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ABSTRACT Cancer registries are critical databases for cancer research whose maintenance requires
various types of domain knowledge with labor-intensive data curation. In order to facilitate the curation
process with high quality in a timely manner, we developed a hybrid neural symbolic system for cancer
registry coding. Unlike previous works which mainly worked on the dataset collected from one hospital or
formulated the task as text classification problems, we collaborated with two medical centers in Taiwan to
compile a cross-hospital corpus and applied neural networks to extract cancer registry variables described
in unstructured pathology reports along with expert systems for generating registry coding. We conducted
experiments to study the feasibility of the proposed hybrid for the task of cancer registry coding and compare
its performance with state-of-the-art non-hybrid approaches. Furthermore, cross-hospital experiments were
performed to study the advantages and limitations of transfer learning for processing reports from different
sources. The experiment results demonstrated that the proposed hybrid neural symbolic system is a robust
approach which works well across hospitals and outperformed classification-based baselines by F-scores
of 0.13∼0.27. Compared to the baseline models, the F-scores of the proposed approaches are apparently
higher when fewer training instances were used. All methods benefited from the transferred parameters
learned from the source dataset, but the results suggest that it is a better strategy to transfer the learned
knowledge through the concept recognition task followed by the symbolic expert system to address the task
of cancer registry coding.

INDEX TERMS Electronic medical records, medical expert systems, medical information systems, natural
language processing.
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I. INTRODUCTION
Cancer is a main cause of mortality worldwide and has been
the leading cause of death over several decades in Taiwan.
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The Taiwan Cancer Registry (TCR), a population-based
cancer registry, was established by the Taiwan Society of
Cancer Registry in 1979 and was supported by the Ministry
of Health and Welfare (MOHW) over 40 years to provide a
comprehensive measurement of cancer incidence, morbidity,
survival, and mortality for persons with cancer in Taiwan.
Hospitals with greater than 50-bed capacity providing outpa-
tient and hospitalized cancer care are recruited to participate
in reporting all newly diagnosed malignant neoplasms to the
registry. Full-time staffs with expertise of various fields such
as pathology, clinical oncology, radiation oncology, and can-
cer registrar are involved in the process of manually drafting
and examining medical and pathology records to determine
the eligibility of the patient for cancer registry.

Delay time reporting refers to the time that elapsed before
reporting a diagnosed cancer case to the cancer registry.
In both Taiwan and United States, the delay time between the
time of cancer diagnosis and the time of publicly reporting
the cancer incidence data is about 2 years [1]. A delay in
the reporting of cancer cases results in an underestimation
of the cancer rate in a population. Unfortunately, the process
of reporting cancer cases requires manual review of large
volumes of reports such as pathology reports and radiol-
ogy reports, which is pronouncedly labor-intensive and time-
consuming.

One solution to this problem currently being explored
is the application of artificial intelligence (AI) techniques
to automatically read and extract information from cancer
pathology reports. However, as cancer pathology reports are
often represented in unstructured format, it can be difficult for
machines to explicitly process them due to the diverse writing
styles among different hospitals. Therefore, an efficient and
precise approach is critical in reducing the overall effort to
accelerate the reporting of cancer cases, which also allows
trained personnel to focus on cancer related analysis and
researches.

To improve the collaboration and resource sharing of
hospitals and cancer research centers in Taiwan, a national
project named the Integrated Cancer Research Multicenter
Collaboration Platform (ICRMCP) was established under the
cancer center support grant program funded by the MOHW.
One major goal of ICRMCP is to apply natural language
processing (NLP) techniques to address the issue of delayed
reporting and further provide a cancer research information
sharing service to promote the sharing of cancer research
patient information and computing resources from participat-
ing hospitals.

In this study, we introduce our approach to automatically
extract eight primary cancer registry codes from unstructured
pathology reports. Unlike previous similar works [2]–[5]
which mainly formulated the task as text classification prob-
lems and applied a variety of machine learning methods to
develop black box nature models for cancer registry vari-
ables, we presented a hybrid strategy which combines a
deep sequential labeling neural network with an expert sys-
tem to extract high quality cancer registry coding informa-

tion and also provide explainability. This method mimics
the duty of a cancer registrar, which includes analyzing
unstructured reports to identify cancer registry items and
translating these items into standardized codes. Furthermore,
we employed transfer learning and conducted experiments
to examine the performance of the proposed approaches on
the cross-hospital pathology materials to gain insights on the
effectiveness of transfer learning and the robustness of the
developed knowledge rules.

II. METHODS
A. TASK DEFINITION AND DATASETS
In the first year of the ICRMCP project, we primarily focused
on the analysis of the pathology reports for colorectal cancer,
which is the third leading cause of cancer-specific deaths in
Taiwan. We collaborated with two medical centers, namely
China Medical University Hospital (CMUH) and Kaohsiung
Medical University Chung-Ho Memorial Hospital (KMUH),
for the collection of patients’ cancer registry records linked
with the corresponding colorectal pathology reports for gen-
erating these records. Non-tumor reports and reports with-
out corresponding cancer registration records were excluded.
Fig. 1 shows a snippet of a collected pathology report.
Although the official language in Taiwan is Mandarin Chi-
nese, all collected pathology reports were written in English.

Unlike pioneering projects whose goal is to develop
general purpose NLP systems for extracting cancer-related
phenotypes [6], [7] or populating knowledge representation
models [8], we focused on the construction of a NLP tool to
facilitate cancer registration. In this pilot study, we examined
the TCR coding manual1 and the American Joint Committee
on Cancer (AJCC) staging manual 8th version [9] to select
eight coding items including pathological TNM classifica-
tions (TNM), the number of examined nodes (EN) and pos-
itive nodes (PN), tumor size (TS), histology types (H), and
grades (G). The coding results associated with a registry
record curated by the registrar were collected in our corpus.
Note that a registry record could refer to more than one
pathology report.

Corresponding to the eight coding items, we further
defined nine cancer registry concepts which should be
extracted for making the judgement of coding in our annota-
tion guideline created by consulting a committee composed
of hospital investigators and cancer registrars. The concepts
include descriptions related to the aforementioned eight items
and the stage classification (SC). The entire annotation pro-
cess for the nine concepts was described in our previous
work [10]. Note that we asked the annotators to annotate all
of mentions of the nine concepts among all pathology reports
associated with a cancer registry instead of only annotating
the mentions which were used as the reference for coding.

In a nutshell, our corpus contains narrative pathology
reports written in English with two types of annotations.

1The manual is available at http://tcr.cph.ntu.edu.tw/uploadimages/ Long-
form%20Manual_Official%20version_20190304_W.pdf.
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One is for the recognition of cancer registry concepts which
were annotated by NLP annotators, and the other is for cancer
registry coding curated by registrars. Based on the compiled
corpus, two subtasks were defined:
1. The registry concept recognition subtask: The goal of

this subtask is to recognize registry concepts described
in a report. The text spans surrounded by brackets shown
in Fig. 1 indicate the annotations for cancer registry con-
cepts. The subscript preceding the right bracket indicates
the concept type. For example, ‘‘3.7’’ and ‘‘6.5’’ are
annotated with TS indicating the size of tumor. A total
of seven concepts were annotated in Fig. 1.

FIGURE 1. A snippet of a collected pathology report.

2. The cancer registry coding subtask: The aim of this sub-
task is to generate the coding items for the eight concept
types including T, N, M, EN, PN, TS, H, and G. Take
the snippet shown in Fig. 1 as an example. The codes
curated for the snippet are EN: 23, G: 2, H: 82633, and
TS: 065. Note that the code assigned for TS is 065 and
not 037 because the coding manual requires only the
maximal diameter to be coded. The code for EN is the
sum of all examined nodes (21 + 2). It is important
to note that this simply an example, and in real-world
scenarios registrars should consider all available reports
of a patient to curate the final codes.

B. HYBRID NEURAL SYMBOLIC SYSTEM FOR CANCER
REGISTRY CODING
We followed the loosely coupled architecture [11] to develop
a hybrid neural symbolic system with its architecture illus-
trated in Fig. 2. The system contains three layers in which
a deep neural network is housed at the second layer for
extracting cancer registry-related concepts (the first subtask)
from preprocessed pathology reports from the first layer.
At the last layer the symbolic expert system generates the
final coding results (the second subtask). The entire coding
process is elaborated as follows.

1) SYSTEM WORKFLOW
Before processing a new list of pathology reports of a patient,
all updated facts in the database of our expert system are reset
to the initialization state. Each pathology report is prepro-
cessed by the first layer in which our clinical toolkit [12] was
employed to segment sentences, generate the corresponding

tokens and recognize section headings, such as ‘‘Micro-
scopic Examination’’. The preprocessed sentences are then
analyzed by our neural network to extract the nine registry
concepts. The concepts along with the preprocessed informa-
tion is established as new ‘‘Facts’’ in the ‘‘Fact Database’’
as shown in the layer 3 of Fig. 2. A fact here represents
the observed coding clues from the report being processed.
We will describe it in detail in the following subsection.

Starting with the known facts in the fact database,
the ‘‘Inference Engine’’ of our expert system applies the
forward-chaining algorithm to trigger all rules in the ‘‘Knowl-
edge Base’’ whose antecedents are satisfied with the current
facts and updates their conclusions to the fact database to
form new known facts. This process is repeated until no
additional rules can be fired, and the final coding results
can be obtained from the system. Two expert systems were
developed to accomplish the coding task. One is in charge of
processing each individual pathology report in order, and the
other considers the results from the first one to generate the
final codes.

2) REGISTRY CONCEPT RECOGNITION LAYER
Several approaches have been proposed to extract cancer
registry-related concepts based on the named entity recog-
nition techniques [10], [13]–[16]. In the layer 2 we used our
neural network [10] to recognize registry concepts mentioned
in reports by applying the IOB (Inside-Outside-Beginning)-
2 tag scheme to formulate the problem as a sequential labeling
task. The input of the network is the pre-processed sequence
of tokens in a pathology report with the output being the
sequence of labels for each token. The input tokens were
represented as a vector by concatenating the pre-trained
word representations obtained by using GloVe [17] and
RoBERTa [18]. The values of the concatenated vectors were
fixed during the training process.

The concatenated representation was then fed to a fully
connected layer (denoted as FC1 in Fig. 2) along with a
variational dropout before passing the embeddings into the
bidirectional long-short term memory (BiLSTM in Fig. 2)
network with one layer consisting of 256 hidden nodes.
The output of the BiLSTM layer goes through another fully
connected layer (denoted as FC2 in Fig. 2) to generate an
output of a size equal to the number of the labels. The
output of FC2 is then inputted to the inference layer based
on the conditional random field (CRF in Fig. 2) to model
the dependencies between labels in neighborhoods with the
Viterbi loss to jointly decode the best chain of labels for the
given sequence.

3) CANCER REGISTRY CODING LAYER
The information extracted by the layers 1 and 2 is transformed
to facts and stored in the fact database for the expert systems
in the third layer to generate the corresponding codes.

Instead of representing facts as flat assertions about
observed cancer registry-related information, they are repre-
sented by objects whose asserted values can be accessed by
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FIGURE 2. Global architecture and workflow of the developed hybrid neural symbolic system
for cancer registry coding.

the dot (·) operator. Before storing the facts in the database,
those with numeric values in word forms are normalized
to integers. Take the two EN concepts shown in Fig. 1 as
an example. Two fact objects, C1 and C2, are stored in the
database whose asserted values include:
1. Type: ‘‘EN’’ for both concepts.
2. Value: Integer values ‘‘21’’ and ‘‘2’’ for the first and

the second EN concept, respectively.
The asserted type and value attributes of the C1 object can be
accessed by the syntaxes ‘‘C1.type’’ and ‘‘C1.value.’’
To construct our expert systems, the knowledge engineers

PJL and HJD interviewed two cancer registrars CJH and SFY
and followed the TCR coding manual (Long Form) and the
8th edition of the AJCC standards to encode the knowledge
for cancer registry coding in our expert system. The acquired
knowledge was represented by rules that were stored in the
knowledge base (KB) shown in Fig. 2. Each rule consists of
the antecedent and the consequent parts. The antecedent of a
rule represents the desired condition to be satisfied for firing
the rule. A rule can have multiple antecedents joined by the
keyword AND. An antecedent is represented by a fact object
with the desired value linked by an operator. For example,
the antecedent below represents a condition in which the
number of observed examined regional lymph nodes is less
than 90.

C.type = EN AND C.value < 90

The antecedent of a rule is matched against the observed
facts stored in the fact database. On the other hand, the
consequent of a rule indicates the action to be performed
if the antecedent is satisfied. For instance, the antecedent
in the following rule is satisfied if all available EN facts
located in the ‘‘microscopic’’ section have the same ‘‘value’’
attribute. The subsequent action is then to update the
database with a new fact D whose ‘‘type’’ and ‘‘value’’
attributes are set to ‘‘EN_CHECKED’’ and that of the
first element in the list containing all available EN facts,
respectively.

AreSame
({
C|C.type = EN AND C.section

= ‘MICROSCOPIC’
}
, ‘value’

)
= TRUE → D.type

= EN_CHECKED AND D.value

= C1.value AND D.secion

= ‘MICROSCOPIC’

In our implementation of the expert system developed
for processing a single pathology report, the observed facts
incorporate the initial facts added by the preceding layers
and other facts dynamically added to the database during
the forward reasoning process of our inference engine. The
following rules are defined in the expert system to generate
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code for the EN concepts shown in Fig. 1.

AreSame
({
C|C.type = EN AND C.section

= ‘MICROSCOPIC’
}
, ‘value’

)
= FALSE AND IsSum

({
C|C.type

= EN AND C.section

= ‘MICROSCOPIC’
}
, ‘value’

)
= ∅→ D.type

= EN_CHECKED AND D.value

= Sum
({
C|C.type = EN AND

C.section = ‘MICROSCOPIC’
}
,

‘value’
)

Size({C|C.type = EN_CHECKED} = 1 → D.type

= EN_SINGLE_CODING AND

D.value = C.value

The first rule states that if the values of all recognized
EN concepts located in the ‘‘microscopic’’ section are not
the same and there is no EN concept whose value is the sum
of the value of all remaining concepts, then the database is
updated with a new fact D whose type and value attributes
are ‘‘EN_CHECKED’’ and the sum of the values of all rec-
ognized EN concepts, respectively.

If the inference engine can derive only one
‘‘EN_CHECKED’’ fact in the fact database, the second rule
is triggered and sets the EN code for the report to be the
value of the ‘‘EN_CHECKED’’ fact. If there are more than
one ‘‘EN_CHECKED’’ facts, we follow the guidance of
the TCR coding manual to select the value of the derived
‘‘EN_CHECKED’’ fact in the following order prioritized by
the section heading: ‘‘Final diagnosis’’ > ‘‘microscopic’’ >

‘‘gross’’.
After individually processing all pathology reports for one

patient, we have a list of codes assigned for each report
ordered by date. The list is then stored in the fact database
for the second expert system that was developed to con-
sider all coding results among the available reports. In our
current implementation, the rules developed for the second
system is straightforward by considering the guidance of the
TCR coding manual and the temporal information. Take the
TS concept shown in Fig. 1 as an example. The first expert
system outputs ‘‘065’’ as the code for the snippet. The second
expert system uses the following rule to output ‘‘065’’ as the
final code if the value is the maximal diameter among all
reports.

Size
(
Remove

({
C|C.type = TS_SINGLE_CODING

}
,

‘value’ =
{
990, 991, 992, 993, 994, 995, 998, 999

}
′
)
AS D

)
> 0→ E.type = TS_CODING AND E.value

= Max
(
D, ‘value’

)
The rule above removes TN_SINGLE_CODING facts

with values in the range of 990 to 999 prior to identifying
the maximum diameter value since these values have unique

definitions. For instance, ‘‘990’’ indicates ‘‘no size of focus
is given’’, and ‘‘991’’ indicates the size is less than 1 cm.

C. METHODS DEVELOPED FOR PERFORMANCE
COMPARISON
1) BASELINE MODELS
Gao et al. [2] proposed to use the hierarchical attention net-
work (HAN) [19] to extract primary sites and G from pathol-
ogy reports and demonstrated that HAN significantly outper-
formed the conventional machine learning and deep learning
techniques. Therefore, we accommodated their work as a
baseline system for performance comparison of the devel-
oped hybrid neural symbolic system. We followed the binary
relevance transformation method [20], [21] to transform the
original problem into eight binary classification tasks and
learned eight corresponding HAN classifiers, with one for
each registry variable. The same concatenated vectors con-
sisting of GloVe and RoBERTa were used to represent words.
Previous works [10], [22] have demonstrated that CRF and

neural network-based approaches outperformed traditional
methods based on dictionaries and support vector machines
for the first subtask. In this study, we implemented the CRF
model with features including the cluster-based word rep-
resentation feature where the number of clusters was set
to 1,000 [23] based on GloVe, and the part-of-speech and
normalized unigram and bigram features [24] within a con-
text window of five along with transition features for the
first subtask. We then replaced the BILSTM-CRF model in
the second layer with the developed CRF model to develop
another baseline for comparison. The expert systems along
with the same rule sets were used in the third layer.
Furthermore, considering transformer-based language

models have taken over several NLP tasks [25] and have been
applied by top-performing teams in shared tasks for clinical
NLP [26], we followed the end-to-end learning approach
suggested by Devlin et al. [25] to directly address the cancer
registry coding task. We fine-tuned RoBERTa on our corpus
by adding an additional multilayer perceptron (MLP) whose
input is the final hidden vector generated by RoBERTa corre-
sponding to the first input token. All pathology reports were
truncated to 512 tokens to meet the requirement of RoBERTa.

D. TRANSFER LEARNING FROM A SOURCE HOSPITAL
TO A TARGET HOSPITAL
Transfer learning [27] aims to learn a better model on a target
domain by leveraging the knowledge previously learned from
a source domain. In this study, we treated KMUH as the
source hospital and CMUH as the target hospital because
the size of the KMUH dataset is larger than that of the
CMUH dataset. The inductive transfer learning technology
was applied for transferring the learned parameters from the
model of KMUH.
For the developed BiLSTM-CRF neural network, we con-

ducted experiments to study the effectiveness of the transfer
learning for the recognition task by transferring different
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numbers of the learned parameters of the developed models
to the target hospital by retraining the model with transferred
parameters on the target hospital’s dataset via fine-tuning.
We then hybridized the transferredmodels with the developed
symbolic expert system to study the effect of the transferred
model for the entire hybrid neural symbolic system.

As for the HAN models, we replaced the final MLP
layers of the KMUH-HAN model with a new MLP whose
dimension equals to the number of possible unique labels for
a registry item observed in the CMUH dataset. Note that as
shown in Fig. 3, the number of possible values for a registry
item can be different in the two hospitals. Whereas for the
pre-trained RoBERTa model, we applied twice fine-turning
strategy [28] to fine-tune KMUH-RoBERTa on the
CMUH dataset; the output dimension of the added MLP was
extended to meet the required numbers of unique labels for
the CMUH dataset. The weights for the new dimensions were
randomly initialized and the weights for the labels appeared
in both hospitals were transferred.

E. EVALUATION METRICS AND EXPERIMENT
CONFIGURATIONS
We conducted experiments to compare the performance of
the developed hybrid symbolic neural system with baselines
to investigate the effectiveness of the proposed systems and
the effect of the transfer learning for the developed sys-
tems and baseline models. The standard macro-precision
(P, a.k.a. positive predictive value), recall (R, a.k.a. sensi-
tivity) and F-measure (F) defined as follows were used to
evaluate the performance of the methods developed for both
the recognition and coding tasks.

Precisioni/Positive PredictiveValuei =
TPi

TPi + FPi
(1)

Recalli/Sensitivityi =
TPi

TPi + FNi
(2)

Macro− P=average(Per− class P)=

∑
i Pi

Number of Classes
(3)

Macro− R=average(Per− class R)=

∑
i Ri

Number of Classes
(4)

Macro− F−measure = 2
Macro-P×Macro− R
Macro-P+Macro− R

(5)

In the formulae above, TPi, FPi, and FNi represent the
number of true positives (TPs), false positives (FPs), and
false negatives (FNs) for the registry item type i, respectively.
The TPs, FPs and FNs are defined on the token-level for
subtask 1, whereas they are defined on the document-level for
subtask 2.

To train the neural networks in our experiments as well as
to examine the knowledge represented in the form of produc-
tion rules of the expert system, we randomly kept 50 reports
in the training sets as the validation sets which were excluded
from training to determine the best-performing models and

FIGURE 3. Statistics of the datasets collected. The blue bars and the
orange bars represent the categories of the KMUH and CMUH datasets,
respectively.

improve the comprehensiveness of the developed rules in the
development phase.

III. RESULTS AND DISCUSSION
A. CORPUS STATISTICS
We collaborated with CMUH and KMUH who provided
393 and 2,347 reports, respectively, to assemble our
dataset along with the annotations for registry concepts and
coding results curated by registrars based on the reports
that correspond to the treatment trajectory of the patient.
Table 1 displays a statistical summary of the compiled cor-
pora for the subtask 1. Note that in the KMUH corpus,
a cancer registry record of a patient may associate with more
than one pathology reports. A record has at least one and at
most four records in the KMUH dataset.

For the subtask 2, eight registry items (T, N, M, EN, PN,
TS, H, and G) were extracted from the curated coding results
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TABLE 1. Corpus statistics for the compiled corpora for the registry
concept recognition subtask.

to create the gold annotations. These items were part of
the long form data submitted to TCR [29]. Fig. 3 shows a
statistical summary of the data collected for each registry
item. In general, we observed that the coverage of the KMUH
dataset is superior to that of the CMUH dataset, with the
former particularly covering a much wider range of values
of EN and PN. The values of EN in the KMUH and the
CMUH datasets range from 0 to 99 and 0 to 72, respectively.
The KMUH dataset contains at least one training instance
for the EN values between 0 to 44, but there are six values
that do not have any training instances in the CMUH dataset.
Four samples in the KMUH dataset had an EN code of 99,
indicating that the numbers of examined nodes are unknown
for the patients.

On the other hand, excluding the coding values larger
than 99, the distribution of the tumor size is a left-skewed nor-
mal distribution. The tumor sizes range from 0.1 cm to 15 cm
with a mean of 4.44 cm. The smallest and largest tumor sizes
in the greatest dimension observed in KMUH and CMUH
are 0.1 cm and 14 cm and 0.2 cm and 15 cm, respectively.
The CMUH dataset only contains a wider range of values in
the category of the pathological M classification. For other
categories such as G and PN, both datasets had a similar
range of values, but the KMUH dataset carries more training
instances for each coding value owing to its larger size.

B. PERFORMANCE COMPARISON OF CANCER REGISTRY
RECOGNITION AND CODING
In the experiment, we first trained the developed CRF and
BiLSTM-CRF models on the two training sets separately
and evaluated their recognition performance on the test sets
of the two hospitals. We then examined the effectiveness of
the developed expert system for cancer registry coding by
hybridized it with the two models and compare their perfor-
mance with the baselines including HAN and RoBERTa. The
results are depicted in Table 2.

In general, for both the recognition and coding tasks,
all the developed methods including the proposed hybrids,

baselines and transformer-based models performed better on
the KMUH test set which may be due to the larger number
of training samples. The hybrid neural symbolic systems
achieved the highest overall F-scores on the dataset of both
hospitals.

1) RESULTS OF REGISTRY CONCEPT RECOGNITION
Because both HAN and RoBERTa were implemented by
formulating the task as text classification problems, we can-
not report their recognition performance in Table 2. For the
recognition subtask, CRF-S achieved a comparable overall
F-score on the KMUH test set, but its F-score is lower than
that of BiLSTM-CRF-S on the CMUH test set owing to
its poor recall of 0.423 on the recognition of TS mentions.
In accordance with the observation of.Wallace et al. [30],
we noticed that the inclusion of the pre-trainedword represen-
tation features enables the CRF model to learn the numeracy
for integers and their corresponding word forms (e.g. 42 and
forty-two). After clustering, we found that the word forms
of the integer values less than ten belong to the same cluster
of the integers whose values are less than 30. The number
magnitude is also captured by the different cluster numbers
assigned to the different continuous ranges of integers. How-
ever, the float values and their corresponding word forms
(e.g. 1.6 and one point six) cannot be accurately identified
by the developed clusters leading to the significantly lower
recall of the model. On the contrary, the neural network-based
models can directly exploit the pre-trained word representa-
tions so that outperformed the CRF model. We didn’t find
the cases of word forms in the KMUH dataset, so that both
methods achieved satisfied F-scores.

2) RESULTS OF CANCER REGISTRY CODING
For the coding task, we can see that the coding performance
of the hybrid systems is lower than their recognition perfor-
mance but both CRF-S and BiLSTM-CRF-S achieved higher
overall F-scores than that of the other two classification-based
models (HAN and RoBERTa). Unlike the baseline models
learned in the end-to-end manner, the recognition perfor-
mance of the developed hybrid system indeed affects the
coding performance in case that the performance of the recog-
nition is apparently lower, such as TS or H in CMUH. In gen-
eral, the impact of different factors on the coding performance
is subtle but somewhat depends on the characteristics of the
corresponding registry item. For instance, in Table 1 we can
see that TS items are frequently mentioned in the pathol-
ogy reports provided by CMUH, and the guideline requires
curators to examine all mentioned TS items to make their
decisions. The R rate of the TS recognition is therefore more
important than P.

Although the KMUH corpus is much larger than the
CMUH corpus, the latter had more annotations for the vari-
able pathological M. This is because the judgement of the
pathological M stage requires additional reports such as
image reports from other examination divisions, and conse-
quently the conclusion of pathological M stage often remains
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TABLE 2. The comparison of the macro-F-scores of different methods on the test sets for the task of concept recognition and coding.

undecided based on the current pathological data in the
KMUH corpus. Based on the TCR coding manual, most
registry items considered in this study have default coding in
cases where the reports did not contain sufficient information
to determine the code of a target registry item. Therefore, even
though theM concept is absent in theKMUH test set as shown
in Table 1, our expert system follows the manual to assign the
code ‘‘999’’ to the reports. Both classification-based methods
also learned to assign the correct coding for these reports.

Classification-based methods can achieve comparable
F-scores for some variables on the KMUH dataset but had
an apparently worse performance on CMUH, which may be
owning to the small size of the training set. The superior per-
formance of RoBERTa to HAN on the CMUH test set demon-
strates the effectiveness of the pre-trained language model
when less labeled data was provided. On the other hand,
the HAN model outperformed RoBERTa on the KMUH cor-
pus possibly owing to the length of the KMUH reports, which
is much longer than that of the CMUH reports. A KMUH
patient has an average of 1.46 reports (refer to Table 1), whose
content may exceed the limitation of 512 tokens of RoBERTa.
In this case, the hierarchical-oriented architecture like HAN
with pre-trained RoBERTa as feature extractor may be more
competent. Unfortunately, both models tend to obtain worse
performance in items with numeric values as their codes.

C. EFFECTIVENESS OF TRANSFER LEARNING FOR THE
RECOGNITION TASK AND THEIR EFFECT OF
THE CODING TASK
In the following experiments, we would like to gain insight
into the extent of improvement transfer learning brings on the
performance of cancer registry recognition and their effect
in the coding task on the cross-hospital setting. KMUH was
selected as the source dataset since its larger size. The results
of for the recognition and coding are respectively illustrated
in the sub-graphs (a) and (b) of Fig. 4.

For all the configurations prefixed with ‘‘Non-transferred’’
shown in Fig. 4, we only used the reduced sizes of

the CMUH training set to train the neural network mod-
els without relying on any pre-trained parameters on the
KMUH dataset. The following four configurations were
considered.
1. Non-transferred BiLSTM-CRF (for recognition)
2. Non-transferred BiLSTM-CRF Hybrid (for coding)
3. Non-transferred HAN (for coding)
4. Non-transferred RoBERTa (for coding)

Furthermore, considering the comparable results achieved by
the CRF models, we also included the configurations ‘‘Non-
transferable-CRF’’ and ‘‘‘‘Non-transferable-CRF Hybrid’’ in
which we trained six CRF models corresponding to the
reduced CMUH datasets and hybrid them with the expert
system with the same rule sets.

1) EFFECTIVENESS OF TRANSFER LEARNING FOR THE
RECOGNITION TASK
For the recognition task, we conducted experiments to
examine the effect of transfer knowledge by analyzing the
importance of each layer of the developed neural networks
and quantifying the performance gain by varying the sizes
(5%, 20%∼100%) of the CMUH training set when we
fine-tuned the model pre-trained on KMUH. The ‘‘FC1’’
configuration in the sub-figure (a) initialized the learned
parameters of the FC1 layer of the BiLSTM-CRF model
by adopting the pre-trained parameters on KMUH, while
‘‘BiLSTM’’ further included the learned parameters of the
BiLSTM layer and so on.

From the results illustrated in the sub-figure (a) of Fig. 4,
we can observe that even with only 20% of the CMUH
training set, models learned with the transferred parameters
achieved promising F-scores of at least 0.902, which out-
performed the ‘‘Non-transfer BiLSTM-CRF’’ and the ‘‘Non-
transfer-CRF’’ models trained on the same number of training
samples by 0.241 and 0.116, respectively. Performance can
be further improved for both transferred and non-transferred
models with increased numbers of training samples, while
the latter exhibited a more apparent performance enhance-
ment. But the transferred models trained on the 20% training
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FIGURE 4. (a) Impact of the overall macro avg. F-scores by fine-tuning the models with the parameters up to each layer pre-trained on KMUH
on the varied sizes of the CMUH training set. (b) Impact of applying transfer learning in the recognition task for cancer registry coding by using
the hybrid of the pre-trained KMUH models fine-tuned on various sizes of the CMUH training set and the symbolic expert system.

set still obtained competitive F-scores that outperformed all
non-transferable CRF models. The improvement of the CRF
models is relatively flat compared to that of the neural net-
works, but it outperformed the others when the 5% training
set was used, highlighting the importance of handcraft fea-
tures when only very few training instances were available.

The results also reveal the effectiveness of the learned
parameters of each layer of the developed model in the man-
ner of transfer learning. It is worth noting that when very
few training instances were provided, transferring parameters
of all layers to the target model seems to be a good strat-
egy, which in general led to slightly better F-scores. But we
also observed that transferring the parameters of the lower
layers is almost as efficient as transferring all parameters in
cases that enough training sampleswere provided considering
their high performance when we trained them on more than
20% target training set. This phenomenon is consistent with
the observations of other previous works [31], [32] and the
hypothesis that the lower layers of a neural network learn
generic features and the higher layers learn task-specific
(in this work hospital-specific) features.

2) THE EFFECT OF TRANSFER LEARNING FOR THE
CODING TASK
In this experiment, we investigated the effect of apply-
ing transfer learning to the task of cancer registry coding.
Since we implemented both the proposed hybrid neural

symbolic approach and the classification-based approach
to address the coding task, we examined the effect of
transfer learning from two perspectives including the bene-
fit of transfer learning for classification-based approaches,
and the influence of transferred neural network on the
developed symbolic expert system. Similar to the exper-
iment conducted in the previous subsection, we consid-
ered the following configurations for comparison with
the ‘‘non-transferred/transferable’’ configurations by train-
ing or fine-tuning them on various CMUH training sets
(5%, 20%∼100%):

1. Fully transferred BiLSTM-CRF Hybrid: Hybrid with
the BiLSTM-CRF model whose parameters of all layers
were transferred fromKMUH and fine-tuned on CMUH.

2. FC1-transferred BiLSTM-CRF Hybrid: Hybrid with the
BiLSTM-CRFmodel whose parameters of the FC1 layer
were transferred fromKMUH and fine-tuned on CMUH.

3. Transferred HAN: The parameters of the word level and
sentence level attentions were transferred from KMUH
and fine-tuned on CMUH.

4. TransferredRoBERTa: The fine-tunedKMUH-RoBERTa
was further fine-tuned on the CMUH corpus.

The sub-figure (b) of Fig. 4 compares the results of the above
different configurations.

For the proposed hybrid systems, we noticed that
the two transferred configurations outperformed their
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non-transferred counterparts. Identical to the observation
in the recognition task (the sub-graph (a) of Fig. 4), with
only 20% of the CMUH training set, the hybrid sys-
tems with the transferred BiLSTM-CRF models achieved
a promising overall F-score of 0.903, which matches with
the non-transferred hybrid version trained with the full
CMUH training set (i.e. the BiLSTM-CRF-S configuration
in Table 2).

In accordance with the results shown in the sub-figure (a),
the non-transferable CRF hybrid is better than that of the
non-transferred BiLSTM-CRF hybrid in cases of fewer train-
ing examples. Nevertheless, the performance improvement
for the CRF hybrid is limited compared to the BiLSTM-CRF
hybrids whenmore training samples are used. The fully trans-
ferred BiLSTM-CRF hybrid demonstrated the best overall
F-score of 0.911 and the performance of both the fully and
FC1-transferred hybrids is even better than the best perform-
ing system displayed in Table 2. These results provide a
promising insight that we can exploit the previous learned
parameters of the neural networks from source hospitals to
rapidly develop a reliable coding system for the new hospital
by just compiling a small-scale annotated dataset containing
about 60 reports. On the other hand, without transfer learning,
the similar coding performance can only be achieved by
leveraging the recognition models fully trained on the target
hospital. The above results also validate the robustness of the
established expert system for cancer registry coding when the
same rule sets were applied for all configurations.

For the classification-based methods, it is intriguing to
see that the two models have different behaviors. When
trained with the 5% training set without transfer learn-
ing, the overall F-scores of the non-transferred HAN and
BiLSTM-CRF hybrid are around 0.1. Nevertheless, the two
RoBERTa models exhibited F-scores of ∼0.4 which again
substantiates the empirical strength of pre-training in transfer-
ring their general-purpose knowledge for downstream tasks
within small training data [33]. We observed that by using
only the 5% CMUH training set, both RoBERTa models can
learn to code the H and G items with F-scores of 0.780. The
non-transferred and transferred HANs can achieve similar
F-scores for H and G when 80% and 40% training sets were
used, respectively.

Although.Ko and Choi [28] showed that multi-task
fine-tuning on similar tasks is experimentally powerful for
boosting the performance, our results of the two RoBERTa
models do not suggest this strategy is significantly helpful
for cross-hospital settings as the RoBERTa models already
learned generalized universal language representations.
As a result, the first fine-tuning on a dataset written with
different formatting and style may not be necessary. By con-
trast, for the HAN model in which RoBERTa was used as
a feature extractor for generating contextual representation,
the pre-training on the KMUH corpus does improve its abil-
ity to learn from the CMUH corpus. When transfer learn-
ing is employed, the HAN model outperformed the other
classification-based methods including RoBERTa even with

only the 5% training data. The transferredHANmodel trained
with the 20% training set had a better performance than the
non-transferred BiLSTM-CRF hybrid. However, when more
training samples were used, the performance improvement
of the hybrid systems is significantly higher than that of
the HAN models. Even the non-transferred CRF hybrid sys-
tem prevails over the transferred HAN, let alone the trans-
ferred hybrids. These observations altogether demonstrate the
advantages of the proposed hybrid neural symbolic system.

D. ADVANTAGE AND LIMINATIONS OF TRANSFER
LEARNING FOR CANGER REGISTRY ITEM
RECOGNITION AND CODING
Developing a reliable AI-aided cancer registry coding sys-
tem requires a large training dataset with high quality. Our
experiment results illustrated in Fig. 4 reveal that with only
a few training samples, the F-scores of all non-transferred
systems are obviously lower than that of their full-trained
counterparts. The calculation of the Pearson correlation coef-
ficient (PCC) between the size of the training set and the
overall F-scores is displayed in Table 3 which illustrates
a strong correlation for all developed models excepted the
transferred BiLSTM-CRF hybrid. As illustrated in Table 3,
the correlation between the overall F-score of the BiLSTM-
CRF-S system and the size of the training data is downgraded
from strong to moderate (denoted as S > M in the table)
after applying transfer learning. The change of correlation
coefficients after transfer learning is applied for each method
and each registry item is summarized in Table 3. The inter-
pretation of PCC is translated to descriptions based on the
first table of [34]. Note that since transfer learning is not
applied on CRF-S, the table only displays the PCC of each
cancer registry item for the configuration of non-transferable
CRF hybrid.

Our experiment results shown in the previous section have
demonstrated that transfer learning enables us to reuse the
knowledge learned in a source hospital to improve the per-
formance of the coding task in a new hospital. With transfer
learning, the correlation of the overall F-scores and training
data sizes was reduced from strong to moderate for the devel-
oped BiLSTM-CRF-S. Although the overall performance
for the other transferred models remain strongly correlated
with data sizes, it can be observed that transfer learning had
divergent impacts on the eight registry items for the applied
methods. For the proposed hybrid neural symbolic method,
transfer learning is more effective for items like TS and PN,
but not for G because of the trend of the correlation change.

Unlike the proposed hybrid approaches which can ben-
efit from transfer learning in items mainly described in
numeric formats, the results in Table 3 suggest that for HAN,
a classification-based approach, it is preferred to transfer
knowledge learned from a source hospital for narrative items
such as T, N, M, and G. However, for pre-trained language
models like RoBERTa, the additional fine-turning approach is
not recommended as the analyses of PCC reveals an increase
in the correlations.
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TABLE 3. Pearson correlation coefficient analysis for the developed
methods without and with transfer learning.

Taking into account the results in Fig. 4 and Table 3, we can
conclude that transfer learning can relieve the requirement of
obtaining a large labelled clinical corpus and the burden of
the time-consuming and labor-intensive annotation process.
In comparison to the classification-based models, it seems
more efficient to transfer the knowledge learned from the
source hospital to the target hospital through the concept
recognition task and applying the proposed symbolic expert
system to address the task of cancer registry coding.

1) CROSS-DATASET ANALYSIS
Although the above analysis has demonstrated that transfer-
ring parameters learned on a large concept recognition dataset
for fine-tuning on a smaller one and hybridized with an expert
system is likely to be a valuable solution for developing
cross-hospital coding systems, it is curious to know its lim-
itation and other possible solutions. We hence conducted a
cross-dataset experiment to estimate the cross-hospital gen-
eralization ability of the developed hybrid neural symbolic
systems by using the dataset from one hospital for training,
and the dataset from another for testing (refer to the first
column under each hospital shown in Table 4). In addition,
we united the training sets from both hospitals to train a
concept recognition model that can learn the characteris-
tics of the reports from both hospitals simultaneously when
compared to the transferred model and hybridized it with
the same symbolic expert system (the KMUH + CMUH-S
columns shown in Table 4). The performance of the hybrid
with the transferred KMUH model on CMUH and its source
hospital (KMUH) is listed in the second columns denoted
as KMUH-T-S.

Although both the recognition corpora were annotated by
the same annotators following the same annotation guideline,
we noticed that the generality of the developed BiLSTM-CRF
models for the recognition task is not well as the overall
F-scores dropped to 0.541 and 0.459 on the test sets of
KMUH and CMUH, respectively. By hybridized the same
expert system, the coding performance is still outperformed
the classification-based approaches shown in Table 2, but
a significantly drop in F-score can be observed. Overall,
only two registry items (EN and PN) achieved acceptable
recognition F-scores (0.792 to 0.921) in the cross-hospital
setting, while the F-scores of all others are lower than 0.58.

These results uncover the fact that the format and writing
styles of the descriptive pathology in surgical biopsy reports
across hospitals are heterogeneous in real-world scenarios.
Comparingwith the token-level evaluation for the recognition
task, the document-level coding performance is much better,
which demonstrates that 1) the extracted registry concept
information can be effectively exploited by the developed
symbolic coding system in the cross-hospital setting; 2) given
that the coding results were individually curated by regis-
trars in the two hospitals following the TCR coding manual,
the consistent and robust results of the developed expert
system highlight the high quality of curated results.

Finally, we found that the model trained with the merged
dataset achieved the best recognition F-scores on both test
sets, which even outperformed models trained using only the
dataset from the same target hospital. Although the trans-
ferred model obtained an F-score of 0.954 on the CMUH
test set, which is tied with the merged model, the F-score
on its source test set KMUH was decreased by 0.18 as all
registry items except EN and PN have decreased F-scores.
In particular, the performacne of the G item dropped sig-
nificantly from 1.00 to 0.516. The results match with the
results of our PCC analysis shown in Table 3. This finding
demonstrates that the transferred recognition model suffered
the catastrophic forgetting problem [35] which is known to be
a challenge for artificial neural networks when the network
is trained sequentially on multiple tasks because the weights
in the network that are important for the original hospital
are now changed to meet the objectives of the data from
the new hospital. In contrast, the impact of the catastrophic
forgetting for the hybridized system is much less significant.
By comparing with Table 2, we can see that the coding
performance is the same or even better for N, H and EN items,
which demonstrates the robustness of the proposed hybrid
neural symbolic approach.

E. ERROR ANALYSIS
As shown in Fig. 2, our implementation of the expert system
supports goal-driven reasoning to provide an explanation
facility for the coding results. During the development of
our hybrid neural symbolic system, we used the facility to
examine the training/development sets and refine the rules
established based on the interpretations of the TCR coding
manual. Although TCR is known to be one of the high
quality cancer registries worldwide [29], we still identified
some coding or content errors in our corpus during system
development. These errors were mainly caused by human
factors including coding errors by registrars (e.g. the given
codes were inconsistent with the contents of all available
reports) and inconsistent reporting by pathologists (e.g. narra-
tive descriptions of cancer grades varied across the reports of
a patient in the course of the treatment). Those inconsistences
increase the difficulty of the developed expert systems for
processing multiple reports associated with one patient. Both
cases result in the increase of both FP and FN for coding
by 1. Fortunately, the explanation facility of our expert system
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TABLE 4. Cross-corpus evaluation of the proposed hybrid neural symbolic systems for the task of concept recognition and coding.

FIGURE 5. The visualization of the attention weights in the HAN model
for PN coding. The size of a word represents the weight for making the
prediction. In this example, the model can successfully generate a correct
code of 0 based on the excerpted narrative description.

provides us and registrars a tool to uncover the inconsistency
and help to diagnose the curated results to improve the quality
of curated data by highlighting unknown curation errors.

Moreover, we identified three main categories of errors
for the proposed hybrid neural symbolic system. In the first
category, the coding error is due to the recognition errors
of the underline neural network. The second category owes
to incomplete or insufficient information associated with the
target registry code in the patient’s reports, thus it is not
possible for the proposed system or other baseline models to
correctly generate the target codes. For example, one of the
coding rules for TS is that if the patient received neoadjuvant
therapy, the code should be recorded based on the original
size of the tumor before the therapy. However, the information
of the original size is not always available in the reports.

The last category is due to incomplete rule definitions
that can be refined in the future by introducing more cancer
registry-related concepts which can be extracted as facts for
complementing the current knowledge representation. For
instance, the current rules defined for PN did not check
whether the described numbers of nodes are benign or malig-
nant. Therefore, an incorrect code of 49 will be suggested for
the following description: ‘‘15. Lymph node regional lym-
phadenectomy reactive hyperplasia (49)’’. On the other hand,
we noticed that the HAN model seems to learn to capture
the key concept ‘‘reactive hyperplasia’’ to address the afore-
mentioned issue of the developed hybrid system as shown
in Fig. 5. However, the HAN model failed in cases where

all individually described numbers of examined/positive
nodes need to be summed up to generate the corresponding
EN/PN codes.

IV. CONCLUSION
A national cancer registry is essential for monitoring the
cancer incidence and mortality and for developing strate-
gies and policies to control the disease. Both completeness
and accuracy are important quality measures for the reg-
istry database. We have demonstrated the feasibility of the
hybrid of neural and symbolic AI for the task of cancer
registry coding and the robustness of the developed system.
We confirmed that the different writing styles and formats
of the pathology reports among hospitals indeed diminish
the performance of the developed systems developed from
the dataset of one hospital to another. Factors that influ-
ence the performance depend on the characteristics of the
registry items and the underlying methods. Overall, when
transfer learning is adopted, the model pre-trained on a source
hospital can be trained with fewer annotations of the tar-
get hospital and achieve similar performance when the full
training set of the target hospital is used without transfer
learning. Our empirical results indicated that the proposed
hybrid approaches mainly benefitted from transfer learning
in items described in numeric formats, whereas it is pre-
ferred to transfer knowledge learned for narrative items for
classification-based approaches like HAN. For pre-trained
languagemodels, our experiment results imply that additional
fine-tuning is not necessary. Moving forward, we will seek
to collaborate with more hospitals in Taiwan to extend the
knowledge of the developed system for diverse cancers.
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