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ABSTRACT As the atmospheric pollution becomes an increasingly serious problem, finding accurately
the location of pollutant sources is still challenging. In the present work, a probability-based tracking
strategy is proposed for guiding two cooperative unmanned aerial vehicles (UAVs) within a quest area to
find an atmospheric pollutant source. This tracking strategy implies deploying algorithmically two phases:
exploration and exploitation. During the exploration phase each vehicle follows a trajectory based on plane
coordinates generated from a Hammersley sequence. The overlapping between UAVs’ trajectories is avoided
by splitting guidance points into two groups by using the k-means algorithm. The navigation trajectories are
smoothed by an TSP solver and a cubic spline planning algorithm. The exploitation phase redirects the search
to specific locations where the probability of finding the source is higher. This is achieved by considering
the quest area as a mesh, where each cell is assigned a probability computed with information collected by
the UAVs measurement system. Every time a high concentration is found, the probabilities are recalculated,
and flight trajectories are adjusted. The trajectories are semicircular, and the radius is decreased when a new
high concentration is found. Simulation data of the proposed tracking strategy shows promising results on the
accuracy achieved in the finding of the pollutant source, in comparison with three other tracking strategies:
leader-follower, random walk with particle swarm optimization, and a hill climb traceability algorithm.

INDEX TERMS Air pollution, aircraft navigation, source localization, time-varying source, unmanned aerial
vehicles.

I. INTRODUCTION
There are many areas in which unmanned aerial vehicles are
helpful to accomplish complex or risky tasks. For instance,
applications related to civil structures monitoring, mapping
of urban and natural areas, search and rescue in emergency
scenarios, and environmental monitoring. Nowadays, there
are increasingly better efforts in research and development for
using UAVs to locate and identify pollutant sources. A source
could be radiation, acoustic signals, electromagnetic signals,
or a chemical agent. This paper contributes in this specific
area. The main purpose is locating an air pollutant source on
an outdoor scenario by considering realistic time constraints
related to the UAVs battery. This task is accomplished by
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a couple of autonomous quadcopters equipped with appro-
priate sensors which measure a specific pollutant. UAVs can
move with 6 degrees of freedom and are capable to fly for a
limited time in different environments, making them suitable
to take pollutant samples.

Up to date literature reports several applications of UAVs
for locating pollutant sources. For instance, [1]–[6] use multi-
ple mobile robots to sample their search area. In these works,
global optimization algorithms command the movement of
each robot. Reference [1] details a leading-follower strategy
by using a PSO algorithm for guiding the mobile robots.
Each robot is considered as a particle of the swarm and the
Schrödinger equation guides the movement. The leader of the
swarm is chosen depending on the global optimal position.
The followers serve the leader providing measurements and
navigating in the direction chosen by the leader. The authors
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of [2] use an indoor controlled environment to perform source
tracking. Two experiments are developed in this work: one of
them considers airflow information, while the other does not
consider airflow information. The airflow is varied with dis-
placement ventilation or mixing ventilation. For each exper-
iment six terrestrial robots are guided in 3 phases: finding
the plume (with a random divergence strategy), tracking the
plume (by a standard and improved Whale Optimization
Algorithm), and declaring the source.

In a platform with multiple agents, cooperation is a pow-
erful tool to succeed in the task of finding a source. Research
reports in [7]–[10] focus on reducing their time to accomplish
a mission and exchange information between each robotic
agent. In [7] the agents share their position, velocity, and
formation vector to perform a coordinated scanning of the
search area. There are four UAV agents in this approach. The
exploration phase carries out three strategies: leader-follower,
random walk scanning with feasible drone orientations, and
Brownian motion behavior. The exploration phase performs
the following steps:

1) The UAV that reacts to a gas measurement is trans-
formed into a leader

2) A circular formation around the leader is performed
3) The swarm moves along a logarithmic spiral
4) If the i-th UAV detects a gas concentration, greater than

previous measures, that UAV is considered the new
leader

The plume is simulated with a Gaussian model, and the
experiments assume that the gas concentration is a decreasing
function of the distance from the source.

Previous strategies were proved in simulated environments
or indoor controlled experiments. However, in the literature
is possible to find several works implemented in outdoor
scenarios [9], [11]–[13]. In these works, the focus is made
on the construction of a platform with high maneuverabil-
ity and capacity to sense air pollutant concentrations. With
those platforms, it is possible to execute exploratory and
exploitative strategies for source tracking. Different pollutant
sources have been considered in research works, such as
sources of alcohol [14], sound [15], or even it is consid-
ered to fly in zones where the presence of contamination is
known [16]–[18]. It is common to find articles that use poten-
tial fields to implement the collision avoidance [19]–[22].
To the best knowledge of the authors of this research work,
some papers report applications similar to our approach.
Nevertheless, several assumptions (for simulation works) or
favorable initial conditions (for experimental approaches) are
considered in these works. Some examples of these favorable
factors are as follows:
• Take-offs from inside a plume, [19], [23] or relatively
close to it [24]

• The initial fly direction is towards the plume [19], [20].
These conditions oversimplify the problem of finding
first clues

• The carried sensors have a high sensitivity [25]. This
implies the use of expensive sensors

• The search area is not extensive, so UAVs can detect the
plume before flight time runs out [21]. In other words,
UAVs can easily cover the entire area before they run out
of power

This paper presents results on the application of a novel
intelligent strategy to locate an air pollutant source, without
any favorable environmental conditions, as the previously
described in [19]–[21], [23]–[25].Main considerations of this
work include:
• A platform with two UAVs, although using more units
is possible with minor modifications to the strategy

• Take-offs in zones where there is not a minimal trace of
the pollutant plume. This requires the implementation of
a fast coordinated exploration phase

• Path planning depends on clustering deterministic
points, but with random initial centroids (with k-means)

• Parameters like maximum ground speed, the sensitivity
of sensors, flying time, radio frequency coverage area,
among others, are more constrained and selected accord-
ing to similar UAVs used in the work proposed by [13]

• The search area is large enough (500m × 500m). The
ratio of area covered by the plume and the total search
area is less than 3/100

Another important feature of our work is that we use real
measurements of wind magnitude to simulate the pollutant
plume. The simulation environment uses theMAVLINK nav-
igation protocol [26]. The main objectives of these features
are: to simulate a wind behavior closer to reality, and to allow
a simple migration of the developed scripts to a real platform
(similar to the used in [13]).

The performance efficiency of the UAVs to track and locate
an air pollutant source is performed. To this purpose, param-
eters like distance to the source, time to finish the exploration
phase, highest pollution measure taken, and ability to detect
higher contaminant measurements will be statistically ana-
lyzed.

Four different strategies for the exploration phase, each
accompanied with its respective strategy for the exploitation
phase, are tested in a scenario with a simulated pollutant
plume. To avoid collisions between the UAVs, they fly at
different heights like in [27]. These heights remain constant
during flight time. In half of the experiments the height of one
UAV matches with the pollutant source height. In the rest of
the experiments no UAV matches with the source height.

The main content of this paper is organized as fol-
lows: section 2 describes the simulation environment and
the air pollutant distribution model, the construction of
a probabilistic map, and the explanation of strategies.
Section 3 presents the results obtained in experiments and the
analysis. Section 4 presents the conclusions and future work.

II. SEARCH AREA MODELING THROUGH PROBABILISTIC
REFERENCE MAP
A. POLLUTANT PLUME MODELING
To analyze the polluting plume model, is necessary to con-
sider two phenomena: the contaminant diffusion into the
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atmosphere and the movement of these diffused concentra-
tions due to the wind [28]. These behaviors correspond to the
equation of concentration given by:

∂c
∂t
+∇ · Ef = s (1)

where:

• c(EX , t) is the concentration of the pollutant mass in a
given time t[sec] and position EX = (x, y, z) ∈ R[m].

• s(EX , t) is the source of contamination.
• Ef (EX , t) is the flow of contaminant mass due to diffusion
and advection phenomena.

The Fick’s law allows to obtain the diffusion of one substance
into another.

EfD = −ED∇c (2)

where ED = (Dx ,Dy,Dz) are the diffusion coefficients in each
axis.

The dragging of the fluid by the wind permits to compute
the advection component:

EfA = −cEu (3)

where Eu = (ux , uy, uz) is the wind velocity.
Adding up the two components of f (EfD and EfA), and

replacing them into (1) we have:

∂c
∂t
+∇ · (cEu) = ∇ · ( ED∇c)+ s (4)

There are two constraints to be considered for solving (4),
which are:

• If the z-axis is considered as the ground; the dispersion
only happens in z ≥ 0.

• The concentration tends to 0 when is analyzed in a far
field.

Then:

uzc− Dz
∂c
∂z
= 0 at z = 0 (5)

If we consider uz = −uset as settling velocity for the
particulates andWdep as a deposition coefficient that captures
the effect of total flux of contaminants penetrating the ground,
we have the Robbin Boundary Condition:

−usetc− Dz
∂c
∂z
= −Wdepc (6)

1) THE SOURCE
A point source models the air pollutant source in space, using
a Dirac delta function δ(·):

s(EX , t) = Q · δ(x − xs)δ(y− ys)δ(z− zs) (7)

where Exs = (xs, ys, zs) is the source position and Q[kg/s] is
the total output of the source per time unit.

2) DIFFUSIVITY COEFFICIENT
The chemical air pollutant considered in this work is
sulfur dioxide (SO2). Burning coal in power plants or
petroleum-based products produce this kind of colorless gas.
There are several methods to compute the coefficient of the
diffusion of one substance into another. This work uses the
Fuller method [29]:

DAB =
10−3T 1.75

[
1
MA
+

1
MB

]1/2
P
[(∑

vA
)1/3
+
(∑

vB
)1/3]2 (8)

where:
• T represents the temperature
• P represents the pressure
• MA,MB are the molecular weights of A (air) and B
(SO2), respectively

•

∑
v represents the Molecular volume of diffusion

Fig. 1 shows a simulation output of the plume distribution for
SO2. The source is located at 3 meters height.

FIGURE 1. Plume shapes at 3, 4 and 5 meters above the ground.

B. SOURCE PROBABILISTIC MAP
The UAVs navigation is performed by using a probabilistic
reference map limited to the search area. The probabilistic
map is finite and meshed, where every cell (Cxy) corresponds
to the probability, Pxy, of finding the pollutant source at
Cxy. Fig. 2 shows a layout of a reference map, where it is
noticeable that the x-axis grows to the east, while the y-axis to
the north. The dimensions of every cell in the map are Lx×Ly.
The location of each cell center (on geographical coordinates)
is calculated as:

centerLat (m) = LatL +
LatU − LatL

M
·

(
m+

1
2

)
(9)

centerLon(n) = LonL +
LonU − LonL

N
·

(
n+

1
2

)
(10)

where:
• m and n are cell indices along y and x axis, respectively
• M and N are the number of cells on the y and x axis,
respectively
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FIGURE 2. Meshed reference map of the quest area.

• LatL and LatU represent the lower and upper latitude
boundaries

• LonL and LonU represent the lower and upper longitude
boundaries

With the previous reference map, it is possible to obtain
the probability map. Building this map requires calculat-
ing the probability of finding a source in cell Ci (releas-
ing a single chemical filament since time tl) given that a
pollutant chemical is detected (measured) on the cell Cj at
time tk > tl [30]:

Sij(tk ) =
e
−

(|nj−ni|−vx )
2

2tk σ
2
x e

−
(|mj−mi|−vy)

2

2tk σ
2
y

2π tkσxσy
LxLY (11)

Taking into account that σx and σy are the variance from a
Gaussian distribution (similar to [30]), and that:

V (tl, tk ) = (vx(tl, tk ), vy(tl, tk )) =
k−1∑
i=l

U (Xj(ti)) (12)

whereU is a vector with the wind measurements from time tl
to tk .
By using (11), it is possible to define the probability matrix

(or probability map) which implies finding a source in Ci
given that a chemical was detected on Cj at time tk , for all
possible release times:

βij(tk ) =
Sij(tk−1)+ Sij(tk )

k
(13)

Note that in the previous formulas the i sub-index denotes
the source location, and j denotes the current UAV location,
on the reference map.

C. SEARCH STRATEGY
All strategies require an initialization process, that is:

1) The MAVLINK controller is created and establishes a
communication with the flight controller (Pixhawk or
ArduCopter).

2) The reference map (section II-B) is deployed consider-
ing one of the UAVs on its center as reference

3) The pollutant plume is linked to the reference map.
During experiments, it is located at four different posi-
tions: northeast, southeast, southwest, and northeast of
the center of the map, keeping their respective locations
for the three strategies

4) Both UAVs take off from different (but inside the area)
locations

Each strategy has a specific behavior in the exploration
and exploitation phases. The exploration phase consists on
the period of time where the UAVs search for a high pollu-
tant measurement. The exploitation phase starts after explo-
ration phase has finished (a high pollutant measurement was
obtained) and consists on the coordination of each UAV to
track the source position.

1) COHERENT EQUIDISTRIBUTED SEARCH WITH
PROBABILITY-BASED TRACKING ALGORITHM (CESPT)
The proposed search strategy is able to guide the UAVs to
maximize the covering area, using different flight heights for
each UAV to avoid collisions during the exploration phase.
To this end, two paths are generated by using coordinates
points based on Hammersley sequences [31]. A Hammersley
sequence of points in a plane has the characteristic of being
equidistributed. This characteristic is important to ensure that
the UAVs visit places throughout the search area.

Once the Hammersley sequence is generated, the points
are scaled according to M and N . Then, the points are split
into two groups by means of the k-means clustering algo-
rithm [32], as shown in Fig. 3.

FIGURE 3. Points (based on Hammersley sequences) clustered and
located in the search area (500m x 500). Boundaries of the search area
are in yellow. Blue points were assigned to UAV1 and green points were
assigned to UAV2.
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FIGURE 4. Once a high measurement of pollutant is detected, the UAV fly
on semicircular trajectories around the plume: against the wind (green
trajectory) or downwind (red trajectory). With every high pollutant
measurement the circle radius is reduced.

Each group of points will be used to build the paths using
a cubic spline planning algorithm [33]. To ensure that each of
the resulting paths is smooth, it is necessary to sort the points
according to their distance matrix, before applying the path
planning algorithm. This situation is solved by using the
Traveling Salesman Problem (TSP) solution [34].

To make the UAVs follow their respective path,
a proper MAVLINK message should be generated. Firstly,
it is necessary to select a type of frame. In this
case a global frame with relative altitude is used.
The MAVLINK parameter that represents this frame
is: MAV_FRAME_GLOBAL_RELATIVE_ALT. Secondly,
the mission item command is created with the MAVLINK
command MAV_CMD_NAV_WAYPOINT. This command
is used to guide the UAV to a specific GPS point and requires
the latitude, longitude and altitude of the target location.
This location is given by the GPS coordinates of the path
previously generated, and a fixed altitude. More information
about theMAVLINK commands and parameters can be found
on [26] and [35].

The exploration phase ends when a high pollutant level is
measured at cell Ck on the reference map. Then, the exploita-
tion phase starts and the probabilistic map (see section II-B)
is built considering current value of Ck . In this phase, each
UAV follows semicircular trajectories around the pointsCprob
and Cmax . The point Cprob is the position with the high-
est probability on the probabilistic map. The point Cmax is
located where the highest pollution measure was taken.When
the UAV measures a high level of contaminant, both points
(Cprob and Cmax) are recalculated, and the semicircle radius
and ground-speed of the UAV that sampled the high measure
are reduced. Fig. 4 shows an illustrative trajectory followed
by a single UAV around a plume.

A simple proportional control allows to generate semicir-
cular trajectories. This control is developed under a North-
East-Down (NED) reference frame. The selected MAVLINK
parameter for this kind of frame is MAV_FRAME_BODY_
NED. With this frame, the x, y and z axis on the NED frame
are relative to the current UAV position. In the proportional
control the velocity on x (Vx) is fixed and the velocity

on y (Vy) is given by:

Vy = −O · Kp · e (14)

where:
• O is the orientation of the UAV movement (O = 1 to
clockwise and O = −1 to counter-clock wise).

• Kp is the proportional gain of the controller.
• e is the difference between the desired radius of the
circular trajectory (R) and the distance from the UAV
to the circle center of that trajectory.

Fig. 5 shows a scheme of the previous variables on
the circular path control. By using the command message
SET_POSITION_TARGET_LOCAL_NED_ENCODE, it is
possible to send the desired velocities Vx and Vy to the UAVs,
through the MAVLINK protocol.

FIGURE 5. Circular path control.

III. EXPERIMENTS AND RESULTS
This section presents a performance comparison of the main
approach and the other three strategies based on the algo-
rithms developed in [3], [36]–[39], to locate a pollutant source
within a simulated environment.

The simulated environment has the following
characteristics:
• The search area has no obstacles for UAVs
• The UAVs autopilot works with the MAVLINK naviga-
tion protocol

• The wind measurements were obtained from a real
anemometer located at 5 meters height

• The simulation time for each experiment is 10 minutes
• There is only one pollutant source in the search area
• Each UAV flies at different altitude
• The search area is a 500 m × 500 m square
• The minimum detection level is 0.01 [ppm] (given
by Official Mexican Standard NOM-038-ECOL-1993,
for SO2). If a sensor measure exceeds this value it is
considered as high pollutant concentration measure

• The GPS always delivers good measurements
In order to compare the results of the CESPT strategy
(or strategy 1), three other search strategies are simulated.
In exploration phase the first strategy to compare (or strategy
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FIGURE 6. Base algorithm used in each strategy.

2) follows circular trajectories around random points on the
search area, in a similar way to the work shown in [37].
In exploitation phase a leader-follower behavior is adopted,
as is proposed by [38]. On this cooperative formation,
the followers fly around the leader in circular trajectories.
To achieve this, the ground velocity of the leader is slow
and the velocity of the follower is higher. The leader always
is flying towards the highest measure detected. The second
comparison strategy (or strategy 3) has a randomwalk behav-
ior in the exploration phase [36]. On the exploitation phase,
a Particle Swarm Optimization algorithm is used to guide the
UAVs [3]. The third comparison strategy (or strategy 4) con-
sists of a Brownian-like movement, developed by S. Zhang
et. al. in [39]. In this work, both phases have similar behavior.
The difference for the exploitation phase is a rule that prevents
the UAV to select a new fly direction if its current pollutant

measure is higher than the previous one. Some modifications
were required to adapt the original algorithm to our simulated
platform:

1) In the exploration phase the x domain of the searchmap
is divided for each UAV

2) The step of the UAVs is divided in half for the exploita-
tion phase

3) The range of motion for both UAVs is restricted to be
one step of the location of the best measurement taken

The base algorithm usedwith each strategy is showed in the
Figure 6. Examples of UAVs flying paths, after each strategy
conclusion, are shown in Figures 7, 8, 9, and 10.

A. PERFORMANCE IN EXPLORATION PHASE
The first results to take into account are the amount of high
measurements obtained during the exploration phase. In order
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FIGURE 7. Behavior of both UAVs on the reference map, for the CESPT
strategy in 10 minutes of flight. Red color represents the pollutant plume,
green color represents trajectory of UAV 1, blue color represents
trajectory of UAV 2.

FIGURE 8. Behavior of both UAVs on the reference map, for strategy 2 in
10 minutes of flight.

FIGURE 9. Behavior of both UAVs on the reference map, for strategy 3 in
10 minutes of flight.

to verify if there is a difference between the 4 strategies,
a Cochran’s Q test was developed. The hypothesis on this test
are:

• H0 = All experiments are equally effective.
• Ha = There is a difference in efficacy between
experiments.

FIGURE 10. Behavior of both UAVs on the reference map, for strategy 4 in
10 minutes of flight.

Each of the 4 strategies was tested 160 times. 80 trials
in which the height of one UAV matches the height of the
polluting source and 80 with both UAVs flying at a height dif-
ferent from source location. It is considered a detection when
a sensor takes a measurement of air pollutant concentration
above the minimum detection level previously established
(0.01 ppm). The number of detections is shown in Table 1.

TABLE 1. Number of detections per each block based on coincidences
with the source height. Match=one UAV flying at source height; No
match= both UAVs flying at heights different from source.

The value of Cochran’s chi-squared statistic for the three
first results is Q = 1.1667. The p-value is 0.558, which
indicates that H0 cannot be rejected. Strategy 4 is not consid-
ered because its results are significantly less than the others.
Results shown that the 3 first strategies in the exploration
phase have equal effectiveness in finding high measurements
of pollutant.

We analyze the time required to perform one loop in each
strategy for each phase. These results were obtained in a
machine running Windows 10 with the processor Intel(R)
Core(TM) i7-3610QM (2.30 GHz). The dispersion of the
results is shown in the figure 11 and table 2. The graph shows
that CESPT needsmore time to perform a loop in both phases.
That is because this strategy needs to compute a search of
the best probability cell, the nearest waypoint in the planned
path, and update the probability map. The other strategies are
based on random numbers that need fewer operations to be
calculated.

Now, an analysis of the time elapsed until the first detec-
tion will be performed for each strategy (time to complete
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TABLE 2. Statistical values for the time needed to perform a loop by each strategy (in seconds).

FIGURE 11. Time required to complete one loop by each phase of each
strategy.

the exploration phase and start the exploitation phase). This
variable is calculated from the time when the UAVs finish
their initialization process until the time the first high concen-
tration of pollutant is measured. The results for this variable
are summarized on Figure 12. The statistics of this graph are
shown in Table 3.

Looking at the box plots, is observed that the second
strategy (in matching experiments) need less time to have the
first detection. In no matching experiments, strategies 1 and
2 have similar results.

B. PERFORMANCE IN EXPLOITATION PHASE
The main objective of the strategies is to find the location of
the pollutant source. The source_location response is a couple
of GPS coordinates given by the pair (latitude, longitude).
Each UAV changes those coordinates during the experiment
when a better level of pollutant is measured. Its final value is
taken when the flying time is over at 10 mins.

It is important to note that the CESPT strategy delivers
2 types of source_location results. The first result corre-
sponds to the deterministic position found by the highest

FIGURE 12. Time required to complete the exploration phase of each
strategy. ‘‘TRUE’’ are experiments when 1 UAV is flying at the height of the
pollutant source. ‘‘FALSE’’ are experiments when none of the UAVs is
flying at the pollutant source height.

measurement taken by the sensors. The second response is the
probable location related with the probabilistic map (shown
in section II-B). It correspond to the cellCi with highest prob-
ability, transforming its indices with Equations (9) and (10).
So, the first case will be represented as strategy 1 and the sec-
ond case was labeled as strategy 1.5.

The first performance index to be compared between
strategies will be the distance to the pollutant source. This
measure is the distance (computed with the Haversine for-
mula, which determines the great-circle distance between
two points on a sphere given their longitudes and latitudes)
between the source_location given by the strategy and the
real coordinates of the pollutant source. Figure 13 shows
the box plots representing the distribution of these results.
The statistical values for these distributions are shown in
Table 4.
It is easily notable that the probabilistic part (strategy 1.5)

of the strategy 1 results on closer locations to the air pollutant
source. The dispersion, represented by the standard deviation
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TABLE 3. Statistical values for time until the first detection (in seconds).

TABLE 4. Statistical values for proximity to the pollutant source (in meters).

FIGURE 13. Summary of results for the distance to the source.

(std), points to the fact that this strategy will have good per-
formance due to its value is considerably smaller. The second
strategy that has good results is the deterministic part of the
same strategy 1. If the non match experiments are analyzed,

the strategy 1.5 has half of its source proximity results to less
than 16 meters. Compared with the rest of strategies with
a median greater than 70, it is indisputably that the better
response is given by strategy 1.

Another important performance index to be analyzed
is the improvement of the results along the experiment.
This response corresponds to the difference of the first
concentration measure and the last one. These results are
shown in Figure 14 and Table 5. This index will show the
effectiveness of the algorithms to find higher pollutants con-
centrations along the time. A small amount of this variable
shows that an UAV found a concentration level and was not
capable to find better measurements. This behavior could be
due to 3 situations:
• The UAV found a very high pollutant concentration in
the first measurement

• The UAV found its first good pollutant measurement
close to the end of flying time

• The algorithm is not capable to find significantly higher
pollutant concentrations

The 3rd strategy has half of their results under 6 ppm. This
response shows that the experiments with this strategy fall
into one of the 3 previously mentioned situations. With these
results it is possible to conclude that the 3rd strategy is the
less efficient to find the pollutant source location.
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TABLE 5. Statistical values for the improvement of measures (in ppms).

TABLE 6. Statistical values for highest detection (in ppms).

FIGURE 14. Performance of each strategy to find higher levels of
pollutant concentration.

The last index to be analyzed is the highest measure-
ment taken by the sensors on the UAVs. Figure 15 and
Table 6 show how these measurements are dispersed. On first
instance a logic supposition is that the distance to the source
and the pollutant levels have a negative correlation on all
experiments. This supposition is true when the height of the

FIGURE 15. Highest concentration levels measured.

pollutant source matches with the flying height of a UAV,
since its correlation index is -0.8. On the other hand, when
no UAV flies at the same height of the pollutant source the
variables are not correlated. The correlation index on this
experiments is -0.15. These results are shown in Figure 16.
They explain the good response of the strategy 1, based on
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TABLE 7. The planning and control components.

the fact this strategy does not depend only on the pollutant
measurements, but in the capability to process information to
take good decisions, specially when none of UAVs is flying
at the source height.

C. SUMMARY OF RESULTS
After the experiments were performed, it is possible to men-
tion the advantages of using strategy 1.

Advantages:

• The strategy is robust in the scenario where no UAV is
flying at the pollutant source height

• The strategy can overcome local maximums
• The exploration phase ensures a distributed route along
the search area

• If one UAV fails in the exploitation phase, the other
UAV provides a good response, considering as constant

previous information (probabilistic or deterministic) of
the UAV with faults

• The strategy can be scaled to use more UAVs, consider-
ing more probabilistic maps (with different dispersion
coefficients for example) or using the second highest
contamination measurement

Some disadvantages are mentioned in order to improve the
strategy in future works.

Disadvantages:
• The UAVs need more time to follow curves too tight on
the exploration phase. This can be addressed by increas-
ing the batteries power or having extra UAVs which take
the place of exhausted UAVs.

• If the wind knowledge is not accurate, the probabilistic
results will be erratic. This can be amended by including
an anemometer in one of the UAVs.
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FIGURE 16. Correlation-dispersion diagram between the highest measure of pollutant and the distance to the pollutant
source.

Finally, Table 7 shows a summary of the main charac-
teristics of each strategy and the results obtained in the
experiments.

IV. CONCLUSION AND FUTURE WORK
In this work we presented an intelligent strategy to locate
an air pollutant source on an outdoor area with two UAVs.
This strategy was compared against other three in simulated
real-time experiments, where a dispersion-advection plume
model was used. Unlike previous similar works, our research
uses more realistic constraints on the UAVs platform (time
of flight, ground speed, sensor sensitivity, communication
coverage), in addition to experimenting with a very large
search area and initial take-offs from different places. The
proposed strategy uses equidistributed search based on Ham-
mersley sequences during the exploration phase. This allows
the UAVs to cover different points of the search area, avoid-
ing the repetition of sampling points. Additionally, k-means
grouping algorithm, TSP solver and cubic spline algorithms
are implemented in this phase to optimize and smooth the
navigation. In exploitation phase the information taken by
sensors is used to compute the probability of finding the
pollutant source and redirect the search to better locations.
In this phase semicircular trajectories with decreasing radius
are implemented.

The best results of the proposed strategy were obtained in
the exploitation stage, showing final locations closer to the
source and higher pollutant concentrations.

Future work will focus on implementing other bioinspired
algorithms to explore in an efficient way the area. Also,

a planning is made to overcome the following disadvan-
tages of the current work: on first instance, is necessary to
add a wind model from acquired wind data to strengthen
the probability map. The second improvement could be the
replacement of the cubic spline with another path tracing
algorithm. That algorithm must generate curved paths able
to diminish the number of speed reductions in UAVs and
increase the chances of having a smoother navigation.

REFERENCES
[1] R.-G. Li and H.-N. Wu, ‘‘Multi-robot source location of scalar fields

by a novel swarm search mechanism with collision/obstacle avoid-
ance,’’ IEEE Trans. Intell. Transp. Syst., early access, Jul. 28, 2020, doi:
10.1109/TITS.2020.3010056.

[2] Y. Yang, B. Zhang, Q. Feng, H. Cai, M. Jiang, K. Zhou, F. Li, S. Liu, and
X. Li, ‘‘Towards locating time-varying indoor particle sources: Develop-
ment of two multi-robot olfaction methods based on whale optimization
algorithm,’’ Building Environ., vol. 166, Dec. 2019, Art. no. 106413.

[3] R. Zou, V. Kalivarapu, E. Winer, J. Oliver, and S. Bhattacharya, ‘‘Particle
swarm optimization-based source seeking,’’ IEEE Trans. Autom. Sci. Eng.,
vol. 12, no. 3, pp. 865–875, Jul. 2015.

[4] K. Nickels, H. Nguyen, D. Frasch, and T. Davison, ‘‘Effective exploration
behavior for chemical-sensing robots,’’ Biomimetics, vol. 4, no. 4, p. 69,
Oct. 2019.

[5] X. Chen and J. Huang, ‘‘Combining particle filter algorithm with bio-
inspired anemotaxis behavior: A smoke plume tracking method and
its robotic experiment validation,’’ Measurement, vol. 154, Mar. 2020,
Art. no. 107482.

[6] Q. Feng, C. Zhang, J. Lu, H. Cai, Z. Chen, Y. Yang, F. Li, and X. Li,
‘‘Source localization in dynamic indoor environments with natural ven-
tilation: An experimental study of a particle swarm optimization-based
multi-robot olfaction method,’’ Building Environ., vol. 161, Aug. 2019,
Art. no. 106228.

[7] D. Facinelli, M. Larcher, D. Brunelli, and D. Fontanelli, ‘‘Cooperative
UAVs gas monitoring using distributed consensus,’’ in Proc. IEEE 43rd
Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2019, pp. 463–468.

VOLUME 9, 2021 118179

http://dx.doi.org/10.1109/TITS.2020.3010056


A. F. García-calle et al.: Equidistributed Search+Probability Based Tracking Strategy

[8] J. Euler and O. von Stryk, ‘‘Optimized vehicle-specific trajectories for
cooperative process estimation by sensor-equipped UAVs,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 3397–3403.

[9] B. Bayat, N. Crasta, A. Crespi, A. M. Pascoal, and A. Ijspeert, ‘‘Envi-
ronmental monitoring using autonomous vehicles: A survey of recent
searching techniques,’’ Current Opinion Biotechnol., vol. 45, pp. 76–84,
Jun. 2017.

[10] P. Li and H. Duan, ‘‘A potential game approach to multiple UAV coopera-
tive search and surveillance,’’ Aerosp. Sci. Technol., vol. 68, pp. 403–415,
Sep. 2017.

[11] T. F. Villa, F. Salimi, K. Morton, L. Morawska, and F. Gonzalez, ‘‘Devel-
opment and validation of a UAV based system for air pollution measure-
ments,’’ Sensors, vol. 16, no. 12, p. 2202, 2016.

[12] N. Ya’acob, M. Zolkapli, J. Johari, A. L. Yusof, S. S. Sarnin, and
A. Z. Asmadinar, ‘‘UAV environment monitoring system,’’ in Proc. Int.
Conf. Electr., Electron. Syst. Eng. (ICEESE), Nov. 2017, pp. 105–109.

[13] N. M. Yungaicela-Naula, L. E. Garza-Castanón, A. Mendoza-Domınguez,
L. I. Minchala-Avila, and L. E. Garza-Elizondo, ‘‘Design and implemen-
tation of an UAV-based platform for air pollution monitoring and source
identification,’’ in Proc. Congr. Nac. Control Autom., 2017, pp. 288–293.

[14] M. Rossi and D. Brunelli, ‘‘Autonomous gas detection and mapping with
unmanned aerial vehicles,’’ IEEE Trans. Instrum. Meas., vol. 65, no. 4,
pp. 765–775, Apr. 2016.

[15] K. Hoshiba, K. Washizaki, M. Wakabayashi, T. Ishiki, M. Kumon,
Y. Bando, D. Gabriel, K. Nakadai, and H. Okuno, ‘‘Design of UAV-
embedded microphone array system for sound source localization in out-
door environments,’’ Sensors, vol. 17, no. 11, p. 2535, 2017.

[16] O. Black, J. Chen, A. Scircle, Y. Zhou, and J. V. Cizdziel, ‘‘Adaption
and use of a quadcopter for targeted sampling of gaseous mercury in the
atmosphere,’’ Environ. Sci. Pollut. Res., vol. 25, no. 13, pp. 13195–13202,
May 2018.

[17] S. Yang, R. Talbot, M. Frish, L. Golston, N. Aubut, M. Zondlo,
C. Gretencord, and J. McSpiritt, ‘‘Natural gas fugitive leak detection using
an unmanned aerial vehicle: Measurement system description and mass
balance approach,’’ Atmosphere, vol. 9, no. 10, p. 383, Oct. 2018.

[18] Y. Yang, Z. Zheng, K. Bian, L. Song, and Z. Han, ‘‘Real-time profiling
of fine-grained air quality index distribution using UAV sensing,’’ IEEE
Internet Things J., vol. 5, no. 1, pp. 186–198, Feb. 2018.

[19] R. Kristiansen, E. Oland, and D. Narayanachar, ‘‘Operational concepts in
UAV formation monitoring of industrial emissions,’’ in Proc. IEEE 3rd Int.
Conf. Cognit. Infocommun., Dec. 2012, pp. 339–344.

[20] J. Han, ‘‘Small unmanned aircraft systems for cooperative source seeking
with fractional order potential fields,’’ in Proc. Chin. Control Decis. Conf.
(CCDC), Jun. 2018, pp. 6677–6683.

[21] Z. Fu, Y. Chen, Y. Ding, and D. He, ‘‘Pollution source localization
based on multi-UAV cooperative communication,’’ IEEE Access, vol. 7,
pp. 29304–29312, 2019.

[22] A. Marjovi and L. Marques, ‘‘Optimal swarm formation for odor plume
finding,’’ IEEE Trans. Cybern., vol. 44, no. 12, pp. 2302–2315, Dec. 2014.

[23] V. Šmídl and R. Hofman, ‘‘Tracking of atmospheric release of pollution
using unmanned aerial vehicles,’’ Atmos. Environ., vol. 67, pp. 425–436,
Mar. 2013.

[24] J. Euler, A. Horn, D. Haumann, J. Adamy, and O. V. Stryk, ‘‘Cooperative
n-boundary tracking in large scale environments,’’ in Proc. IEEE 9th Int.
Conf. Mobile Ad-Hoc Sensor Syst. (MASS ), Oct. 2012, pp. 1–6.

[25] R.-C. Lee and Y.-H. Chen, ‘‘Dual UAV PM2.5 pollution source tracking
system,’’ in Proc. IEEE Eurasia Conf. IoT, Commun. Eng. (ECICE),
Oct. 2019, pp. 384–386.

[26] A. Koubaa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and
A. M. Khalgui, ‘‘Micro air vehicle link (MAVlink) in a nutshell: A survey,’’
IEEE Access, vol. 7, pp. 87658–87680, 2019.

[27] A. Viseras, T. Wiedemann, C. Manss, L. Magel, J. Mueller, D. Shutin, and
L. Merino, ‘‘Decentralized multi-agent exploration with online-learning
of Gaussian processes,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2016, pp. 4222–4229.

[28] B. Hosseini, ‘‘Dispersion of pollutants in the atmosphere: A numerical
study,’’ M.S. thesis, Dept. Math. Fac. Sci., Simon Fraser Univ., Burnaby,
BC, Canada, 2013.

[29] J. Welty, E. C. Wicks, L. G. Rorrer, and E. R. Wilson, Fundamentals
Momentum, Heat Mass Transfer. Hoboken, NJ, USA: Wiley, 2007, p. 412.

[30] S. Pang and J. A. Farrell, ‘‘Chemical plume source localization,’’ IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 36, no. 5, pp. 1068–1080,
Oct. 2006.

[31] T.-T. Wong, W.-S. Luk, and P.-A. Heng, ‘‘Sampling with Hammersley and
Halton points,’’ J. Graph. Tools, vol. 2, no. 2, pp. 9–24, Jan. 1997.

[32] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, Applica-
tion. Philadelphia, PA, USA: SIAM, 2020.

[33] L. Nam, L. Huang, X. J. Li, and J. Xu, ‘‘An approach for coverage
path planning for UAVs,’’ in Proc. IEEE 14th Int. Workshop Adv. Motion
Control (AMC), Apr. 2016, pp. 411–416.

[34] D. Davendra, Traveling Salesman Problem: Theory Application.
Norderstedt, Germany: BoD–Books on Demand, 2010.

[35] Dronecode Project. Mavlink Common Message Set. Accessed:
Dec. 15, 2020. [Online]. Available: https://mavlink.io/en/messages/
common.html#MAV_CMD_NAV_WAYPOINT

[36] J. R. Bourne, E. R. Pardyjak, and K. K. Leang, ‘‘Coordinated Bayesian-
based bioinspired plume source term estimation and source seeking
for mobile robots,’’ IEEE Trans. Robot., vol. 35, no. 4, pp. 967–986,
Aug. 2019.

[37] G. Ferri, E. Caselli, V. Mattoli, A. Mondini, B. Mazzolai, and P. Dario,
‘‘A biologically-inspired algorithm implemented on a new highly flexible
multi-agent platform for gas source localization,’’ in Proc. 1st IEEE/RAS-
EMBS Int. Conf. Biomed. Robot. Biomechatron., 2006, pp. 573–578.

[38] S. Zhu, D. Wang, and C. B. Low, ‘‘Cooperative control of multiple
UAVs for source seeking,’’ J. Intell. Robot. Syst., vol. 70, nos. 1–4,
pp. 293–301, 2013.

[39] S. Zhang, Z. Liu, J. Liu, T. Ding, and S. Wei, ‘‘Simulation implementation
of air pollution traceability algorithm based on unmanned aerial vehicle,’’
in IOPConf. Ser., Earth Environ. Sci., vol. 675,May 2021, Art. no. 012012.

ANDRÉS F. GARCÍA-CALLE was born in Cuenca,
Azuay, Ecuador, in 1993. He received the Engi-
neering degree in electronics and telecommunica-
tions from the Universidad de Cuenca, Ecuador,
and the M.Sc. degree in sciences of engineering
from Tecnologico de Monterey, Monterrey, Mex-
ico, in 2017 and 2019, respectively.

From 2018 to 2019, he was a Research Assistant
with the Robotics Laboratory of the Northeast and
Central Area of Mexico, Tecnologico de Monter-

rey. Since 2020, he has been an independent worker focused on data science,
optimization, automatic control, and communication protocols.

LUIS E. GARZA-CASTAÑÓN (Member, IEEE)
was born inMonclova, Coahuila, Mexico, in 1963.
He received the Engineering degree in electronic
systems, the M.Sc. degree in control engineering,
and the Ph.D. degree in artificial intelligence from
Tecnologico de Monterrey, Monterrey, Mexico,
in 1986, 1988, and 2001, respectively.

From 1999 to 2003, he was a Lecturer with the
Physics Department, Tecnologico de Monterrey.
Since 2004, he has been an Associate Professor

with the Mechatronics Department, Tecnologico de Monterrey at Monterrey.
He is the author of more than 100 articles, chapter books, and books.
His research interests include autonomous vehicles, machine learning, fault
detection, diagnosis and control, image processing, and advanced control
applications.

LUIS I. MINCHALA-AVILA (Senior Member,
IEEE) received the B.S.E.E. degree from Salesian
Polytechnic University, Cuenca, Ecuador, in 2006,
and the M.Sc. and Ph.D. degrees from the Instituto
Tecnológico y de Estudios Superiores de Mon-
terrey, Monterrey, Mexico, in 2011 and 2014,
respectively. FromSummer 2012 to Summer 2013,
he was a Visiting Scholar with Concordia Univer-
sity, Montreal, QC, Canada. From 2017 to 2018,
he was a Postdoctoral Fellow with the Climate

Change Research Group, Tecnologico de Monterrey. He is currently a
full-time Researcher with the School of Engineering and Sciences, Tecno-
logico de Monterrey, Guadalajara, Mexico. He has authored and coauthored
over 60 indexed publications, including journal articles, conference proceed-
ings, book chapters, and a book.

118180 VOLUME 9, 2021


