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ABSTRACT Learning multiple related graphs from many distributed and privacy-required resources is
an important and common task in neuroscience applications. Medical researchers can comprehensively
investigate the diagnostic evidence and understand the cause of certain brain diseases via analyzing the
commonalities and differences of the brain connectomes predicted from the fMRI data across multiple
hospitals. Previous sparse Undirected Graphical Model (sUGM) methods either cannot take full usage of
the heterogeneous data while preserving privacy or miss the capability of handling the nonparanormal data,
which is highly non-independent and identically distributed (non-i.i.d.). This paper proposes a novel and
efficient approach, FEDJEM (federated joint estimator of multiple sUGMs), that trains the multi-sUGMs
over a massive network encompassing various local devices and the global center. In order to efficiently
process the datasets with different nonparanormal distributions, the proposed federated algorithm fully
exploits the computing power of the local devices and cloud center while federated updates ensure that
personal data remain local, thus defending the privacy. We also implement a general federated learning
framework formulti-task learning based on ourmethod.We apply ourmethod onmultiple simulation datasets
to evaluate its speed and accuracy in comparison with relevant baselines and develop a strategy accordingly
to balance its computation and communication abilities. Finally, we predict several informative groups of
connectomes based on the real-world dataset.

INDEX TERMS Federated learning, multi-task learning, graphical model.

I. INTRODUCTION
There has been a wild revolution in collectingmassive hetero-
geneous data [1], [2] across many scientific fields in recent
years. For example, different hospitals have been constantly
collecting the medical data and information of Alzheimer’s
patients of different races, genders, ages, and regions with
widely used and advanced medical devices. Learning multi-
ple related graphs from such heterogeneous data has become
an important task. For instance, we can learn multiple related
brain connectomes of Alzheimer’s patients from several
fMRI datasets obtained from different hospitals. Those con-
nectomes can help researchers better understand the charac-
teristics and underlying causes of the disease. Unlike transfer
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learning, learning multiple related networks facilitates the
exploration of the similarities and differences of connectomes
without transferring datasets from related tasks. Doctors can
investigate diagnostic evidence based on the shared features
revealed by the commonalities of the connectomes. In addi-
tion, novel causes of a disease may emerge when analyzing
the differences from normal connectomes [3].

Traditionally, the Ising model [4], a method based on
`1-regularized logistic regression, is applied to estimate the
structure of a high-dimensional graph. However, three main
obstacles that prevent real-world applications from learning
multiple graphical models from heterogeneous data exist in
this approach [5]:

• Dilemma between performance and communica-
tion: Massive data can enhance model performance
by increasing data heterogeneity, but also create
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FIGURE 1. An illustration of the training model. Multiple related graphs are inferred from the heterogeneous datasets here over a three-step
process. 1) We calculate the Kendall’s tau correlation estimation of the fMRI data to obtain the correlation matrices. 2) We apply FEDJEM to the
joint estimation of the precision matrices. 3) We recover the brain connectomes by decoding the sparsity pattern of the precision matrices.

unacceptable communication load due to the high data
capacity [6], [7]. Applying fewer data samples is an
intuitive way to resolve this problem, but it drives down
model performance [8]. In most cases, it is not possible
to obtain high performance and low communication cost
simultaneously.

• Privacy preservation: Patient data typically contain
personal information [9]. Collecting such data in the
cloud center can cause a serious privacy problem.
Researchers are not allowed to access raw data from
the hospital database [10] directly in most circumstances
due to the high risk of leaking private information.

• Non-independent and identically distributed
(non-i.i.d.) datasets: To enhance the heterogeneity of
data, it is necessary to collect massive data from different
sources; this gives the datasets disparate distributions.
There is a serious bottleneck to exploiting training data if
the datasets from different tasks follow non-independent
and identically distributions, e.g., one dataset follows a
Gaussian distribution but the other one does not. Many
existing methods require the datasets from different
tasks to follow the same or similar distributions. There is
a huge reduction in model performance when applying
them to non-i.i.d data.

To overcome these obstacles, researchers have developed a
series of sparse Gaussian Graphical Model (sGGM) methods
which can effectively predict graphs with relatively few data
samples under the Gaussian assumption. The graph structure
is hidden in the inverse of the covariance matrix, namely,
the precision matrix (i.e., � = 6−1). GLasso [11], [12],
for example, inferred a graph through decoding the spar-
sity pattern in a precision matrix. The `1-penalized log-
likelihood method is applied to obtain the precision matrix.
Unlike GLasso, CLIME makes an inverse matrix estimation
by optimizing an `1 constrained problem with regards to
the precision matrix. Those models overcome communica-
tion and privacy challenges successfully because they learn
each model on each dataset individually. Each model can be
trained in local devices without requiring data transmission
(i.e., with no communication cost), thus protecting patient
privacy [13]. However, such individual training models still
tend to encounter the first obstacle described above; they also
tend to have inferior performance compared to models based
on heterogeneous data.

In an effort to resolve the model performance issue,
researchers proposed Multi-task Learning [14] in 1997. This
approach has since been applied throughout various machine-
learning domains. Previous researchers have also introduced
multi-task learning to improve the generalization of the single
sGGM in response to the data scarcity problem. [15]–[24]
proposed the multi-task sGGM, which jointly estimates K
different but related sGGMs. These methods enhance the
generalization ability of the model, but require that all data
should be collected in the cloud center. As mentioned above,
this implies a significant risk that private data might be leaked
and heavy communication load which causes unacceptable
transmission time. In addition, current multi-task sGGMs
assume that all the data from different tasks follow the Gaus-
sian distribution. This is not the case in most real-world appli-
cation situations. In general, most multi-task sGGMmethods
fail to get out of the dilemma and still struggle in the last two
challenges.

In this study, we develop a novel model, the federated joint
estimator of multiple sparse Undirected Graphical Models
(FEDJEM), to estimate multiple sparse Undirected Graphical
Models (sUGMs) jointly via a federated learning algorithm.
We design this model to address the three challenges dis-
cussed above. This model allows local data to be processed
and computed in local devices, then communicates their
updates to the cloud center in order to train a global graph-
ical model. FEDJEM (illustrated in Fig. 1) can also handle
multivariate nonparanormal data, which relaxes the normality
assumption that most real-world non-i.i.d. data do not follow.
Our contributions can be summarized as follows:

• Novel model: We present the novel, privacy-preserving
FEDJEM, a federated multi-task sUGM method,
wherein a federated update algorithm first separates the
computation process into local devices and a global
center. We design the model to safeguard private infor-
mation as only model parameters are transmitted in
this process. All personal data are stored and processed
locally and prior to model training.

• Novel relaxation: Considering the properties of real-
world non-i.i.d. data, our method can manage data with
a nonparanormal distribution, which is a much larger
superset of the Gaussian Distribution.

• Swiftness and efficiency: Our method is a fast and effi-
cient federated algorithm. The computing power of local
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devices is harnessed to minimize the computation load
on the cloud center. The transmitted data are relatively
small because only parameter updates are communi-
cated between the edges and center.

• General framework: We implement a general fed-
erated learning framework for multi-task learning
based on our method. This framework would allow
others to easily utilize federated multi-task learning
while only focusing on the implementation of local
and global updates. Our codes can be found on
https://github.com/MahjongGod-Saki/FEDJEM

The rest of this paper is organized as follows. Section II
provides the relevant background material. Section III intro-
duces our method in detail and discusses its main properties.
Section IV gives an analysis of its computation and com-
munication cost and convergence. Section V presents pre-
vious work related to our method. Our experimental results
are discussed in Section VI. Section VII suggests several
potential strategies to balance local and global computation
and communication time in practice and provides some ideas
of future work. Section VIII provides a brief summary and
concluding remarks.

A. NOTATIONS
We choose X(i)

∈ Rni×p to represent the i-th dataset with
ni samples and p features. {X(i)

} = {X(1),X(2), . . . ,X(K )
}

denotes K datasets generated by K different tasks and nodes.
6(i)
∈ Rp×p represents the covariance matrix of the dataset

X(i). �(i)
= 6(i)−1

∈ Rp×p denotes the inverse of the
covariance matrix. {6(i)

} = {6(1), . . . , 6(K )
} and {�(i)

} =

{�(1), . . . , �(K )
} are the sets of the covariance matrices and

precision matrices corresponding to the datasets. We list the
notations used in this paper in Table 1.

II. BACKGROUND
A. SPARSE GAUSSIAN GRAPHICAL MODEL
A single-task sparse Gaussian Graphical Model (sGGM)
assumes that data samples follow a normal distribution
N (µ,6) with mean vector µ and covariance matrix 6. The
graphical lasso (GLasso) is a penalized maximum likelihood
estimator for precision matrix� inference. The model can be
written as:

�̂glasso = argmin
�≥0

L(�)+ λ‖�‖1

= argmin
�≥0

− log det(�)+ < �,6 > +λ‖�‖1, (1)

where L(�) is the log-likelihood function of �.

B. FEDERATED MULTI-TASK LEARNING
The federated learning problem involves training a global
machine learning model from the data stored locally, i.e., on
multiple remote devices. The goal of this learning strategy
is to locally store and process data generated by the devices.
We only communicate the intermediate updates of parameters
periodically utilizing central computing power. The typical

TABLE 1. Notations used in this paper.

optimization problem of federated learning is:

argmin
ω

L(ω) =
m∑
i=1

piLi(ω). (2)

where Li is the objective function the i-th device and pi is its
weight, pi ≥ 0 and

∑
i
pi = 1.

Federated learning comes with statistical challenges in
regards to training machine-learning models, mainly due to
the variability of the number of data points on each device.
A single global model cannot capture every piece of local
knowledge. We should naturally obtain separate models for
each node rather than training a single global model across
the network. [25] shows that a combination of federated
learning and multi-task learning, namely multi-task federated
learning, performs significantly better. The federated multi-
task learning framework can be formalized as follows:

argmin
ω

(L(ω)+R(ω)) =
m∑
i=1

piLi(ωi)+Rtotal(ω), (3)

where ω = (ω1, ω2, . . . , ωm), pi ≥ 0, and
∑
i
pi = 1.

III. METHOD: FEDERATED JOINT ESTIMATOR OF
MULTIPLE sUGMs
We focus here on a federated multi-task undirected graphi-
cal model problem. To resolve this problem, we design the
proposed method as per four distinct properties. 1) Various
data are stored and processed on different local devices in a
distributed environment, so every node trains its own model
locally and then communicates its updates to the center in
order to train a global model. The model parameters are
updated in a federated manner. 2) The collected data are
in a highly non-i.i.d. manner due to the differences of the
storage devices and data source. 3) Personal data are kept
safe because each node does not communicate its data with
other devices and instead processes it locally. 4) Compared
with the single-task graphical model, our federated multi-
task graphical model fuses both global similarity knowledge
and differences between tasks. This encourages better perfor-
mance on real-world data, as evidenced by our experimental
results. Fig. 2 shows the detailed flow diagram of our pro-
posed method.

VOLUME 9, 2021 104081



X. Tan et al.: Fast and Privacy-Preserving FEJEM-sUGMs

FIGURE 2. The flow diagram of proposed method. As the proposed method is applied, each hospital stores and processes the fMRI data of its patients
locally. We estimate the precision matrix �

(i )
(t) of each task in the t-th iteration through the local update step in local devices. Next, we communicate the

updated precision matrix to the cloud center. The center updates the variables 9
(i )
(t) and U(i )

(t) according to the received {�
(i )
(t)}. Finally, the model transmits

the global updates back to the edge for the (t + 1)th iteration.

Our goal is to estimate multiple related graphs {�(i)
}.

Based on (3), our federated multi-task learning framework
can be formalized as follows:

{�̂(i)
} = argmin

�(i)≥0

K∑
i=1

piLi(�(i))+Rtotal({�(i)
}). (4)

Three components remain to be determined in the above
equation: 1) The objective functionLi(·) is related to the log-
likelihood function mentioned in (1), 2) the weight pi, which
should be associated with the number of samples, and 3) the
total regularization functionRtotal(·), which should be able
to capture both the sparsity pattern and the heterogeneity of
the precision matrices.

Based on (1), we first apply the log-likelihood function
to design Li(�(i)) = N · L(�(i)), where L(�(i)) is as in (1)
and N =

∑
i
ni. To make

∑
i
pi = 1, we set pi =

ni
N .

We let Rtotal({�(i)
}) = λ1‖�

(i)
‖1 + λ2R(�(1), . . . , �(K )).

We choose `1 norm as our first regularization function to con-
strain the sparsity of every precision matrix �(i). The second
regularization function R(·) enforces the group sparsity or
similarity of all the precision matrices {�(i)

}. From (4), our
proposed method can be represented as (5).

{�̂(i)
} = argmin

�(i)≥0

K∑
i=1

niL(�(i))+Rtotal({�(i)
})

= argmin
�(i)≥0

K∑
i=1

(
−ni log det(�(i))+ ni < �(i), 6(i) >

)
+

(
λ1‖�

(i)
‖1 + λ2R(�(1), . . . , �(K ))

)
. (5)

A. MULTIPLE NONPARANORMAL GRAPHICAL MODELS
FOR NON-I.I.D DATA (MULTI-NGMs)
In the real world, it is not ideal to assume that data always fol-
low a Gaussian distribution. We introduce the nonparanormal
distribution here to relax the normality assumption. A non-
paranormal dataset X(i) contains ni independent observations
of a p-dimensional random vector Z(i)

= (Z1,Z2, . . . ,Zp)>.
There exist a set of univariate strictly increasing transforma-
tions f (i) = {f (i)j }

p
j=1 such that:

f (i)(Z(i))=
(
f (i)1 (Z1) , . . . , f (i)p

(
Zp
))>
∼N (µ(i), 6(i)). (6)

While the variable Z(i) follows a nonparanormal distribu-
tion, the transformation functions make f (i)(Z(i)) follow a
Gaussian distribution. The remaining problem is to obtain
graphs from data observations. It is impossible to estimate
the covariance matrix 6(i) directly in nonparanormal dis-
tribution. There is a mathematical relationship between the
covariance matrix and correlation matrix S such that: 6 =
diag(6i)Sdiag(6i). Thereby we have

6−1 = diag(6i)−1S−1diag(6i)−1, (7)

where 6i =
√
cov(Zi,Zi) and diag(6i) = diag(61, . . . , 6p).

As a result, the inverse of correlation matrix S−1 and the
inverse of covariance matrix6−1 have the same nonzero and
zero entries. In other words, S−1 and6−1 have the exact same
sparsity pattern. Based on this observation, we can infer the
graph structure by utilizing the correlation matrix S instead
of 6.

Therefore, an efficient nonparametric estimator [26] for
the correlation matrix S has been established. To estimate
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S, [26] uses the population Kendall’s tau correlation coef-
ficients τjk . So, given the above nonparanormal distribution
Z(i)
∼ NPNp(µ(i), 6(i)

; f (i)1 , . . . , f (i)p ), its correlation matrix
can be estimated as follows:

Ŝjk = sin
(π
2
τ̂jk

)
, (8)

where the Kendall’s tau τ̂jk can be estimated as
1

n(n−1)

∑
1≤r≤r ′≤n

sign
(
(X (i)

rj − X
(i)
r ′j)(X

(i)
rk − X

(i)
r ′k )
)

and X (i)
rj

denotes the j-th feature of the r-th sample in the dataset X(i).
By replacing the covariance matrix6(i) with the estimated

correlation matrix Ŝ(i), our objective function (5) can be
formalized as follows:

�̂(1), �̂(2), . . . , �̂(K )

= argmin
�(i)≥0

K∑
i=1

(
−ni log det(�(i))+ ni < �(i), Ŝ(i) >

)
+

(
λ1‖�

(i)
‖1 + λ2R(�(1), . . . , �(K ))

)
(9)

B. FEDERATED OPTIMIZATION OF THE FEDJEM
From (9) we observe that:

• When optimizing the multi-task objective function (9),
we only use the correlation matrix of the data Ŝ(i). There
is no data transmission between the local devices and the
center server, so the risk of leaking the raw data are low.

• When optimizing L(�(i)) = − log det(�(i))+ <

�(i), Ŝ(i) >, we only use a single precision matrix.
As a result, L(�(i)) can be updated locally. However,
optimizing the regularization function Rtotal({�(i)

}) =
λ1‖�

(i)
‖1 + λ2R(�(1), �(2), . . . , �(K )) requires all

updates communicated from the distributed devices.
Therefore, Rtotal({�(i)

}) should be updated globally in
the center server.

Based on these two observations, we choose the alternating
method of multipliers (ADMM)method to ensure that L(�(i))
and Rtotal({�(i)

}) can be optimized locally and globally,
respectively. Consequently, we introduce new variables {9(i)

}

and add a group of constraints �(i)
= 9(i), i = 1, 2, . . . ,K .

The ADMM is used to design the FEDJEM for the federated
joint estimator of multiple sUGMs. The objective function is
as follows:

{�̂(i)
}, {9̂(i)

}

= argmin
�(i)≥0,9(i)≥0

K∑
i=1

(
−ni log det(�(i))+ ni < �(i), Ŝ(i) >

)
+

(
λ1‖9

(i)
‖1 + λ2R(9(1), . . . , 9(K ))

)
s.t. �(i)

= 9(i). (10)

The augmented Lagrangian function [27] of (10) is given
by:

J ({�(i)
}, {9(i)

}, {U(i)
})

FIGURE 3. Visualization of the algorithm 1.

=

K∑
i=1

(
−ni log det(�(i))+ ni < �(i), Ŝ(i) >

)
+

(
K∑
i=1

λ1‖9
(i)
‖1 + λ2R(9(1), 9(2), . . . , 9(K ))

)

+
ρ

2

K∑
i=1

‖�(i)
−9(i)

+ U(i)
‖
2
F , (11)

where {U(i)
} = {U(1), . . . ,U(K )

} are dual variables.
At the t-th iteration, we can solve (11) as

follows:

1) Local update:
{�

(i)
(t)} := argmin

{�(i)}

{
J ({�(i)

}, {9
(i)
(t−1)}, {U

(i)
(t−1)})

}
.

2) Global update:
{9

(i)
(t)} := argmin

{9(i)}

{
J ({�(i)

(t)}, {9
(i)
}, {U(i)

(t−1)})
}
.

3) Global update:{U(i)
(t)} = {U

(i)
(t−1)} + {�

(i)
(t)} − {9

(i)
(t)}.

The pseudo code of FEDJEM is summarized in
Algorithm 1 and Fig. 3 is a visualization of the algorithm.

C. FEDERATED LOCAL UPDATE OF �(i )

Taking the derivative of (11) with respect to �(i), we can
update �(i) as the minimizer of

�̂(i)
= argmin

�(i)≥0
−ni log det(�(i))+ ni < �(i), Ŝ(i) >

+
ρ

2
‖�(i)

−9(i)
+ U(i)

‖
2
F . (12)

Let the derivative be 0 to obtain (13):

�(i)−1
−
ρ

ni
�(i)
= Ŝ(i) −

ρ

ni
9(i)
+
ρ

ni
U(i). (13)

The updated �(i) can be represented as

�̂(i)
= Vdiag

(
ni
2ρ

(
− Djj +

√
D2
jj +

4ρ
ni

))
V>. (14)

Djj denotes the j-th diagonal element of the diagonal
matrix D and VDV> denotes the eigendecomposition of
Ŝ(i) − ρ

ni
9(i)
+

ρ
ni
U(i), the right side of (13).
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Algorithm 1 FEDJEM

Data: Number of tasks K , original data {X(i)
},

the maximum of iterations T , tuning
parameters{λ1, λ2, ρ, ε}.

1 initialize the model variables:
�(i)
= I, 9(i)

= 0,U(i)
= 0 for i = 1, 2, . . . ,K .

2 for iterations t = 1 to T do
3 for tasks i ∈ {1, 2, . . . ,K } in parallel over K devices

do
4 �

(i)
(t) := argmin

�(i)
J (�(i), 9

(i)
(t−1),U

(i)
(t−1))

5 end
6 for variables {9(i)

(t)}, {U
(i)
(t)} in the center server do

7 {9
(i)
(t)} := argmin

{9(i)}

{
J ({�(i)

(t)}, {9
(i)
}, {U(i)

(t−1)})
}

8 {U(i)
(t)} := {U

(i)
(t−1)} + {�

(i)
(t)} − {9

(i)
(t)}

9 end

10 if
K∑
i=1

‖�
(i)
(t)−�

(i)
(t−1)‖F

‖�
(i)
(t)‖2

< ε then

11 break;
12 end
13 end

Result: Precision matrices {�(i)
}

D. FEDERATED GLOBAL UPDATE OF 9(i )

Taking the derivative of (11) with respect to {9(i)
}, we can

update {9(i)
} as the minimizer of

{9̂(i)
} = argmin

{9(i)}

( K∑
i=1

λ1‖9
(i)
‖1 + λ2R(9(1), . . . , 9(K ))

)
+
ρ

2

K∑
i=1

‖�(i)
+ U(i)

−9(i)
‖
2
F . (15)

We choose the fused graphical lasso and group graphical
lasso as our regularization functionR(·). In simplicity of the
notations, we denote B(i)

= �(i)
+ U(i).

1) VARIATION I: FEDJEM-GROUP
If R(·) is the group-2 norm of the parameter, we can plug it
into (11). Then, the loss function J ({�(i)

}, {9(i)
}, {U(i)

}) has
the following formulation:

J ({�(i)
}, {9(i)

}, {U(i)
})

=

K∑
i=1

niL(�(i))+ λ1
K∑
i=1

∑
j6=k

|9
(i)
jk |

+λ2
∑
j6=k

√√√√ K∑
i=1

9
(i)
jk

2
+
ρ

2

K∑
i=1

‖9(i)
− B(i)

‖
2
F . (16)

It follows that (16) is a linear system of B(i)jk and 9(i)
jk .

By solving the linear system of B(i)jk , we can reach the solution

of (16) as:

9̂
(i)
jk := S(B(i)jk ,

λ1

ρ
) max

(
1−

λ2

ρ

√
K∑
i=1

S(B(i)jk ,
λ1
ρ
)2

, 0
)
, (17)

where S denotes the soft-thresholding operator.

2) VARIATION II: FEDJEM-FUSED
If the R(·) is generalized fused lasso penalty, then the
loss function J ({�(i)

}, {9(i)
}, {U(i)

}) has the following
formulation:

J ({�(i)
}, {9(i)

}, {U(i)
})

=

K∑
i=1

niL(�(i))+ λ1
K∑
i=1

∑
j6=k

|9
(i)
jk |

+λ2
∑
i<i′

∑
j,k

|9
(i)
jk −9

(i′)
jk | +

ρ

2

K∑
i=1

‖9(i)
− B(i)

‖
2
F . (18)

We can use an iterative solution to obtain the optimal value
of 9(i)

jk in (18). In the case of K = 2 and λ1 = 0, the solution
to (18) is:(
9̂

(1)
jk , 9̂

(2)
jk

)

:=



(
B(1)jk −

λ2

ρ
,B(2)jk +

λ2

ρ

)
if B(1)jk > B(2)jk +

2λ2
ρ(

B(1)jk +
λ2

ρ
,B(2)jk −

λ2

ρ

)
if B(2)jk > B(1)jk +

2λ2
ρ(

B(1)jk + B
(2)
jk

2
,
B(1)jk + B

(2)
jk

2

)
if
∣∣∣B(1)jk − B(2)jk ∣∣∣ ≤ 2λ2

ρ

(19)

IV. PRACTICAL CONSIDERATION
A. COMPUTATION ADAPTION ON LOCAL DEVICES
The whole computation cost can be split into three parts
according to the three steps. The first step is to update
�(1), �(2), . . . , �(K ), the computational complexity of which
is mainly decided by the eigendecomposition of K p ×
p matrices, O(Kp3) [28]. The second step is to update
9(1), 9(2), . . . , 9(K ) which involves some basic operations
on the matrices. The computational complexity of this step is
O(Kp2), as is that of the third step. Thus, the computational
complexity of our method is O(Kp3).

B. COMMUNICATION ADAPTATION
The communication cost is determined by the size of the
transmitted data. If we communicate the datasets {X(i)

} to
the center server directly, the number of samples of X(i) dra-
matically affects the communication efficiency [29]. Usually,
the number of samples ni is several times greater than the
dimensions (ni � p), which is extremely costly. In our
method, we only exchange the updated variance matrices
{�(i)
}, {9(i)

}, {U(i)
}, which reduces the communication cost

substantially.
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C. CONVERGENCE GUARANTEE
We assume that the functions L(·) and Rtotal(·) are closed,
proper and convex, and that the augmented Lagrangian J (·)
has a saddle point. According to the theorem in [27], if there
exists an optimal point �∗, then �(t)→ �∗ when t →∞.

D. DATA PRIVACY
We do not share the original datasets {X(i)

}, but rather transfer
the model updates between the edge devices and the center
server. Thus, we hardly infer the real data from the updates
so that the data remain private.

V. RELATED WORK
A. JOINT ESTIMATATION OF MULTI-sGGM
The joint graphical lasso is a technique for jointly estimating
multiple graphical models from datasets belonging to differ-
ent but related classes. This method is based on a penalized
log likelihood approach, where the penalty function includes
two parts. The first part is a lasso [30] that encourages the
precision matrices to be sparse. The choice of the second
penalty depends on the characteristics of the graphical models
that we expect to be shared. We chose several relevant studies
to support our work developing a joint graphical lasso in this
study. The fused JGL [15], for example, uses a fused norm
to encourage a shared pattern of sparsity (shared positions of
zeros); the group JGL [15] uses a {G, 2} norm to encourage
shared non-zero elements. Innovative penalties were also
used by SIMONE [16], Node-based JGL [31], and some
other researchers recently to capture special similarity among
graphs.

B. CLIME FOR ESTIMATING SPARSE GAUSSIAN
GRAPHICAL MODEL
The constrained `1 minimization method for inverse matrix
estimation (CLIME) estimator can be used to estimate the
precision matrix � via an `1 constrained optimization:

argmin
�

‖�‖1

s.t. ‖6�− I‖∞ ≤ λ, (20)

where the tuning parameter λ > 0. CLIME can be solved
column-by-column. We assume here that β is one of the col-
umn vectors in the precision matrix �. We can then estimate
each column β of � as follows rather than estimating the
entire �:

argmin
β

‖β‖1

s.t. ‖6β − ej‖∞ ≤ λ. (21)

Finally, CLIME uses the following operation to maintain
the symmetric property of the estimator:

�̂ij = �̂ji = �̂ij sign
(
max

(∣∣∣�̂ij

∣∣∣− ∣∣∣�̂ji

∣∣∣ , 0))
+�̂ji sign

(
max

(∣∣∣�̂ji

∣∣∣− ∣∣∣�̂ij

∣∣∣ , 0)) (22)

C. SOLUTIONS TO CHALLENGES IN FEDERATED
LEARNING
There are four core challenges inherent to federated learn-
ing and several current approaches available to mitigate
them. 1) Expensive communication. The federated net-
work involves large amounts of devices and data, so the
communication speed is restricted by limited resources. Cur-
rent approaches focus on reducing either the number of
communication rounds or the size of data for each round.
The local updating method proposed in [32] allows for a
variable to be applied on each device in parallel at each
round. Compression schemes significantly reduce the size
of transmitted data by forcing the updating models to be
sparse, as was the case in [29], [33], [34]. 2) System het-
erogeneity. The performance of different devices may differ
due to hardware conditions, network connectivity, or power
availability. Sometimes an active device may drop out at
a certain iteration due to system problems like poor net-
work connection, which exacerbates problems such as strag-
glers or fault tolerance. A practical strategy to deal with
the device-dropping-out problem is to simply ignore such
device failures, which may introduce bias toward devices [6].
System heterogeneity can also be managed using asyn-
chronous communication [35], [36]. 3) Statistical hetero-
geneity. The size of datasets may vary significantly between
devices. We use the MOCHA [25] framework here to bal-
ance our datasets by controlling each device’s optimization
quality. Additionally, for each node, the data may be col-
lected in a non-i.i.d. manner across the network, which con-
tributes to an underlying statistical structure that captures
the relationship among devices and their associated distri-
butions [37], [38]. [39] focused on reducing the variance
of the model performance across devices to obtain relative
fairness beyond accuracy. 4) Privacy. Potential private data
leakage is a typical concern in federated learning. Though
shared information has a gradient or is processed beyond
raw data, it is still subject to leakage. Recently, researchers
have used tools based on previous cryptographic protocols
such as SMC to ensure data security [40], [41]; however,
these tools sacrifice model performance and system effi-
ciency. [42] applied differential privacy for global differential
privacy, which makes a trade-off between security and model
performance.

VI. EXPERIMENTS
We conduct three types of experiments as described in this
section. We first evaluate the performance of the federated
learning framework FEDJEM under different circumstances.
We apply the local computation, global computation, and
communication time of every iteration as our time metric
to observe the balance capacity of our framework with dif-
ferent variables. We also implement our method on a sim-
ulation dataset to evaluate its performance. We draw the
predicted neural connections in the brain according to the
estimated precision matrix and compare it with the true brain
connectome.
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FIGURE 4. Experimental implementation of proposed framework.

Next, we comprehensively compare FEDJEM and other
baselines with respect to time, accuracy, energy consumption
and privacy. We compare FEDJEM with other baselines and
the total computation time when varying the feature dimen-
sion. We also compare the model performance by drawing
FPR versus TPR curves for our method and baselines with
both Gaussian and non-Gaussian data. We determine the
energy consumption and raw data size in the transmission of
JGL, GLasso, CLIME, and FEDJEM to show its advantages
in both energy efficiency and privacy preservation.

Finally, we implement FEDJEM on a real-world dataset
to predict the brain connectomes for further scientific
research. The real-world dataset aggregates functional and
structural brain imaging data of patients with Parkinson’s
disease. The dataset contains two tasks with 54 features and
103 samples in one task and 234 in the other.

A. EXPERIMENTAL SETTING
1) BASELINES
We compare FEDJEM with the following baselines: 1) The
multi-task joint graphical lasso (JGL), 2) the single-task
GLasso baseline (i.e., where each task uses GLasso indepen-
dently); and 3) the single-task CLIME baseline (i.e., where
each task uses CLIME independently).

2) EXPERIMENTAL ENVIRONMENT
We run our experiments on four servers with one dual-core
16 GB RAM, 40 GB cloud storage, and 5M bandwidth plus
three single-core 4 GB RAM and 40 GB cloud storage. The
center server is much more powerful than the local devices
and the bandwidth is limited. This environment satisfies the
conditions for federated learning.

3) IMPLEMENTATION
We implement a general federated learning framework for
multi-task learning based on our method as well. Fig. 4 shows
our federated learning framework with the function of every
python file. We update the variable �(i) in local_update.py

and 9(i) and U(i) in global_update.py. The updates of every
iteration are transmitted between the cloud center and local
devices throughmain.py andworker.py. Our code is available
on https://github.com/MahjongGod-Saki/FEDJEM.

4) METRIC
a: PREDICTION ACCURACY
We use the edge-level false positive rate (FPR) and true
positive rate (TPR) to measure the difference between the
true and predicted graphs. Here, FPR = FP

FP+TN and TPR =
TP

TP+FP . The true positive (TP) and true negative (TN) values
indicate the number of true non-zero entries and true-zero
entries, respectively.We draw several FPR versus TPR curves
to illustrate the performance of our method over a range of the
regularization parameters λ1, λ2.

b: TIME
• Communication time: We record the time of parameter
transmission between the local devices and global center
in each iteration. We use this measurement to evaluate
the communication costs of our method.

• Local computation time: In each iteration, we use the
temporal costs of updating �(i) to measure the local
computation consumption.

• Global computation time:We determine the time it takes
for the cloud center to update9(i) as a measure of global
computation cost.

5) HYPER-PARAMETER SELECTION
In this subsection, we discuss the effects of hyper-parameters,
which play a crucial role in the convergence rate, sparsity, and
accuracy of our experimental results.

a: λ1
As the regularization parameter of `1 norm, λ1 can control the
sparsity of the precision matrix. A larger λ1 leads to a sparser
estimated network.

b: λ2
As the regularization parameter of the group-2 penalty or
fused lasso penalty, λ2 encourages a similar pattern of
sparsity across all the estimated precision matrices in the
group lasso. It also controls the similarity of many elements
among all the estimated precision matrices in the fused lasso.
A larger λ2 drives the edges across the estimated networks
toward zero.

c: ρ
As the augmented Lagrangian parameter, tuning ρ determines
the step size of every iteration. Our algorithm converges faster
but performs worse when ρ is relatively large.

6) SIMULATION DATASETS
We conduct simulations to explore a three-class problem.
We generate three networks corresponding to three classes,
each consisting of c equally sized unconnected subnetworks
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with d features and a certain power degree distribution. Each
network has p = c×d dimensions. Among the c subnetworks,
the three networks share (c− 2) subnetworks. Of the last two
subnetworks, the first network has both, the second has one,
and the third has none.

To satisfy the structure of the three networks, we first
generate c covariancematrices with ones on the diagonal. The
values on elements corresponding to edges obey a uniform
distribution U([−0.4,−0.1] ∪ [0.1, 0.4]). The values on ele-
ments not corresponding to edges equal zero. We could then
obtain 1.5 times the sum of the absolute values of off-diagonal
elements of each row and divide every off-diagonal element
of this row. We average the matrix with its transpose, then
add every diagonal element by 1.5 times the sum of the off-
diagonal elements in its row. The strictly diagonally domi-
nant matrix is positive definite in this case, so we obtain a
positive-definite covariance matrix 6̃. For the covariance
matrices of the three networks,

(61)ij = dij(6̃−1)ij/
√
(6̃−1)ii(6̃−1)jj, (23)

where dij = 0.6 if i 6= j and dij = 1 if i = j. Resetting
one of the c subnetwork blocks in 61 to the identity yields
the covariance matrix of the second class 62. Resetting an
additional subnetwork block to the identity yields 63. For
each class, we generate independent, identically distributed
samples from a N (0, 6i), i = 1, 2, 3 distribution. We gener-
ate three categories of datasets {X(i)

}
3
i=1,X

(i)
∈ Rn×p using

the method described above. Then we design three groups of
different distinct monotone increasing transformation func-
tions f (i) = {f (i)j }

p
j=1, i = 1, 2, 3. We obtain three datasets

with different nonparanormal distributions {Y(i)
}
3
i=1 via the

transformations of the inverse functions: Y (i)
jk = f (i)k

−1
(X (i)

jk ),
j = 1, 2, . . . , n and k = 1, 2, . . . , p.
Note that d represents the feature dimension of every

subnetwork rather than the whole network. We choose d =
16, 32, 64, 128 for comparison when n = 160 and s = 0.01
in the first type of dataset (i.e., p = 160, 320, 640, 1280).
n represents the number of samples. We choose n =
d, 2d, 4d, 8d for comparison when d = 32 and s = 0.01 in
the second type. The sparsity s is linearly positively related
to the exponent of a power law distribution, so a larger s
means a sparser network. We choose s = 1.0, 0.5, 0.1, 0.01
for comparison when d = 128 and n = 150 in the third type.
The simulation datasets are shown in Table 2.

B. THE PERFORMANCE OF FEDJEM UNDER VARIOUS
CIRCUMSTANCES
We use local computation, global computation, and commu-
nication time as three metrics to analyze different aspects of
computational performance while varying the dimension d ,
number of samples n, and sparsity s of the simulation datasets
as shown in Table 2. We conduct three series of experiments
in total. By combining them, we find that changes in n, d , and
s impact the final results in distinct ways as shown in Fig. 5.

TABLE 2. Simulation datasets for time consumption analysis. All
simulated graphs in have 10 subnetworks (i.e. c = 10).

1) VARYING THE NUMBER OF FEATURES d
The first experiment on simulation datasets with varying d is
conducted to observe the changes in computation and com-
munication time as the feature dimension of the subnetwork
d varies in {16, 32, 64, 128}. Fig. 5 (a)(b)(c) shows that com-
munication takes the most time among the three processes
when d is small [6], but local computation time is bottle-
necked when d exceeds a certain threshold. Fig. 5 (j) shows
that ‘‘local computation’’ is lower than ‘‘communication’’ at
first but surpasses ‘‘communication’’ as d increases.

Fig. 5 (b) shows that global computation in the cloud
center consistently consumes the least time among the three
processes. This is because global computation involves only
some basicmatrix operations. Local computation, conversely,
takes much more time than global computation due to its
eigendecomposition operation in each iteration. Another
point of concern is that available physical memory runs out
rapidly as iteration increases when d is large. At a certain
point, it is necessary to use SWaP space reserved in advance.
This consumes extra time to read data from the hard disk
and to save data into it. Therefore, Fig. 5 (b) presents a
sharp increment with slight fluctuations as iterations exceed
180 when d = 128. Fig. 5 (c) suggests that network fluctua-
tions result in a sudden change in communication time.

2) VARYING THE NUMBER OF SAMPLES n
The second simulation experiment with varying n is con-
ducted to observe the changes in computation and com-
munication time as the number of samples n varies in
{d, 2d, 4d, 8d}. Fig. 5 (e)(f) shows that the number of sam-
ples does not influence the global computation or commu-
nication time. However, Fig. 5 (d) shows that more local
computation time is consumed as n reaches a certain value,
e.g., n = 8d . This is because in (13), Ŝ(i) − ρ

ni
9(i)
+

ρ
ni
U(i)

is singular when n is small at the beginning of the algorithm.
It takes less time to apply eigendecomposition to a singular
matrix for local computation. When n is large, the Ŝ(i) is non-
singular initially. Therefore, the local computation spends a
similar amount of time on each iteration. Due to our privacy-
preserving strategy, the algorithm itself is irrelevant to the
value of the samples. Our experimental results satisfy our
expectations regarding the irrelevance between the number
of samples and the implementation time.

3) VARYING THE SPARSITY s
The third experiment on simulation datasets with varying
s is conducted to observe the changes in computation and
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FIGURE 5. Comparison of time in different domains. We mainly record three types of time cost, local computation time,
global computation time, and communication time, when varying the different parameters of the simulation datasets.
Subfigure (a)(b)(c) show iteration vs. time (in log-seconds) on three domains by varying the feature dimension of the
subnetwork d in {16, 32, 64, 128}. Subfigure (d)(e)(f) show iteration vs. time (in log-seconds) on three domains by varing the
number of samples in {d , 2d , 4d , 8d }. Subfigure (g)(h)(i) show iteration vs. time (in log-seconds) on three domains by
varying the sparsity of the network in {1.0, 0.5, 0.1, 0.01}. Subfigure (j) shows d vs. time (in seconds) when
n = 150, s = 0.01. Subfigure (k) shows n vs. time (in seconds) when d = 32, s = 0.01. Subfigure (l) shows s vs. time (in
seconds) when d = 128, n = 150.

communication time as the sparsity of the network s var-
ied in {1.0, 0.5, 0.1, 0.01}. Sparsity s is linearly positively
related to the exponent of a power law distribution in the
data generation process. (We use power law distribution to
mimic the structure of biological networks [43].) Namely, it is
more likely to generate a dense network when s is relatively
small. Fig. 5 (g) shows that estimating a denser network takes
less local computation time without the format transmission
operator of the sparse matrix representation. As expected,
the curve of ‘‘s = 0.01’’ is much lower than other curves.
Sparsity has little influence on global computation, but does
increase the communication time when more dense parame-
ters are transferred. Fig. 5 (i)(l) shows that sparse parameters
with sparse representation reduce the size of data that needs
to be communicated, which results in less communication
time. However, the time cost returns to an average level
quickly when s = 1.0, as shown in Fig. 5 (i). After several

iterations, the parameters communicated to the center are
not as sparse as ones in the beginning of the process. The
communication time is markedly reduced initially and then
increases to an average level as the parameters reach a certain
level of sparsity.

4) THE PREDICTED BRAIN CONNECTOMES FROM THE
SIMULATION DATASET
We also test our model’s predictive power according to an
estimated brain connectome. We choose 54 ROIs in the brain
as target nodes. Using the data generation method described
in Section VI-A6, we generate three 54-dimensional net-
works and 150 non-i.i.d. samples for each network. We draw
three true brain images according to the networks, then imple-
ment our method on the three sets to infer the edges in
order. Finally, we draw the brain connectome according to
the prediction results. Fig. 6 shows a comparison between the
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FIGURE 6. Comparison between true connectome and predicted connectome. We predicted three groups of predicted connectomes
corresponding to the three networks of the simulation dataset.

FIGURE 7. The FPR-TPR curve graph for different methods on four simulation datasets. Subfigure (a)(b) are for Gaussian simulation datasets with the
feature dimension d varying in {9, 18}. Subfigure (c)(d) are for nonparanormal datasets with the feature dimension d varying in {9, 18}. We can see that
curves from FEDJEM are above the single-sGGM estimators ‘‘GLasso’’ and ‘‘CLIME’’ and the multi-task sGGM estimator ‘‘JGL’’.

true and predicted brain connectomes. Most edges represent-
ing strong connections are predicted accurately. In addition,
the predicted brain connectome of the three classes recovers
some shared edges, which reflects correlation among the
three tasks.

C. COMPARISON WITH BASELINES
We then conduct four categories of comparison experiments
to evaluate the prediction accuracy, time consumption, energy
efficiency, and privacy of the proposed method.

1) ACCURACY COMPARISON
To compare the prediction power of our estimator, we gener-
ate four simulation datasets with the number of samples n =
150, the number of the subnetwork c = 6. Two are simulated
Gaussian data and the other two are non-Gaussian with the
feature dimension of subnetwork d varying in {9, 18} (i.e.
p = 54, 108). Fig. 7(a)(b)(c)(d) shows the FPR-TPR curves
of FEDJEM, JGL, GLasso, and CLIME on the simulation
datasets. We draw four curves in each subfigure by tuning the
regularization parameter λ1 from 0.001 to 0.1 with a step size
of 0.001. A larger area under the FPR-TPR curve represents
better model performance. Fig. 7(a)(b) shows that our method
obtains better curves than the other methods in the Gaussian

cases. For non-Gaussian cases in Fig. 7(c)(d), our method
achieves even better performance as it can effectively manage
highly non-i.i.d heterogeneous data. Overall, the experimen-
tal results are consistent with our expectations in Section III.

2) COMPUTATION COST COMPARISON
We next compare the time consumption between
FEDJEM and the baselines. We conduct one experiment
over a series of simulation datasets to observe the compu-
tation time as the number of samples n changes in the set
of {2, 10, 100, 1000, 10000}. Fig. 8 provides four different
experimental results for computation time when the feature
dimension of the subnetwork d varies in {16, 32, 64, 128}
(i.e. p = 160, 320, 640, 1280).

Fig. 8 (a)(b)(c)(d) shows that the time consumption of
FEDJEM is consistently much lower than the three base-
lines. In addition, our method is not significantly affected by
the number of samples n while the traditional multi-sGGM
method JGL is very sensitive to it due to the increase in
communication cost. The communication consumption of
JGL makes the most contribution to the time cost when n
increases, and thus becomes the dominant factor.

The four subfigures also show that the time consump-
tion of all the methods increases substantially as the

VOLUME 9, 2021 104089



X. Tan et al.: Fast and Privacy-Preserving FEJEM-sUGMs

FIGURE 8. The number of samples n versus time for different methods on four simulation datasets. Subfigure (a)(b)(c)(d) show the
number of samples n versus time of 10 iterations (in log10-seconds) by varying the feature dimension d in {16, 32, 64, 128}. Note that the
values of the abscissa are the power of 10 except 2. The time of CLIME is not available in Subfigure (d). We can see that the time
consumption of FEDJEM is much lower than the three baselines.

TABLE 3. Energy consumption and data in danger of proposed method
and baselines. The proposed method shows the lowest energy cost
without any raw data in transmission or the cloud center.

feature dimension increases. FEDJEM, however, is consis-
tently less sensitive to d compared to the other three baselines.
This is consistent with our theoretical computational analysis
(Section IV). Overall, FEDJEM outperforms the baselines
with faster computation, especially when the datasets are of
large scale.

3) THE ENERGY CONSUMPTION AND PRIVACY
COMPARISON
Finally, we compare our method and baselines with respect
to energy consumption and privacy preservation. We select a
dataset generating three networks with 768 features, 150 sam-
ples, and sparsity s = 0.01. To test energy consumption,
we apply a package called ‘‘CodeCarbon’’ [44] to track the
carbon emissions produced by all four methods and use
joule units as the metric (i.e., ‘‘Energy Cost’’ in Table 3).
To test privacy preservation, we select data transmitted from
a local device to the global center as the evaluation metric
(i.e., ‘‘Data in Danger’’ in Table 3). The results are shown
in Table 3.1 The first row of the table shows that our method
consumes much less energy than the three baselines, which
reflects the benefits of the federated learning framework.
The second row of the table shows that our method has no
data transferred to the cloud center while the JGL transfers
18.397MB. Therefore, FEDJEMhas no risk of leaking private
information.

1CLIME spends more than 90 min to finish running. Consequently,
we record the energy consumption as larger than 40000.00J.

D. THE PREDICTED BRAIN CONNECTOMES FROM THE
REAL-WORLD DATASETS
In the end, we apply FEDJEM on a real-world dataset con-
sisting of functional and structural brain imaging data for
Parkinson’s disease patients. The dataset contains two tasks,
one containing 103 samples of normal people and the other
containing 234 samples of Parkinson’s patients. Both share
the same 54 features.

Fig. 9 shows the predicted brain connectome based on
the real-world dataset. All connections can be separated into
three groups, which are distinguishable in the figure by dif-
ferent colors. The results here align with our expectations.
We find that some ROIs in the left and right sides of the brain
are connected, which is generally accepted by researchers.
We also identify some different edges between the two brain
images that may be attributable to Parkinson’s.

VII. DISCUSSION
As computation is distributed from one single cloud center
to many local devices, our method releases large amount
of computing power in the cloud center. This is a sig-
nificant advantage, however, it necessitates communication
during the distribution, which creates an extra step to prop-
erly balance communication and computation. There must
be a trade-off [45] between local and global computation
and communication time in any practical application of this
method. If communication is more time-consuming than
other processes, for instance, in cases where the network
feature dimension is small or the true network is relatively
sparse (e.g., Fig. 5), we suggest two potential solutions.
1) Applying a special data structure, such as sparse
representation [46]–[48], during communication of model
updates. 2) Optimizing the communication network, such
as increasing the bandwidth or upgrading from 4G to
5G. It is also possible that local computation is the most
time-consuming. For example, Fig. 5 shows that the local
computation costs are unacceptable when the feature dimen-
sion is relatively large. We suggest three potential solu-
tions: 1) upgrading the local devices with better computing
power, 2) adding an edge layer between the local and global
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FIGURE 9. Two predicted connectomes of normal people and Parkinson’s patients on
real-world dataset.

computation as a three-layer federated learning framework,
or 3) optimizing the local updates, such as by a fast decom-
position solver [49], [50].

In the future, we will extend our method to extract other
group patterns by applying different group regularization
functions (i.e., different Rtotal). Such penalty functions like
group infinity norm group provide different multi-task pat-
terns. We will then evaluate their performance and draw the
conclusion about the usage criteria. In addition, based on our
experimental results, we realize that we can have different
implementation strategies for different device environments.
We will establish an automatic mechanism to balance the
three types of costs in the federated multi-task undirected
graphical model as well.

VIII. CONCLUSION
In this study, we investigate a federated multi-task sUGM
problem centered on learning multiple related graphs from
many distributed and privacy-requiring resources in the con-
text of neuroscience. We develop a novel method, FEDJEM
that can make full use of non-i.i.d. heterogeneous data to
jointly estimate the precision matrices with alternating global
and local updates. Our method sufficiently uses the comput-
ing power of local devices, thus reducing the computational
load acting on the cloud center while safeguarding private
data. The method shows excellent performance in a series of
experiments.
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