. Unfortu-
nately, developing safe, isolated tasks is not enough to deploy
industrial collaborative scenarios. They require to be grouped
and coordinated to ensure all the actions of an industrial
process are safe.

2) OPERATION LEVEL

This second level represented at FIGURE 1 considers
the operation aspects required for enabling collaborative
scenarios. An operation can be described as a set of actions
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compound by various tasks with a particular target. This level
collects and proposes the three first challenges related to
operations for enabling collaborative scenarios in industrial
environments.

In the literature, this level is usually camouflaged in a
two-levels sorting compound by the pHRI and the cHRI.
On the one hand, pHRI applications can be summed up into
contact distinction and classification applications between
operators and robots. For this aim, various studies have
been developed in the field by applying techniques such
as mathematical model matching or signal threshold filter-
ing [52]-[57]. Developing a safe pHRI application based on
these techniques depends on the integrated sensors the robot
brings. Thus, some authors focus on studying the several
collaborative suitable external sensors, and commercial robot
integrated sensors [19]. On the other hand, cHRI includes
technologies to allow natural interaction between robots and
operators by gifting the robotic systems with cognitive skills.
However, achieving natural interaction is not a simple task
because it requires continuous monitoring of the surround-
ings and surveilling the communication flow direction to
assure safety while interacting in the communication [58].
Researchers defend several approaches such as voice com-
manding, gesture recognition [59], collision avoidance and
human-aware navigation, among other solutions to achieve
natural interaction [1], [29], [60]-[62].

This manuscript pretends to extend the actual classifica-
tion by filling the gaps detected in pHRI and cHRI stan-
dalone classification through the operation level group. First
of all, the pHRI should not be restricted to contact manage-
ment and distinction between operators and robots only [63].
The load management is also relevant because inappropriate
handling might end in a load loss or a crash, unchaining
risky or harmful situations for the operator. Besides, other
collaborative operations requiring proper and safe physical
interaction, such as hand-guided operations, can be included
as pHRI topics. On the other hand, literature sorting for cHRI
operations is a complete topic that integrates commanding
operations and safety aspects. However, the commanding
aspects such as gesture recognition or voice commanding
do not influence safety facts or reduce production bottle-
necks. As the purpose of these technologies is to ease opera-
tors commanding while executing operations and represent
something complementary to safety, this work proposes to
restrict collaborative scenarios enabling cHRI to just safety
aspects like collision avoidance and human-aware navigation
interactions. Moreover, in collision avoidance and human-
aware navigation operational modes, the utilization of pierce-
shaped tools or loads is also relevant. Once again, improper
handling of both could end up colliding with the operator,
compromising the safety of the operator by the load loss or the
collision itself.

Therefore, this level is structured in three challenges iden-
tified for achieving operational safe industrial scenarios: the
environment avoidance challenge, the object handling, and
the physical contact management challenge. The challenges
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are aligned with both the additional aspects to mind at
industrial collaborative scenarios and the previous propos-
als. Firstly, the environment avoidance challenge addresses
collision avoidance with surrounding objects or people,
in movement or stopped, without a collision. Additionally,
the object handling challenge manages the problem of ade-
quately handling objects while executing trajectories and
grabbing objects to avoid danger for the operator. Lastly,
the physical contact management challenge includes han-
dling the available physical interaction modalities between
humans and robots.

The three-levels classification proposed pretends to extend
the traditional classification to be more specific for enabling
industrial collaborative scenarios. Thus, both sortings are
complementary organizations that can coexist. On the one
hand, the one defended in this manuscript gathers and extends
safety aspects exclusively related to criteria required for
allowing industrial collaborative scenarios. On the other
hand, the traditional classification complements the one pro-
posed in this paper by adding natural interaction between
operators and robots.

3) WORK CELL LEVEL

As FIGURE 1 depicts, the third level of the representa-
tion corresponds to the work cell level. In this manuscript,
the work cell level correlates with industrial subprocesses.
Particularly, a subprocess can be defined as a set of industrial
operations synchronized and coordinated to implement all the
actions and achieve all the goals for a successful industrial
workstation. Therefore, this level pursues to state the chal-
lenges and requirements to implement industrial collabora-
tive work cells.

The higher the representation level, the more complex it is
to incorporate acceptable safety behaviors on industrial sys-
tems due to the growth of the relevance of operator behaviors
uncertainties. Thus, several tries of simulating or virtualizing
human behaviors can be found. One of the most accepted
approaches relies on the CPS applied to HRI to benefit from
the advantages virtualized spaced offers while improving on-
floor safety through real-time simulation of human behav-
iors [3]. By linking the simulation of the robot’s surroundings
to the operators’ cognitive capacities, a new research disci-
pline emerges, the Human-Cyber Physical Systems (HCPS).
This way, industrial production improves due to reducing
bottlenecks thanks to including human behavior on industrial
control loops [64], [65].

However, virtualizing human behaviors is not an easy task
because of the high complexity of non-consistently measur-
able cognitive skills models. Thus, these techniques cannot
be applied to industrial scenarios, requiring less complicated
techniques to synchronize and coordinate the several opera-
tions of the subprocess [66]. Therefore, an existing challenge
relies on synchronization and coordination techniques that
reduce non-controlled cognitive skills influence to allow the
extension of collaborative working methodologies to any
industrial scenario. Additionally, these scenarios must deal
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with uninterrupted production systems, so adaptation mecha-
nism becomes a necessity. Traditional adaptation techniques
for autonomous manufacturing systems have been developed
for several years now with high success rates in industrial
environments. Due to that, this challenge will leave aside
traditional adaptation challenges in favor of focussing on
collaborative adaptation techniques [1], [14], [21]. Therefore,
this works regard adaptation to operation distribution and
synchronization to progressively reduce cognitive skills influ-
ence and improve production cycle times every new cycle.

To face the optimal operation distribution and its synchro-
nization, the following two challenges have been identified:
the task scheduling and management challenge and the task
scheduling adaptation challenge (see FIGURE 1). On the one
hand, task scheduling and management challenge is referred
to how a task should be executed to guarantee worker safety
even though when the robot handles non-safe objects is
addressed. Complementary, task scheduling adaptation chal-
lenge addresses adaptation to task scheduling and manage-
ment to improve production cycles on each iteration, leaving
aside traditional adaptation mechanisms and methodologies
such as FTC (Fault Tolerant Control) applied to production.

A collaborative work cell can be implemented by the
synchronization and coordination of operators and robots’
operations. Thus, the production will be optimized for shared
workspaces where the operator and the robot coexist in a
protection fence-free area. Even though addressing collabo-
rative work cells denotes considerable progress, they are not
enough to be considered the desired industrial collaborative
scenarios.

4) INDUSTRIAL PROCESS LEVEL

This level integrates all the relevant aspects of the levels
below as the highest level of the classification presented
in FIGURE 1. It corresponds with the most complex level
considered, and it is the level where the collaborative sce-
narios should be implemented. This level defines an indus-
trial collaborative scenario as an industrial environment
where collaborative work cells coexist with autonomous
machinery workstations synchronized and coordinated to
accomplish a whole industrial manufacturing process. Thus,
a modern industrial collaborative process combines generic
subprocesses based on autonomous and adaptive machin-
ery with highly flexible subprocesses based on collaborative
work cells.

There have not been found any specific approaches for
managing the industrial collaborative scenarios that coor-
dinate both types of subprocesses. However, some of the
available techniques for work cell level might fit this level
too. As this level requires a higher degree of synchronization
between processes, it does not focus exclusively on robotic
system requirements or safety aspects for robotics in safe
collaboration. They are more production-oriented methods
such as ERP (Enterprise Resource Planning) systems.

Since there are no particular challenges to address this level
because there have not been found solutions for this particular
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level of abstraction, it can be considered a challenge itself.
Nevertheless, facing it is not a sole objective. Before address-
ing this issue, industrial collaborative levels challenges must
be solved. Thus, the only requirement left will be high-
level subprocesses coordination which is generally solved by
advanced or integrated production techniques such as ERP.
However, the enabling challenges for this environment have
not been addressed yet, so their solution might unravel new
challenges for this specific topic.

Ill. SOLUTIONS FOR COLLABORATIVE

SCENARIOS CHALLENGES

Section II proposed five challenges grouped in several levels
of the industrial automation process: the contact management
challenge, the object handling challenge, the environment
avoidance challenge, the task scheduling and management
challenge, and the task scheduling adaptation challenge. Each
of the challenges mentioned above pretends to address a
specific aspect to deal with to allow a safe implementation
of collaborative scenarios in industrial environments.

In this section, the solutions found to address each chal-
lenge are reviewed. Thus, the state of the art of the identified
challenges and the remaining gaps to be solved has been
analyzed. It also aims to establish the basis for a critical
discussion about the current state and possibilities of real
collaborative scenarios in an advanced manufacturing envi-
ronment. Additionally, each challenge is complemented with
a table where the relevant information for each challenge is
described to allow a critical discussion. Each table is com-
posed of the following fields: level (subchallenge or problem
to address), available level of collaboration for applications,
physical contact (referred to whether the physical contact is
allowed or not), advantages of the solution, disadvantages of
the solution, available technologies for its implementation,
approaches and reference summary. This way, the critical
facts to bear in mind while developing collaborative scenarios
can be quickly heeded.

A. OPERATION LEVEL

In the following subsections, each of the challenges included
in the operational level is reviewed from the one that concerns
more danger (the physical interaction is allowed) to the one
that is considered safer (the physical interaction is not allowed
collision is tried to be avoided).

1) CONTACT MANAGEMENT

In the era of Industry 4.0, more and more vision-based sys-
tems are being launched for industrial use. However, in a
shared environment where the operator works side by side
with a robot, eventually, a crash might occur. When this
happens, the robot must react correctly without harming a
human to preserve safety under any circumstance.

In this situation, the most common reason why the col-
lision happens is because of an expected situation of close
human-robot interaction. Nevertheless, it is not appropriate
to forget that this contact between an operator and a robot

108562

can happen intentionally. Thus, this challenge can be divided
into contact classification, hand-guided tasks, teaching appli-
cations, or allowed pain threshold topics as represented
in TABLE 1, depending on how the physical interaction
occurred and the involved agents of the contact.

The differentiation between desired contact and non-
desired contact is crucial to discern between the need for
a collaborative working mode or an autonomous one. The
contact classification, also known as post-collision strategies,
aims to establish methods to automatically identify and clas-
sify contact between a worker and a robot on an industrial
plant. The true potential of this field is to discern between
desired or non-desired contacts to react to each situation
appropriately [52]. Even though most commercial collabo-
rative robots of the leading industrial manufacturers have
intrinsically installed PFL (Power and Force Limiting) strate-
gies, this functionality should be driven by a higher controller
to avoid stopping the robot movements during operation.
Thus, a minimum and maximum contact force will be assured
while working. In this scenario, the operator interacts directly
with the robot itself to accomplish a task. In these direct
interactions between the robot and the operator, the con-
tact classification algorithms are integrated and synchronized
with the high-level robot controllers. Therefore, the contact
management challenge will address the advanced techniques
and methodologies to handle the collision classification. This
will relegate inherent collision detection mechanisms already
integrated into commercial cobots to a background plane.
An example of such systems is the F/T (Force/Torque) sen-
sors built in each of the KUKA LBR iiwa robot joints.
These integrated sensors combined with the programming
suite of KUKA (Sunrise Workbench) allow the development
of advanced functionalities for contact distinction without
disregarding the cobot’s critical safety aspects and limits [3].
Thus, the following paragraphs review several strategies and
algorithms that can be applied to upgrade simple thresholded
monitored stops to improve their functionalities while pre-
serving safety.

The first approach based on control strategies for these
scenarios is the admittance control architectures [92], [93].
These types of control loops can be used to discern
which kind of contact has occurred using an external F/T
(Force/Torque) sensor [56]. Another similar approach is
based on more generic admittance control loops for industrial
manipulators suitable for scenarios where the industrial cobot
has already installed integrated F/T sensors [67]. Another
type of approach tries to improve the admittance control
structures in these scenarios. For example, a solution based
on a stable compliant motion control coupled with a variables
admittance and adaptive control for moving environments has
been proposed [68]. A similar approach consists of a vision-
based adaptive impedance controller (inverse control strategy
for admittance control) for advanced polishing tasks [69].
Adaptive controllers for safe pHRI are also exposed as
solutions through an implemented adaptive damping con-
troller, which fulfills the ISO10218 requirements by online
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TABLE 1. Contact management sub-challenges.

Level

Level Physical Advantages Disadvantages Available Technologies Approaches Refs.
Collab. Contact
1) Admittance and adaptive control [56], [671-[71]
Allow the presence of operators in Cannot operate standalone. If it fails, models
y tie prese perators the operator can be harmed. F/T sensors 2) Semsored contact detection and  [56], [72]
robot’s surroundings h L . . : in
Coop. Automatic switch between operation Precise modelling is required to clas- External sensing skins (ca- classification
Contact classification and Allowed $ P sify the contact type. pacitive, inductive, among 3)  Mathematical/physical models [53], [54], [731-
. modes and safe modes.
Collab. The operator can interact in a more Model based on AI usage might intro- others) matching [76]
P < N duce computational stress to the over- Current/torque sensors 4) Neural networks (NN) models (771811
natural way with the robot. .
all systems improvements
5) Current/torque signal filtering [82], [83]
The robot is more easily programmed Not every tool is suitable for this kind
Hand guided tasks Collab. Required The movement }:an be recorded for of applications d.urmg «?perauon. . Soflwarg/l’rogmmmallc 1) Hand gu?ded po.lm!ung [841-186]
later use or learning how to move. When the tool is spining or heating, robot skills 2) Hand guided painting
there’s additional risk to the operator.
Th asily ) .
¢ robot i more easily programmed. The applications to be developed are )
Enables programming complex tasks L Commercial software tools .
) . Collab. or ) ot more limited 1) Waypoint/Movement teaching
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There’s no need of inline experienced ! e tools
ne ! software design faces
programmer in production
Better adjustment of safety stop Increase cost of produc-
. - N F/T sensors
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Allowed pain thresholds and Allowed Knowledge about safety application paid) q © [891-191]
. . sensors
Collab. feasibility. Not all tools are suitable for

Increase application safety

collaborative applications

Skin sensors

limitation of tool velocity, pose and contact forces [70]. The
last approach consists of an impedance controller-based solu-
tion for carrying through a stability analysis for single or mul-
tiple passive/active human models. Thus, load-lifting and
handling tasks that require more than one operator can be
executed [71].

The paragraph above displays the integration of the contact
classification mechanism in control architectures; neverthe-
less, there are more straightforward solutions in the literature
to just detect and classify the collisions through external
sensors, for example, the usage of an external sensitive soft
robotic skin for safe human collaboration. In this particular
use case, the algorithm has been tested by wrapping both arms
of a YuMi robot, so when an operator collides with one of the
two arms, it stops [72].

Using external sensors is a reliable method to detect and
distinguish between collision types. However, using external
sensors means increasing automation costs. Thus, mathemat-
ical, physical, or statistical methods have been developed
to classify collisions in real-time using only the informa-
tion commercial robots provide and, once again, integrat-
ing these algorithms into the robot controller. An example
approach exposes a frequency study analysis of applied
external forces through a Fast Fourier Transform. Thus,
the dynamic response speed is used to distinguish among col-
lisions, or intended contact [73]. Another solution is based on
matching strategies between physical-mathematical models
of the robot’s behavior and the robot’s behavior in the real
world. Thus, when the expected behavior does not follow
the real one or vice versa, a collision is detected. Depending
on how the mismatch is produced, a desired or non-desired
contact can be discerned. The literature proposes two differ-
ent models to detect collision avoiding the use of external
sensors. The first one is based on the experimental estimation
of joints frictional models and comparing the current torques
with the expected without external influence [74]. Further-
more, the second one is based on a subspace projection of the
robot joints and links. Thus, consider the effect of the load
during a collision [75]. Another presented solution is based on
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total energy and generalized momentum to detect and safely
react after a collision using only proprioceptive sensors [53].
This approach has been improved by adding the projection
to the null space of the robot to reconfigure the robot struc-
ture, avoiding injuring the operator in case of the contact
lasts long than momentaneous contact [54]. Other works are
prone to develop a universal algorithm for sensorless collision
detection on robot actuator faults. Starting from a rigid body
dynamic model, the study employs the generalized momen-
tum and the joints friction to distinguish between external
desired torque and additional undesired torque (which means
collision) [76]. Another way to improve the models approach
is to use neural networks to apply artificial intelligence (AI)
techniques to model discrimination and classification. For
example, a neural impedance adaption for assistive human-
robot interaction based on barrier Lyapunov function [77].
Another similar solution exposes an adaptive impedance con-
troller for HRC through a model-based reinforcement learn-
ing approach. To implement the controller, they proposed
an Artificial Neural Network to learn uncertainties for HRI
to generate a model that is going to be used with a Model
Predictive Controller (MPC) combined with a Cross-Entropy
Method (CEM) [78]. A multi-input-output neural network
can also be an Al-based approach for discerning collisions.
An example of this kind consists of trained neural networks
from manipulator’s coupled dynamics in human-robot colli-
sion detection [79]. A similar approach proposes a modified
nonlinear disturbance observer based on neural networks for
improving performance compared to robot dynamics models
approaches [80]. Ultimately, there are solutions based on the
measured currents of each joint. An approach of this type
consists of a current model is trained, so when the model
expected behavior mismatch with real currents data acquired,
the system detects a collision [81].

In addition, filtering different magnitudes’ measured
signals can be used to distinguish between desired and non-
desired contact thanks to self-computed thresholds. The lit-
erature gathers two similar examples based on a band-pass
filter, high-pass filter, and low-pass filter. Thus, whenever
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TABLE 2. Object handling sub-challenges.

Level chilvell) Iéhysical Advantages Disadvantages Available Technologies Approaches Refs.
ollab. ontact
1) Manipulation of non-rigid materials  [94]
Coex., RGB Cameras 2) Coordination between visual servo-  [95]
Visién-based object Coop. Required  The robot gains the skill of interacting  Control algorithms growth in com-  p b =il ing and human detection
handling and (objects) safely with objects plexity amera 3) Vision-based optimal picking posi-  [96]
LIDAR Scanners ,
Collab. tion detection
4) Load Stability 1971
Coex., The robot gains the ability for inter- o) oo pecial or specifically . 1) Human-robot object simultancous (981, [99]
N acting with objects without vision sys- S N Soft-robotics actuators. N .
Blinded object handling Coop. Required  tems. designed tools (costs increment) Pressure sensor integrated ~ Monipulation
Ject hancling and q - Require more complex tasks design S8 & 2) Haptic shared teleoperated control [100]

The use of external sensors depends on

Collab. .
the robot internal sensors.

for recognizing the components

grippers 3) Tactile object recognition [101]-[103]

a signal overcomes the threshold limits, it means that contact
has occurred. If that signal comes from a low-band filter,
the contact is desired. On the contrary, if the signal comes
from a band-pass or a high-pass filter, the contact is a non-
desired collision [82], [83].

Depending on the application, the fact that the robot lets
the operator moving it by hand guidance might be handy.
Because of those situations, hand guidance is considered a
topic of contact management and divided into two branches.
The first one is the physical commanding, where the robot
recognizes the haptic interaction. Depending on which inter-
action has been identified, the robot should execute one set
of actions or another [84], [85]. In contrast, the physical
guidance branch consists of manually moving the robot to the
desired position instead of giving the robot a command [86].
In this second scenario, the robot is continuously in contact
with the operator, while in the first one, the contact only
occurs when the command is given.

In situations where the operator is hand-guiding over a
trajectory of a robot, it might be helpful to record main
target locations and record various in-between positions.
Those types of solutions belong to the teaching application
subchallenge. An accepted type of approach for this issue
is kinesthetic teaching which consists of learning through
physical activities. One solution is based on a system that
combines pHRI with attentional supervision to support kines-
thetic teaching for allowing learning from human demonstra-
tion [87]. Another approach consists of kinesthetic teaching
for a dual-armed manipulator for a box tapping process
based on learning from demonstration methods (LfD) [88].
The works above show that hand-guiding-based solutions are
practical for teaching faster tasks to the robot without an
experienced programmer.

The topics studied above highlight that in a shared envi-
ronment, a collision might happen, and the systems must be
prepared for not harming the operator [91]. All the research
for diminishing, understanding, and classifying the pain and
injuries when a crash occurs is gathered in the allowed pain
thresholds issue. This subchallenge contains examples as a
study on human morphological information to react safely in
case of collision [89]. The last approach was improved by
analyzing what would happen to the human operator if the
collaborative robot carries a sharp or heavy object when the
collision occurs [90].
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As it has been reviewed, there are several solutions for
handling various aspects of contact management. Handling
the contact adequately is crucial for industrial collaborative
scenarios to prevent any damage to the operator when it
occurs. The most basic physical interaction is distinguishing
between desired and non-desired contact to react appropri-
ately to each situation. Mastering this contact distinction can
lead to successful autonomous hand-guiding modes or teach-
ing applications for reducing setup times. A safe and reliable
operation mode for automatic change depending on robot
dynamics must be combined with deep knowledge about the
pain threshold to avoid injuring the operator. Only this way,
a safe physical interactive environment can be achieved.

2) OBJECT HANDLING

Safety during pHRI not only on the capabilities of the robot to
avoid harming the operator but also on their skill to manage
the load gently. In many robotic approaches, the relevance of
proper load handling is usually forgotten. It is remarkable not
to forget that one of the main functions of a robot is to manip-
ulate objects during production [104]. Picking an object of the
scene and appropriately interact with it is even more relevant
in human-robot interaction scenarios. In a shared environ-
ment, wrong object management could end up not only in
a payload loss or deterioration but in damage or harm to
the human operator too. Thus, proposals for adequate object
handling are reviewed in this subsection.

In this scenario, several works prone their research to
achieve this goal due to the relevance of correct robotic object
handling tasks. As TABLE 2 represents, there are, mainly,
two ways to interact with objects in the scene. The first one is
based on vision systems, while the second one is a blind way;
in other words, it is not based on vision systems; it interacts
blindly with the object in the environment.

In the first situation, vision-guided object’s interaction usu-
ally uses cases where a vision system aids the robotic system
to pose where the item to handle is. An approach to solve
this issue presents a use case for the proper manipulation of
highly deformable materials. This solution includes an RGB
streaming data system using Gabor filters and the combi-
nation of feature representation, visual feedback dictionary,
and sparse linear representation, enabling complex manipula-
tion [94]. Another approach presents a visual servoing system
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TABLE 3. Environment avoidance sub-challeng
Level chilvell) Iéhysical Advantages Disadvantages Available Technologies Approaches Refs.
ollab. ontact

Reduce the complexity of computation

Need of aditional sensors such as

RGBD Cameras

1) Vision-based potential fields for at-
tractive and repulsive vectors

2) Non-Contact sensitive skins and
range sensors

[105]

[106]

of Null Space Projection Methods wereables, vision systems, RGBD 3) Real-time trajectory modification [107]-[109]
. . B i . LIDAR Scanners e .
Collision Avoidance in Collab. or Excluded Reduce bottlenecks by collision avoid- Cameras, LIDARs, among others Wereables Clothin based on minimum distance vector
Dynamic Environments Coop. ance They are not enough reliable stan- Mo s 4) Wereables-based online path modi- [110]-{112]
Online collision avoidance (during ex- dalone (require physical contact safety Range Sensors (2D and 3D) fication
ecution) management) g - 5) 3D- Occupancy grids planning and [113]-[115]
3D- CAD based model planning
6) Minimum energy based model path [116]
planning
Predict Human Occupancy (Increase é:e dsizf::nM“‘h‘"” human - intention 7
Moving objects ) Safety) ) o Higher Computational Cost LIDARs 2) 3D simplified human model [18]
. N Collab. or Optimize production by projecting op- It is an estimation, it might fail RGBD Cameras
trajectory and operator Excluded ! ! o, 1t might . 3)  Skelletoning and  occupancy [119]-[121]
Aector per Coop. erator occupancy in advance Requires coordination with physical IA Sofware X
intention prediction It is less likely to change trajectories  contact safety techniques others prediction
doring oneration ge tra) satety technid 4) Statistical Al-based prediction  [S1], [122}-[124]
& op models (HMM, GMR)
Real-time path . N o I — T) Online path computing techniques [317, (1231, [124]
ompoting Excluded Enable real-time obstacles avoidance Requires high computational capacity Non-Specific Technologies 2) Offline path compatin techniques 11250, 1126]
Occlusion while Collab. or Excluded Tncrease the risks (107], (1081, [114]
navigation Coop. Increase accident chance

for transferring objects between an operator and a robot [95].
An architecture for image visualization where human is
detected and the item is classified and tracked to estimate their
poses is proposed. Then, the positioning information is used
for planning and grasping the object. Another solution relies
on the vision systems integrated into a dual-armed robot to
stabilize load when simultaneous manipulation. It uses the
visual feedback for one of the arms (the one commanded)
to mimic the movement with the other arm [97]. In contrast,
another approach type is based on depicting information from
vision systems where a topological map is generated thanks
to a dynamic density growing neural gas. Even though this
last example is not specific to HRI, this kind of system for
determining the best grabbing position can be helpful in
human-robot interactive environments [96].

On the other hand, blind object handling consists of manip-
ulating a load without any vision or range sensor aid, just
by developing different haptic skills. An approach to this
type of issue is based on object-shared manipulation between
humans and robots. In these scenarios, a robot and an oper-
ator share a load simultaneously, so proposed strategies are
based on force feedback control for object transportation
while load stabilization [98]. A similar solution consists
of a human impedance and motion intention controller to
handle heavy loads [99]. Other approaches are based on
applying Al techniques combined with soft robotics actu-
ators to feel and detect objects by touching [102]. In this
approach, the recognition of the object is tested through
deep convolutional neural networks (DCNNs). Blind object
handling is not only suitable for detecting an object, but it
also can be used for recognizing by touching the environment
of the robot. This type of approach is based on a control
strategy for blind environment recognition where a tactile
servoing control scheme has been developed [103]. Lastly,
physical contact does not happen directly between humans
and robots; they are based on haptic teleoperation. This
kind of solution is based on some joystick the operator han-
dles to telecommand the robot and accomplishing a picking
task [100].
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This subsection highlights the importance of proper object
handling for enabling industrial collaborative scenarios.
Incorrect management of the load or the tool might result in
a load loss or a collision with the on-floor worker, damaging
both. Therefore, an integral industrial collaborative scenario
requires adequate handling to ensure operator safety and the
integrity of the load in potential crash situations. This issue
is magnified by the natural complexity of the grasping task
itself. Picking an object depends on the object to handle,
the gripper, and how both interact with each other (type of
grasping, number of contact points, contact forces, grasping/
hand dynamics, among others). A modern approach to palli-
ate the effects of uncertainties in the grasping process consists
of using Al techniques such as Deep Learning (DL) or Rein-
forcement Learning (RL). However, the inherently complex
nature of different grasping processes makes this interaction
even harder to manage [104]. Therefore, an integral industrial
collaborative scenario requires adequate handling to ensure
operator safety and the integrity of the load in potential crash
situations.

3) ENVIRONMENT AVOIDANCE
Adequate physical contact management is required for
enabling collaborative scenarios. However, continuous safety
stops insert relevant bottlenecks in production lines. Besides,
the best way to maintain the operators’ safety is to avoid
hitting them with the robot, leading to the collision avoidance
challenge, denoted as environment avoidance. This section
collects all the solutions and open issues found to afford
the environment avoidance challenge for avoiding collisions
while planning and controlling the robot in a shared environ-
ment between a human operator and a robot. These methods
are mainly vision-based techniques to know how a dynamic
surrounding scenario changes while the robot is operating.
As the TABLE 3 shows, addressing environment avoid-
ance will come through tackling collision avoidance in
dynamic environments (non-static obstacles), moving objects
trajectory or intention prediction, and real-time path com-
puting. When using vision-based sensors or range sensors
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(such as LiDARSs) to know the obstacles, another inherent
problem is linked to this technology that must be handled,
the occlusion problem.

The first goal to achieve safe navigation along the robot
surroundings is collision avoidance in dynamic environ-
ments. In a changeable environment where humans shift from
one side to another while developing their tasks, the first
danger to warn about is hitting the operator or any object
the worker handles. Even though the cobots are prepared to
reduce risk and harm to an operator when a crash occurs,
it is highly desirable to reduce the non-productive time to its
minimum [1]. The main problems collision avoidance deals
with are the high computational load of analyzing a 3D space
in real-time, the high computational load of responding to
hazardous changes in the environment with the calculation
of new viable paths, and the management of non-perceived
obstacles (occlusion) in movement or static classifies the
found studies in six different groups based on the following
issues: potential fields for attractive and repulsive vectors,
real-time trajectory modification based on minimum distance
vector, non-contact collision detection, wearables for online
path modification, 3D-occupancy grids and 3D-CAD-based
models planning, and minimum energy-based model path
planning (see TABLE 3).

Starting with the first issue, the potential fields for attrac-
tive and repulsive vectors computation modifies robot trajec-
tory in real-time without changing robot computed path by
acting directly on the control signal. For example, Ceriani
et al. propose areactive task adaptation method based on hier-
archical constraints classification. It combines a kinetostatic
danger field for trajectory modification based on repulsive
vectors with a state machine for commutation between the
controller setpoints computed by the industrial controller and
the modified ones [105].

Another approach is based on real-time trajectory modi-
fication through a minimum distance vector. This research
branch employs repulsive vectors to modify in real-time
the robot trajectory without changing the precomputed path.
Some methods found in the literature use a filter to eliminate
the robot from the picture scene, then computing the min-
imum distance between any object and its focal separation
in the picture plane allow them to generate the repulsive
vectors [107]. An improvement done by them was to modify
their algorithm to take into account more than one object in
the scene, reacting only to the closest moving obstacle [108].
Another approach based on using the minimum computed
distance to the robot to generate a repulsive vector is also
adopted by Zanchettin et al. [109]. They calculate the mini-
mum distance between the robot and the closest vertices from
the obstacle. Then, they generate the alternative paths based
on the information received by a depth camera by sliding the
path waypoint and adding additional waypoints.

Most of these works use vision and proximity detection
systems to modify online the robot trajectory; however other
researchers of the literature prefer to prone to use wear-
ables technologies instead. A literature approach consists
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of 18 IMUs (Inertial Measurement Units) installed on a suit
combined with a vision system [110]. Thanks to this suit,
the controller computes the distance between the operator
and the robot. On regular working mode, a visual servoing
control technique is applied. However, whenever the oper-
ator surpasses the threshold, it stops and waits until the
worker is out of the danger zone. Other strategies use data
fusion from a depth RGBD camera and wearable motion
capture. This strategy proposed by Liu ef al. suggests an SSM
strategy depending on the minimum distance to the obsta-
cle [111]. Additionally, Safeea et al. propose an approach
that combines the minimum distance repulsive and attractive
vectors from the paragraph above with wearables for deter-
mining operators position. Thus, the robot not only avoids
the obstacle, but it recovers as soon as possible the followed
path [112].

Other strategies adopted by researchers are based on spatial
occupancy as the 3D occupancy grids for planning paths and
3D CAD-based model planning. Mohammed et al. propose
an approach that mixes a 3D model of the surrounding space
and the human position on simulation. They compute the min-
imum distance to the robot and establish four reaction ways:
warn the operator, stop the robot, moving the robot back,
and modifying the path [113]. Morato et al. propose using
six Kinect sensors to obtain a skeletonized human and robot
surrounding model. They generate a collision space by giving
volume to the obtained skeleton [114]. Operation in parallel
with a virtualized 3D robot models can also be employed as
a strategy to avoid a collision. This type of approach requires
a suitable model of the robot and its surroundings to avoid
collision properly. In case the environment is not correctly
modeled, the collision cannot be avoided [115].

Lastly, some authors defend techniques based on the min-
imum energy model for planning robot paths. Lyu et al.
propose the definition of a potential energy function around
the obstacle. Thus, the robot will follow the optimal minimum
energy path to accomplish its task [116]. In contrast, Ding and
Thomas propose a robot-mounted exteroceptive range sensor
to avoid the collision for redundant serial robot manipulators.
The algorithm they detailed is based on quadratic program-
ming definition of the main task based on its kinetic energy
adjusting the movement by joint constraints and collision
avoidance constraints. Thus, they can beware of more than
one obstacle in the planning scene [106].

The methods studied above take into account just the actual
position of the object generating the most suitable reaction.
However, knowing how the surrounding obstacles behave and
how they move is necessary because it allows computing
more optimal trajectories and strategies for reacting to unex-
pected scenarios. The prediction of the robot’s surroundings’
behavior has been named as moving objects trajectory and
operator intention prediction. This research brand splits into
four distinct fields: state machine-human intention predic-
tion, 3D simplified human model, skeletonizing and occu-
pancy prediction, and statistical Al-based prediction models
(see TABLE 3).
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Beginning with the state machine-human intention predic-
tion, it joins the approaches proposed by the literature, which
apply state machines for determining the following actions of
the human [127]. An approach suggests employing a Finite
State Machine (FSM) to model human intention recognition.
For determining which state is the most adequate for robot
operation, the prediction of human movement is computed
based on a planar simplification, and its speed [117].

The 3D simplified human model research branch gathers
all the approaches that simplify the human body to treat them
as an accessible object to model. Bascetta et al. propose a
human operator simplification by using a square prism to
represent the operator. They combine this representation with
a particle filter and a mobile robot kinematic model. Thus,
they can estimate the occupancy thanks to statistical methods
as Hiden Markov Model (HMM), and a Kalman filter [118].

The skeletonizing and occupancy prediction techniques
include all the works related to the 3D complex representation
of operators as a dynamic obstacle. For example, Campomag-
giore et al. propose a 2 RGBD camera system to track human
movements. They use a 3D occupancy grid by generating a
Point Cloud model of the operators, a clustering process (CP),
and a Linear Kalman Filter (LKF). A fuzzy inference control
considers the worker’s relative speed to the robot to apply
an SSM strategy [119]. A safety-aware trajectory scaling for
HRC based on an RGBD camera and skeletoning techniques
for tracking human pose is an approach too. They model the
human body as robotic joints thanks to the skeletoning and
establish rigid body limits thanks to the human occupancy
representation [120]. Additionally, they improve their design
by adding the velocity of the robot movement to clear the area
regarding the close future robot positions [121].

The literature also proposes improving this kind of tech-
niques by using statistical Al-based prediction models to
determine the operator’s movement intention in the robot’s
surroundings. An approach of this type exposes a method
to recognize human motion based on an RFID sensor and a
vision-based motion sensor, helped by an operator instruc-
tion sheet (OIS) to split the task between the robot and the
operator. The human motion intention is recognized with
an HMM (Hidden Markov Model) algorithm. Then, it has
been tested on a car engine assembly task [122]. Another
solution combines a standard motion-planning mode with a
human-aware navigation planning mode. Thus, they propose
the constrained bidirectional, rapidly exploring random tree
(CBiRRT) algorithms and study its performance on a shared
screw driving task [123]. Another approach is based on train-
ing offline a model using a Gaussian Mixture Model (GMM)
for the implementation of a Gaussian Mixture Regression
(GMR) model to generate online a 3D voxel grid of possible
human occupancy [51].

Even though the works presented in this point have focused
their efforts on analyzing future human position prediction,
all the ideas exposed above can be applied to non-human
moving obstacles in the space.
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Collision avoidance and predicting surroundings behavior
present a lack of sense, without a quick computation method
for calculating robot trajectories. Even though the control
system can avoid colliding with an obstacle or predicting its
behavior, if the algorithms to compute robot trajectories are
too heavy, the system might not be quick enough to respond
to unexpected hazards. For avoiding the risky situations that
can be generated when this happens, two ways of computing
robot path trajectory have been studied: online computing and
offline computing (see TABLE 3).

Online computing modifies the precomputed trajectory
while the robot is moving along its path. This technique
can be used to avoid obstacles or disturbances and change
the trajectory of the robot to improve the performance of
the movements of the robot [51], [123], [124]. An approach
proposes an OTG (Online Trajectory Generator) for smooth
cubic polynomial trajectories planner and controller for HRI,
supporting the idea of achieving safety through a safe path
generation and control [125].

On the contrary, offline trajectory computing methods
focus on calculating a risk-free trajectory for the robot before
any movement is executed. A solution found in the literature
is based on introducing a novel automated offline program-
ming (AOLP) system. That system relies on computer vision
to recognize an object and position it for computing the
shortest accurate path to pick the object [126].

The previous work is not specifically prepared for HRI,;
however, as Sidobre et al. state, one of the safest ways to
guarantee on-floor safety is through the use of collision-
free online planning [125]. This fact means that every
research on developing collision-free path generator and
control is suitable for its implementation on human-robot
interactive scenarios, whether they are explicitly thought for
HRI or not.

In this first challenge, several methods have been exposed
to estimate and know the current and future positions of
operators and objects. However, most of the researchers
mentioned above had to deal with the occlusion problem.
Occlusion happens when 3D, or 2D, capturing devices miss
information from the environment because an object of the
scene is hiding what is behind. This gap in the knowledge
of the robot’s surroundings can lead to a fault in control
systems or even to a collision caused by one obstacle that has
not been taken into account.

This trouble is prevalent in robotic systems equipped
with only one vision system or range sensor. The litera-
ture approach employs a RGB-D camera sensor to take an
overview of the robot and its surroundings. Then, the robot is
filtered from the image, so only the surroundings are taken
into account. The distance between each obstacle and the
robot is computed in the camera plane by measuring per-
pendicular distances between each one and the focal ray of
the camera. The control to avoid colliding with the closest
obstacle is done based on the minimum of the computed
distances [107], [108].
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On the contrary, another point of view to solve this problem
is to use more than one 3D camera, range sensor or mixing
them up to compensate the blindsides of each system. Two
already mentioned approaches use this kind of architecture.
One of them uses 4 Kinect sensors to monitor the operator’s
position through a skeletonization technique [114]. The other
is based on 2 Kinect sensors configuration to measure the
closest distance between the operator and the robot through
the generation of a voxel grid [113].

The review of the different approaches highlights the
importance of two critical facts to bear in mind while devel-
oping successful applications for changeable environments.
On the one hand, it is required to adequately recognize
the possible obstacle of the surroundings and their collision
risk. Without proper recognition of the possible risk enti-
ties or their moving intention, it would be hard to respond ade-
quately to the changes in the environment. Computing on time
and accurately obstacles positions depends on the computa-
tional capacity of the environment recognition system. These
systems are usually based on 3D cameras or range sensors
that must capture and process as quickly as possible the scene.
Thus, the computational power of the recognition systems
became a critical element of the collision avoidance reaction
strategy because a failure or a delay could end up in a risky
situation [1]. On the other hand, knowing the environment
and their changes precisely is senseless unless the system
responds on time. Depending on the allowed risk, the sce-
nario, and the configuration of the robot, quicker responses
will be required. Thus, this kind of strategy is usually com-
bined with SSM techniques in order to support the overall
system with a little more available response time [113], [119].
Therefore, to allow collision avoidance control algorithms for
industrial manufacturing systems, the computational power
required by the application and the required application accu-
racy must be balanced. Otherwise, the system will not be
able to respond in real-time to unexpected changes in the
surroundings of the robot, leading to situations where the
safety of the operator is compromised.

This subsection detailed several solutions for evading the
collision between operators and robots, from solutions based
on quick computing for collision avoidance, passing through
occupancy prediction solutions, to two problems to deal with,
online path computing and occlusion. Optimal handling of
collision avoidance is crucial to reduce production bottle-
necks due to safety stops. Therefore, it is a critical challenge
to deal with designing collaborative scenarios because it can
rebound into production improvements. Besides, it also gen-
erates more robust systems against risky situations because
the best way to avoid harming the operator is evading the
potential crash situations.

After reviewing the possible solutions for the three first
challenges, even when there are several solutions for each
challenge, there are no unique solutions. However, it seems
clear that the allowance of collaborative scenarios requires
low-level handling of physical contact management and avoid
the collision. Thus, production can be safe-guaranteed, but it
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can also be improved in terms of quality. Lastly, a remarkable
fact is that even when there are several types of solutions
for each challenge, there has been a lack of solutions that
combine more than one solution while facing the challenges.

B. WORK CELL LEVEL

Section II states two challenges related to the work cell level.
Both challenges are closely correlated because one of them
is concerned about adaptation strategies applied to the field
of interest of the other. Thus, this level tries to reduce non-
productive times as much as possible in shared environments
by an adequate task organization and distribution and adap-
tation to new situations or changeable scenarios.

1) TASK SCHEDULING AND MANAGEMENT

Lower level safety measures are essential for assuring safety
on shopfloor plants; however, most risky situations can
be avoided with a proper administration of the operations
between the robot and the operator. The proper operation
distribution can also increase productivity by lowering bot-
tlenecks while avoiding collisions [128].

With the arrival of Industry 4.0, production optimization
techniques have grown. Industry 4.0 enables real-time pro-
duction management, but it can also predict the production
lines” unexpected behavior. In the situations where humans
and robots are coexisting, cooperating or, even collaborating,
the enabling technologies grow in the complexity of their
application due to the non-contemplated situations workers’
freewill produces.

Therefore, improvement in both production and on-floor
safety will come to a correct implementation of Industry 4.0
enablers technologies combined with an optimal operation
distribution among operators and robots. In this section,
the solutions for the optimal coordination proposed in the
literature are presented. As the TABLE 4 depicts, this chal-
lenge has been divided into the following solution types:
collaboration in real environments, collaboration in simulated
environments, human-robot teams, operator-robot trust mod-
els, and safe task control strategies.

Firstly, collaboration in real environment approaches are
related to any human-robot interactive method implemented
in a real or virtual industrial scenario. These solutions are
mainly applications based on a single robot or a dual robot,
where the operator and the robot distribute the task each must
execute. It is essential to bear in mind the possible failures of
the application due to the misplacement of the operator or any
component the robot should handles. The key to solving the
subchallenge relies on the proper distribution of diverse tasks
to reduce to its maximum the failure chances due to uncer-
tainties of the collaborative scenarios. Thus, the production
bottleneck due to risky situations could be reduced.

One of the leading scenarios where the task distribution
and management have been tested is assembly and disas-
sembly processes. With the arrival of collaborative robots,
these operations can be upgraded to solve unexpected sit-
uations during the assembly or disassembly, such as the
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TABLE 4. Task scheduling and management sub-challenges.

Level Level Physical Advantages Disadvantages Available Technologies Approaches Refs.
Collab. Contact
) Most of them are not a whole applica- 1) Hybrid cells for simultancous or
They are scenarios where collabora- ) . 4 )
. . tion. Collaborative robots coordinated assemblies
o Coop. tion skills has been tested . ) o ! ° ) )
Collaboration in real P . The limited testing conditions makes Depth and range sensors 2) Optimal task assignment scheduling
N and Allowed It is inspiring for Industry evolution . . 551, [128]-[142]
environments N N . . them non-suitable for industry. Al accelerators based on ILP
Collab. They’re good for testing behaviours on . N . N
. . - L Test directly on shared scenarios could Advanced software tools 3) Discrete Bees algorithm for disas-
industrial collaborative scenarios. . N
be risky sembly remanufacturing tasks.
The safety and feasibility of the appli- Specific robotic simulation
cation can be tested before implemen- It might double the efforts such as softwares such as RobotDK 1) Digital twin of the operator
Coo, tation controllers tunning if the model is not Open  sourced 2) Si i ion of robot
Collaboration in p- Enable the usage of techniques such as accurate enough software  tools  (Gazebo, and IMMA
. N and Excluded - N ) - - [143]-[153]
simulated environments . digital twins It's hard to do a real validation on Movelt...) 3) VR pre-training for operators
Collab. . . . N . : A
If the models are properly imple-  simulated enviroments due to mon-  Mathematical computation ~ 4) Human Cyber-Physical Systems
mented, it can speed up lines commis- predictable human behaviour software platforms (HCPSs).
sioning (Matlab...)
Increment of production quality High increase of application and con-  Collaborative robots
Coop. More task can be semiautomated ) N . -
. trol complexity Software programming 1) Coordination through ARU or MFT
Human-robot teams And Allowed New task types can be semi-automated . . [154], [155]
. . Increment of difficulty of a proper time frameworks (ROS, for multi-robot systems
Collab. Shared task can be semi or full auto- I
and tasks distribution WeBots...)
mated
. 1) Trust model based on PAS and af-
On an environment where the operator
trust in robot actions, the production There are no-technology. fect
Operator-robot trust Coop. or o ’ P If it is not achieved, the production They are more psychologi- 2) Trust measurement scale based on
Allowed improves - . [156]-[159]
models Collab. . ) decreases cal aspects to care about the features such as safety or experience.
New jobs are generated for replace the . . .
” operators. 3) Trust issues and social psychologi-
ones already exists .
cal model to response to uncertainties.
A proper distribution of tasks execu- 1) Simplified risk analysis based on
tion secuences reduce highly produc- A bad task distribution might end-up historically occupied regions
Coop. tion safety related risks. increasing production times and costs. 2) Planning algorithms to perform
Safe task control . ¢ "
wrategies and Allowed Production cycle times can be reduced A proper distribution of task and op- optimal human-robot movements on [1601-[163]
Collab. so the overall production can increase. eration might require higher efforts in shared environments

All the existing techniques for produc-

programming and synchronization.

3) AR assistance for task developing

tion optimization can be applied

or robot programming

classification of damaged components. On the one hand,
in the literature review, various examples have been found
for assembling tasks with collaborative robots such as auto-
motive assembly line proposals [129], screw operation in
assembly tasks [130], hybrid cells for simultaneous assem-
bly between an operator and a robot [55], [131], [132], use
of augmented reality as a support system for operators on
a collaborative assembly [133], dual-arm cooperative and
flexible assembly [134] and the installation of heavy and
bulky components [135]. There are also support activities
to assembly task as a chaotic bin-picking task for low vol-
ume assemblies [136]. Another support activity for assembly
lines consists of scheduling optimization through the optimal
assignment of tasks. A solution of this type is based on
an extended integer linear programming (ILP) formulation
for two computationally more complex scenarios: an order-
based heuristic approach and a matheuristic approach with
different sequencing strategies [137]. Another solution con-
sists of developing a Hidden Markov Model (HMM) for
combining with a 3D occupancy grid; thus, the operator’s
workflow could be recognized [138]. This work is extended
by a human-robot collaborative workspace design based on
the use of visual and audio stimulus for the work coordi-
nation [139]. A final solution is based on a chain of four
supporting blocks where the information is extracted and
processed to generate and evaluate a collaborative assembly
solution [140].

On the other hand, human-robot collaborative disassem-
bly tasks are interesting for mitigating uncertainties due
to the product’s end-of-life condition for remanufacturing.
An example of this type is an active compliance con-
trol [164] for the robot for disassembling press-fitted compo-
nents [141]. Implementation of methods for planning using
discrete Bees algorithms in disassembly remanufacturing
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tasks is also valid for the actual subchallenge [142]. A final
approach exposes a robotic task-oriented knowledge graph
constructed by a natural language processing method for
human-robot collaborative disassembly [128].

Even though several researchers have proposed their strate-
gies to solve use case requirements for real industrial envi-
ronments, combining the proposals with virtual simulations
can improve the safety and productivity of the industrial
plant. The first approach is based on human cognitive work-
load virtualization to integrate human mental capacities into
industrial control loops by simulation [143]. Thus, unex-
pected human behaviors are expected to be better rejected.
Examples based on the simulation for the automotive assem-
bly process are also included under this branch [144], [145].
On a first approach, a digital twin model of the human
operator created in Siemens Tecnomatix suite is proposed for
testing a variety of solutions and what-if scenarios to improve
planning and decision making [144].

On the other hand, a digital model, which combines the
IPS (Industrial Path Solutions) tool for robot simulation and
IMMA (Intelligent Moving Mannequins) for human simula-
tion, has been proposed for the entire virtual verification of
human-industrial collaboration before testing on real envi-
ronments [145]. A suitable solution for this issue is based
on the use of VR to develop digital human-robot simulated
environments for improving the real-world process by vir-
tual simulated data [146]. The other two similar approaches
are based on VR (Virtual Reality) to develop training sys-
tems for operators in manufacturing scenarios [147], [148].
On the one hand, the presented Virtual Reality Training Sys-
tem (VRTS) is immersive and interactive based on ‘“beWare
of the Robot” game experience to enhance operator safety
through previous execution of the task and awareness of the
risks [147]. On the other hand, a VR digital twin is presented
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to understand human reaction to predictable and unpre-
dictable robot motions thanks to a new developed kinetic
energy ratio metric to analyze those reactions [148].

The solutions reviewed right above are a glimpse of the
actual panorama of human-robot interaction in simulated
environments. However, a research branch about this topic
is based on Human Cyber-Physical Systems (HCPSs), which
introduces human behaviors models to respond better to
human-based faults [149]-[151]. A variation of HCPSs relies
on the addition of human cognitive skill into industrial control
loops as Human-in-the-Loop (HiTL) techniques in order to
react to unexpected human behaviors. This technique is used
as a reinforcement for Cyber-Physical Systems during loop
execution [152], [153].

On the other hand, complex tasks of industrial environ-
ments might require the synchronization or parallel actuation
of more than one robot or operator at a time. In this situation,
the operator and the robot should build a team for successfully
finishing their manufacturing tasks. An approach that takes
human-robot teams into account collects the requirement for
building these teams while taking into account the application
performance, operator performance, and robot performance
separately for application validations [154]. Other proposals
are based on a dual-armed robot, which is considered more
than one robot coordinated by the same entity. In [155],
anovel multi-criteria task planning method based on Average
Utilization Time (ARU) and Mean Flow Time (MFT) for
collaboration with multi-robotic systems.

The constant fear about system failure might end up in
productivity reduction. To avoid this situation, the literature
has researched how to develop accurate human-robot trust
models to increase the operators’ confidence in a shared
environment [165]. A literature approach consists of studying
critical factors that affect trust in a high-vulnerability HRI
context to establish a structural equation based on trust-
worthiness, human-likeness, intelligence, perfect automation
schema (PAS), and affect [156]. Building trust measurement
scales for industrial HRC based on features such as safety,
experience or shape of the robot are also considered as ade-
quate solutions for industrial environments [157]. The studies
mentioned before focuses on theoretical ways of building
models and scales to measure trust between operators and
robots. However, other works focus on the applied solu-
tion to industrial fields. An approach of this kind is based
on trust issues and social psychological aspects to improve
the response to unexpected situations [158]. Another model
based on trust dynamics and control is proposed to regulate
the task process while considering factors such as human
fatigue [159].

Moreover, the literature defends a way for reinforcing
the human-robot trust models through the natural interaction
between robots and operators. In this type of interaction,
the operator uses commanding structures that are intrinsically
implemented in the interaction between humans, such as
the voice or gesture commanding. Thus, the programming
process of the task will seem closer to the shopfloor worker,

108570

making them feel closer while working alongside their
robot partners [165]. An adequate understanding of the task
should be achieved to improve the confidence operators place
in robot machines through natural interaction. Therefore,
a straightforward task hierarchy is also supported to achieve
natural interaction between humans and robots [157]. This
way, high-level development of natural interaction between
operators and robots might end up in a safe environment
where traditional industrial robots and collaborative robots
coexist while developing production together.

The last subchallenge, the safe control strategies, also help
to reduce wasted times and production bottlenecks through
the distribution of optimal task strategies and task opera-
tion scheduling without disregarding safety issues. So not
only is the operation going to be optimally distributed, but
the operator safety in different scenarios is going to be
taken into account. In [160], simplified risk analysis based
on a historically occupied space map by the operator for
generating proactive strategies to respond to environment
variations is implemented. This subchallenge also includes
programming approaches and task plannification sequences
distribution methodologies. The issues this topic addresses
are task-based programming and sequence planning for col-
laborative assembly scenarios [161], planning algorithms to
perform planning in human-robot shared environments [162]
and augmented reality assistance for industrial applications
robot programming [163].

This challenge collects a wide selection of various solu-
tions of robots and operators’ coordination in industrial
real or simulated environments. This is remarkable because
it aligns collaborative scenarios with technologies settled
on Industry 4.0 and enables the possibility of benefiting
from those technologies, such as the digital twins applied
to robotics. However, the complexity of coordinating low-
level safety in operations and high-level safety by scheduling
the operations appropriately make the field at the early stage
of development. Additionally, the relevance of trust models
and the integration of human-robot teams at this level on
industrial collaborative shopfloors has also been stated. These
solutions are essential because they scale one level in the
complexity of industrial scenarios’ safety design by adding
psychological aspects. However, the difficulty of adequate
modeling of human behavior due to the unexpected conduct
unravels the immature state of development in the field [66].

2) TASK SCHEDULING ADAPTATION

The last group of solutions collected is an improvement
over the task scheduling and management challenge. They
are related to adaptation capabilities that can be brought to
industrial collaborative work cells. This topic tries to answer
how production can be adapted to improve quality and avoid
fault loss. Thus, SDGs (Sustainable Development Goals)
8 and 9 are preserved thanks to the maintenance of industrial
operator safety as the production adapts itself to changes
in production rhythms. As mentioned before, several tech-
niques or methodologies which can be applied to non-stop,
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TABLE 5. Task scheduling adaptation sub-challenges.

Level

Level Physical Advantages Disadvantages Available Technologies Approaches Refs.
Collab. Contact
Coex., Already tested tools for improving 1) FIC (Fault Tolerant Control)
Traditional non-stop Coop. Allowed production. Intelligent adaptation is limited to Software tools (Matlab, Ten- 2) MPC (Model Predictive Control) 131, 1211, [64], [66]
production techniques and Production can be adapted to faults in adaptation laws sorflow, Keras...) 3) ILC (Iterative Learning Control) s ’ ’
Collab. robots actuators. 4) Fuzzy Control
Adaptation mechanism tested under - .
- N Increment of risks during tests and val- . N . .
. Coop. the assumption of non-controlled dis- - Collaborative robots 1) Self-supervised learning combined
Adaptation to real idations. L 3 . .
. . N and Allowed turbances. Software tools (Matlab, Ten- with vision-based object manipulation [166]
industrial scenarios . . Needs of an accurate model o the real . .
Collab. Improvements due to adaptation di- sorflow...) from imitation.
. . R system per se
rectly tested against real scenarios.
Specific robotic simulation
Require a precise and accurate model platforms (RobotDK...) 1) Simulation and testing of a quintic
Adaptation o simulated Coop. Test the adaptation mechanism with- of the environment for good results. Open sourced simulation polynomial for trajectory smoothing
platic N ¢ and Excluded out any risk for the operator and ma- The adaptation limit is tied to the adap- software  tools  (Gazebo, 2) Modularized parallel controller [167]-[169]
environments . N " N N
Collab. chine. tation mechanism and representative Movelt!...) structure for motion planning and con-
tests. Mathematical computation trol on shared environment
software tools (Matlab...)
Increment of the coordination between . . - Collaborative robots
) The complexity of application man- .
operators and robots through new cy- Software programming
Lo Coop. agement and control presents an even N .
Task adaptation in cles. b . frameworks (ROS, 1) Robotic long term autonomy
and Allowed A A higher increment [170]
human robot teams The operators feels more comfortable . . - WeBots...) through ROPA
Collab. . The complexity of time and task distri- .
with the robots (Increment in robot 3 Tasks and operation
bution also grows L N
trust). optimization techniques
If the adaptation mechanism is not
. Coop. Through production cycles the task goqd enoug}?. the adaptation could end Task and operation opti- 1) Adaptation (o skills and experience
Task strategies . ) . up in more time wasted. B 3 of the operator through a task distri-
adaptation and Allowed will adjust automatically to waste the The chance of collision drastically in- mization technique bution strategy based on levels of au- 17
adapta Collab. less time possible. suca’ly Adaptive task sheets strategy bas

creases the complexity of an adapta-
tive task distribution strategy.

tomation

autonomous or intelligent production of Industry 4.0 can be
used for collaborative robotics and HRI too. As it has been
exposed earlier, this challenge leaves aside traditional adap-
tive techniques for non-stopped production to lead to adaptive
techniques applied to task scheduling and managing tech-
niques. Thus, TABLE 5 depicts the various types of solutions
related to this challenge: adaptation to real industrial scenar-
ios, adaptation to simulated environments, task adaptation in
human-robot teams situations, and task strategies adaptation.

In the field of real industrial scenario applications,
Nair et al. proposed an approach to combine self-supervised
learning and imitation from vision-based object manipula-
tions. An interactive method to learn through demonstration
is exposed to tying a rope [166].

Other examples are based on adaptation in the simulation
of human-robot interaction scenarios. In [167], an approach
suggests a collaborative hybrid work cell that adapts its tra-
jectory planning strategy to avoid colliding with dynamic
obstacles in the environment. The reaction strategy considers
human motion forms and a neural network using supervised
learning to create the waypoints required for dynamic obsta-
cle avoidance and a quintic polynomial for smooth trajec-
tory optimization. Another approach introduces concepts for
future intelligent production systems for designing decen-
tralized manufacturing systems such as the relationships
between the factory layout planning, production scheduling,
and human-robot work distribution [168]. Another similar
solution is based on developing an algorithmic safety set
of measures for intelligent industrial collaborative robotics
applications based on a modularized parallel controller struc-
ture to solve the motion planning and control problem in a
human involved environment [169].

Another scenario where adaptation is being applied con-
sists of the human-robot teams applications. In [170],
an example of the literature exposes a robotic percep-
tual adaptation for dynamic environments in long-term
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human-robot teammate collaboration is detailed. The pro-
posed solution addresses the long-term autonomy of the sys-
tem for shared environments by an innovative human-inspired
approach called robot perceptual adaptation (ROPA).

Finally, the last issue of the actual subchallenge uses cases
is related to the adaptation to task strategies topics. Hence,
it focuses on the adaptation to the optimal way to solve the
tasks improving it in each cycle. A solution of this type
exposes a human-centered adaptation and task distribution
strategy for industrial setups based on levels of automation.
The adaptation in this occasion finds the skills and experience
of the operator to adapt the production levels to it [171].

This challenge’s solutions pretends to improve the perfor-
mance methods exposed in the task scheduling and manage-
ment challenge. However, the broad suite of various possible
examples relative to this challenge and their low level of
improvement makes task scheduling adaptation an under-
exploited challenge. Therefore, there are not many solu-
tions presented in the current challenge. Nevertheless, it is
remarkable how the community intends to integrate contin-
uous adaptation techniques to human-robot interactive sce-
narios where the robots adapt their behavior to continuous
production cycles.

After reviewing the last two challenges available solutions,
there are both promising and emerging research branches.
Nevertheless, some suitable approaches have been presented.
On the one hand, scheduling techniques to reinforce the safety
between operators and robots is critical to reducing time
bottlenecks during production. However, the psychological
factors that take part make the challenges at an early stage of
development. Moreover, the fact that even when adaptation
techniques are broadly applied to other automation fields but
not to the human-robot interaction boosts the idea of their
lack of development. Despite the slow development in the
actual challenge, it is believed to be compound by promising
solutions to enable modern industrial collaborative scenarios.
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IV. DISCUSSION

The implementation of industrial collaborative scenarios
relies on the five identifies challenges. These challenges,
as defended earlier, are distributed into two of the four of
the levels proposed. For each of them, a summary table is
included. Additionally, the information of those tables is
complemented in this discussion through the inclusion of
FIGURE 4, highlighting the paper distribution for each of the
identified challenges.

The three first challenges (physical contact management,
object handling, and environment avoidance), belonging to
the operation level, as shown by FIGURE 4 represent a
greater distribution of collected papers. It means that the
scientific community has invested more effort in these three
challenges. This fact matches with the structure proposed
for the suggested levels of autonomy because it means that
the challenges corresponding to the lower levels are more
developed than the higher ones. After all, the lower the level,
the closer to basic human-robot interactive forms and more
affordable is its implementation.

6 (5%)
M Physical Contact

Management
Object Handling

40 (33%)
Environment

Avoidance

Task scheduling and
management

16 (13%)

Task scheduling

26 (21%) adaptation

FIGURE 4. Distribution of solutions for the collaborative scenarios
enabling proposed challenges.

The physical contact management collects the most quan-
tity of operation level articles and considers all the applica-
tions where an operator maintains direct physical contact with
the robot. The risks of these situations rely on the possible
harm the robot might produce when an operator hits or grabs
him. In order to minimize the danger of those situations,
the literature proposes several algorithms for contact handling
and automatic working mode switching depending on desired
and non-desired collision discerning. Even though there are
various examples, the safety aspect can only be guaranteed
by a safe design of the robot and not by contact handling
algorithms. On the other hand, teaching and hand guiding
applications are also included in this challenge. This solution
seems very promising for facilitating the future of robotics
programming in daily tasks or teaching the robots how to
grab the required workpiece. However, the challenge aim
cannot be fulfilled until the algorithms are not performed well
enough to consider the interaction natural and intuitive to the
operators without disregarding safety, danger, and harming
threshold.
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The object handling challenge must deal with two different
situations. On the one hand, vision-based object handling
relies more on vision algorithms than on how the robot
should handle the object. In this scenario, the success of the
component handling highly depends on the accuracy of the
vision algorithm applied to command the robot movements.
On the other hand, blind object handling is relegated to posi-
tioning or morphology determination rather than managing
where or how to pick components. This fact makes plenty of
sense because, in a shared environment, it is undesirable to
handle and move objects around the space without checking
the existence of danger to harm an operator. Due to the
reasons mentioned above, this challenge is still considered
far from the required state to be suitable for collaborative sce-
narios. In order to consider this challenge fulfill, vision-based
and blind object handling should be combined with auxiliary
environment recognition systems to manage the load properly
while carrying it. Thus, the load can be transported without
the risk of harming the operator or losing it. It will even open
a chance to combine the first challenge to ensure safety in
contacts while the robot is loaded. This lack of development is
also reflected in FIGURE 4 with a low percentage of articles
found in the field.

As stated before, it is highly recommended to avoid collid-
ing with obstacles and operators [172], even when the contact
is assured to occur safely. This is desirable because avoiding
the collision will increase the safety of the overall system and
will reduce to their minimum the probable bottlenecks due to
safety stops. Therefore environment avoidance challenge is a
very catching and relevant topic for industrial collaborative
scenarios with around 21% of the articles (see FIGURE 4).
The literature shows how collision avoidance algorithms and
obstacle intention prediction has gathered some attention.
However, none of these algorithms are valid for its implemen-
tation unless it can ensure real-time computation to avoid the
crash.

Leaving aside problems such as occlusion that can be eas-
ily solved, collision avoidance systems have some issues in
avoiding the obstacles and predicting their intention. On the
one hand, avoiding obstacles relies on the low computational
cost that guarantees that the crash cannot happen. Otherwise,
the system will fail, harming an operator. For instance, 3D
vision-based or range solutions reduce time performance for
updating the scene to increase the accuracy in modeling the
surroundings. These approaches are also negatively influ-
enced by the required time for postprocessing the scene to
segment what can be considered an obstacle. On the con-
trary, techniques based on wearables for the operator or non-
contact sensitive skins for the robot increase the accuracy
for obstacle positioning; however, they introduce additional
data to compute in the control systems. Furthermore, these
solutions might not be suitable for manufacturing shopfloors
implementation due to their extra cost. Lastly, techniques
for path recalculation strongly depend on the performance
of the scene segmentation algorithms used for obtaining the
status of the surrounding in each cycle. However, they might
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not be reliable enough for collaborative scenarios because
of recalculation failures due to robot configurations or high
computational costs. Due to all these facts, an economical
solution to solve the timing issues these techniques intro-
duced consists of adopting SSM strategies to manage the
robot movement speed depending on the mutual distance
between obstacles and the robot. Thus, the available response
time will be increased the available response time as well as
reduced the harmful risk in case this system fails.

On the other hand, predicting obstacle intention is based on
probabilistic occupancy models. Due to that, they might not
be ready for unexpected behaviors of human free will, caus-
ing once again the system to fail. These techniques usually
rely on an accurate model to estimate unpredictable human
behaviors for both state machine prediction approaches and
statistical Al-based models solutions. However, it is relevant
to bear in mind that these models are based on the occurrence
probability of events. The fact that it cannot guarantee the
prediction of human behaviors makes them unreliable for its
industrial application. On the contrary, 3D simplified mod-
els or skeletonizing techniques increase the reliability and
accuracy of predictions while increasing computational times
due to the high load of the vision processing techniques. Thus,
beating this challenge will come through reliable low compu-
tational cost algorithms, which also consider natural obstacle
movement tendencies. Additionally, it should be considered
possible malfunction due to control loss or blocking positions
due to the singular configurations.

The first challenge of the third level, the task scheduling
and management challenge, is referred to how the operations
should be optimally distributed in an industrial environment.
This topic collects real and simulated industrial approaches,
multi-human/robot teams [173], and approaches for trust and
control model solutions. This challenge aligns the possible
application of collaborative robotics with other trending tech-
nologies of Industry 4.0. However, the high dependability of
uncertainties such as workers’ trust in robot operation and the
lack of reliability and confidence in human-robot solutions
makes this challenge far to be reached. This fact linked to the
necessity of development of the previous challenges makes
it hard to guarantee safety in the approaches of this chal-
lenge. Notwithstanding, this challenge gathers several pieces
of research in human-robot interaction applied to the indus-
trial scenario, being the challenge that collects the most of
works.

The last identified challenge, the task scheduling adap-
tation challenge, is the last one of the identified chal-
lenges. Without considering traditional adaptive mechanisms
for autonomous and unstopped production systems, task
scheduling adaptation focuses on optimizing task scheduling
and management to improve the results of the last chal-
lenge. Therefore, its lack of development might seem natural
because of the low development state of the task schedul-
ing and management challenge. Due to its low representa-
tion in FIGURE 4 it consecution seems a long-term goal.
Combining traditional autonomous systems with adaptation
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to task scheduling might be the cornerstone for future indus-
trial collaborative scenarios.

In another vein, the upper-level classification proposed
gathers no examples of any particular challenge for its imple-
mentation. Thus, it is considered that the enabling key leans
on the previous implementation of the five identified chal-
lenges. At this level, the autonomous traditional manufactur-
ing systems will be coordinated with collaborative industrial
scenarios for intelligent, adaptive, and flexible production.
This coordination might be considered as a challenge itself
because of the high complexity both architectures bring.

A final contribution is presented, based on the conver-
sion of traditional robots into collaborative robots. Some
works implement the aforementioned conversion [55], [133],
[134], [174]; however, a real industrial collaborative sce-
nario can only be achieved by improving the performance
of these studies and granting safety through the implementa-
tion of the five identified challenges. Thus, future factories
will rely on collaborative robots for collaborative working
modes, but they will use traditional ones for tasks that require
more power or speed safely. However, combining cobots and
traditional robots on industrial plants will not be intuitive
because of the wide variety of needs for each of the different
production requirements. For example, in automotive plants,
industrial robots will be required to load heavy and oversized
assemble objects while the combination of cobots and opera-
tors will handle the minor components assembly. Due to the
heterogeneous needs of each industrial sector, the challenges
to overcome for each particular industrial plant may differ.
Nevertheless, it is relevant not to forget that this conversion
can only be executed under the presumption and guarantee of
maintaining safety in any manufacturing situation.

V. CONCLUSION

All the challenges presented and detailed in this manuscript
are distributed between the different levels proposed. The first
level, which affords the basics of the interaction, represents
no challenge due to their development in the field for several
years. [t resolves aspects related to safety design, the available
levels of automation for the application and the essential
human-robot relation that can be established. The reliable
installation of cobots on industrial shopfloors is the best
statement to affirm that this level is already safe enough to
be considered achieved.

The two middle levels of the classification proposed are
the ones gathering the five identified challenges. On the one
hand, the operation level contains the three first challenges
related to natural interaction between humans and robots for
successfully accomplishing different operations. Thus, safe
physical interaction with operators or objects can be achieved,
as well as avoiding collision to reduce bottlenecks for safety
stops. Even though it has gathered relevant interest from the
scientific community, the complexity for guaranteeing human
operator safety in every situation is not achieved yet. On the
other hand, the work cell level defines a subprocess as an
association of operation with a singular goal, and it collects
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the last two identified challenges. Both challenges are related
to distributing human-robot operations for wasting the least
time possible properly while increasing safety. This can be
achieved because an optimal operation distribution leads to
reductions of possible conflict situations and reduced produc-
tion spare times. However, the high degree in human actions’
randomness makes these two last challenges unafforded yet.

As stated in the discussion, the upper level represents a
challenge because of the high complexity the human-safe
system architectures demand. This level tries to coordinate
collaborative industrial scenarios with traditional non-stop
productive environments. Even though it is still far to be
reached, its consecution will lead to intelligent, adaptive, and
flexible manufacturing systems.

From all the exposed work and discussion above, it can
be stated that there is still room for improvement to fill the
gaps required to achieve industrial collaborative scenarios.
Even when the very low level of HRI has been firmly settled
thanks to several safety standards, the more complex forms
of interaction are still in development. This situation makes
it hard to ensure operator safety in industrial environments
without disregarding sustainability and autonomous produc-
tion aspects, which is highly undesirable for modern indus-
trial collaborative scenarios. Therefore, there is still work to
do to integrate safety and autonomy in production to achieve
an advanced and fluid interaction at any level in real industrial
scenarios, which can only be filled by facing the identified
challenges in this manuscript.
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