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ABSTRACT Recently, many researches have been conducted on recognition of facial emotion using
convolutional neural networks (CNNs), which show excellent performance in computer vision. To obtain
a high classification accuracy, a CNN architecture with many parameters and high computational com-
plexity is required. However, this is not suitable for embedded systems where hardware resources are
limited. In this paper, we present a lightweight CNN architecture optimized for embedded systems. The
proposed CNN architecture has a small memory footprint and low computational complexity. Furthermore,
a novel hardware-friendly quantization method that uses only integer-arithmetic is proposed. The proposed
hardware-friendly quantization method maps the scale factors to power-of-two terms and replaces multi-
plication and division operations using scale factors with shift operations. To improve the generalization
and classification performance of the CNN, we create the FERPIus-A dataset. This is a new training dataset
created using a variety of image processing algorithms. After training with FERPlus-A, quantization has been
performed. The size of a quantized CNN parameter is about 0.39 MB, and the number of operations is about
28 M integer operations (IOPs). By evaluating the performance of the quantized CNN that uses only integer-
arithmetic on the FERPlus test dataset, the classification accuracy is approximately 86.58%. It achieved
higher accuracy than other lightweight CNNs in prior studies. The proposed CNN architecture that uses only
integer-arithmetic is implemented on the Xilinx ZC706 SoC platform for real-time facial emotion recognition
by applying parallelism strategies and efficient data caching strategies. The FPGA-based CNN accelerator
implemented for real-time facial emotion recognition achieves about 10 frame per second (FPS) at 250 MHz
and consumes 2.3 W.

INDEX TERMS Emotion recognition, convolutional neural network, quantization, accelerator, FPGA.

I. INTRODUCTION

Today, computers play a central role in industry and society,
and are rapidly becoming a part of everyday life. Accordingly,
the need for research on the interaction between humans
and computers is increasing. For smooth interaction between
them, a computer must be able to analyze human inten-
tion and respond accordingly. Emotions that appear in facial
expressions are a universal and effective way of express-
ing human intentions. Analyzing human intentions through
the emotions revealed in faces is called facial emotion
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recognition technology, and is used in diverse fields such as
automobiles and robot industries. To understand accurately
the emotions displayed on human faces, a computer must
recognize the face and automatically classify the emotions
according to specific emotion groups.

Ekman et al. [1] defined seven basic emotions: happi-
ness, anger, fear, surprise, disgust, sadness, and neutral.
Moreover, they found that basic emotions are perceived in
the same way regardless of human culture. In the field of
computer vision, the Facial Action Coding System (FACS),
a facial expression analysis method proposed in [2], was
used as a typical facial emotion recognition model. FACS
defines the basic movement of the facial muscles as Action
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Units (AUs), and then uses combinations of AUs to recognize
facial emotions.

However, the development of a real-time automation sys-
tem has thus far failed due to inadequate computational capa-
bilities and inefficient pre-processing algorithms.

Due to the advancement of image processing algorithms
and the improvement of computing power, facial emotion
recognition technology has evolved into a method of extract-
ing hand-crafted features through a three-phase pipeline [3].
This approach consists of image pre-processing, feature
extraction, and expression classification phases. The image
pre-processing phase removes irrelevant information using
filtering and histogram equalization, and reinforces informa-
tion related to facial emotions. The feature extraction phase
extracts face features from images using a feature extrac-
tor such as the Gabor Wavelet Kernel [4], Local Binary
Pattern (LBP) [5], Active Shape Model (ASM) [6], and the
Harr-Like Feature Template [7]. The expression classification
phase classifies the extracted features into emotion groups
using a classifier such as a support vector machine (SVM),
k-nearest neighbor (KNN), or AdaBoost [8]. The method
using hand-crafted features requires designing an appropri-
ate feature extractor and expression classifier individually,
so both phases cannot be optimized at the same time. More-
over, external factors (e.g., pose-variant, occlusion, and illu-
mination) may cause severe performance degradation.

Due to recent breakthroughs in hardware technology and
big data technology, a deep learning-based method has been
applied in various applications because it shows excellent
performance for complicated and complex problems. Espe-
cially in computer vision, such as image classification and
object detection, the method using convolutional neural net-
works (CNNs) has shown outstanding performance. Unlike
conventional methods, the CNN-based approach is more
robust in environments with noise, significantly reducing
reliance on image pre-processing and feature extraction.
In addition, this method can optimize the parameters at once
via end-to-end training. In the study of facial emotion recog-
nition, the CNN-based method showed higher performance
than the conventional method, but many convolution layers
were used when constructing the network. A network such
as this requires many operations and memory footprints.
Therefore, it is limited when used in an application that
requires real-time processing, such as an advanced driver
assistance system (ADAS) [9]. Moreover, it is not suitable for
environments with limited hardware resources, such as virtual
reality (VR) [10].

In this paper, we propose an FPGA-based CNN acceler-
ator for real-time facial emotion recognition. The accelera-
tor is optimized for embedded systems and applied a novel
hardware-friendly quantization method. The main contribu-
tions of this work are as follows:

o To improve facial emotion recognition performance,
FERPIlus-A is presented. This is a new training dataset
created by applying various image processing algo-
rithms such as bilateral filtering [11], contrast limited
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adaptive history equalization (CLAHE) [12], and edge
enhancement.

o A lightweight CNN architecture is proposed for
embedded devices. The proposed CNN is optimized
the number of operations and memory footprint using
the modified fire module in SqueezeNet [13] as the
basic computation module. The proposed CNN showed
approximately 86.58% facial emotion recognition accu-
racy when evaluated using the FERPlus test dataset.
This is the highest performance reported, compared with
previous works using a lightweight CNN.

« Log level threshold quantization (LLTQ) is proposed,
which is a novel hardware-friendly quantization method.
The proposed method can replace both multiplication
and division operations using scale factors with shift
operations. The proposed quantized CNN parameter size
is approximately 0.39 MB, and the number of operations
is about 28 M integer operations (IOPs). In addition,
it was confirmed that the performance of CNN that
uses only 8-bit integer-arithmetic exhibited no drop in
accuracy compared to using a 32-bit floating-point.

o The proposed CNN optimized for embedded devices
is implemented on a Xilinx ZC706 evaluation board
by applying parallelism strategies and efficient data
caching strategies for real-time facial emotion recog-
nition. The FPGA-based CNN accelerator, which
uses only 8-bit integer-arithmetic, used 5,090 LUTs,
7,588 Flip-Flops, 61 BRAMs, and 49 DSPs. The accel-
erator achieved approximately a frame rate of 10 frame
per second (FPS) while consuming 2.3 W of power.

The rest of this paper is organized as follows. In Section II,
related works on facial emotion recognition using a
lightweight CNN, quantization, and FPGA-based CNN
accelerator for facial emotion recognition are introduced and
analyzed. Section III describes the proposed design flow,
a lightweight CNN architecture optimized for embedded
devices, a novel hardware-friendly quantization method that
reduces the disadvantages of existing quantization work,
the integer scale conversion method, and the FPGA-based
CNN accelerator for real-time facial emotion recognition.
In Section IV, the experimental results and performance of
this paper are reported and compared with those in previous
works. Finally, Section V provides the conclusions of this

paper.

Il. RELATED WORKS

In this section, related works (facial emotion recognition
using lightweight CNN, quantization, and FPGA-based CNN
accelerator for facial emotion recognition) are introduced and
analyzed.

A. FACIAL EMOTION RECOGNITION USING A
LIGHTWEIGHT CNN

Several facial emotion recognition studies using a lightweight
CNN have been reported [14]-[23]. Barsoum et al. [14]
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constructed the FERPlus dataset, which addressed the prob-
lem of the FER2013 [24] dataset using the crowd-sourcing
and label distribution methods, and four different train-
ing schemes using a lighten VGG [25] were proposed.
Li et al. [15] extracted identity features and emotion fea-
tures through DeepID2 [26] and ResNet [27], respectively,
and then classified them by combining features from the
output of each CNN. Wikanningrum et al. [16] proposed
a transfer learning and ensemble method using pre-trained
parameters with a dataset frequently used in image classi-
fication. Pandey et al. [17], [18] suggested an approach to
train a MobileNetv2 [28] with a dataset incorporating a Sobel
gradient and Laplacian of the original image dataset. Based
on the method proposed in [18], Pandey e al. [19] used a
method of training by adding center loss [29] to global loss
to improve the discrimination power of the CNN.

Saurav et al. [20] constructed two custom CNNs using
gradient weighted class activation mapping (Grad-CAM).
They also proposed a dual-integrated CNN, which combines
the features extracted from two CNNs and uses them for facial
emotion recognition. Miao et al. [21] proposed SHCNN,
which can alleviate the over-fitting problem for a relatively
small dataset and recognize both static and micro-expressions
simultaneously. Lian et al. [22] introduced a method to quan-
tify the contribution of various facial areas using class acti-
vation mapping (CAM) from features extracted through a
DenseNet [30]. Zhao et al. [23] created a new dataset inte-
grating two similar emotion groups into one. They proposed
a method to train the DenseNet by applying face detection
and face alignment methods.

However, the previous works [14], [21] occupied a large
amount of memory space and had a problem of high com-
putational complexity. In earlier works [15], [20], the CNN
was used with smaller parameters, but because two CNNs
were used for inference, they still occupied a large amount
of memory space and remain unsuitable for real-time pro-
cessing. In other cases [16]-[19], CNN was used with small
parameters and low computational complexity, but their facial
emotion recognition accuracy is very poor. Even in works
using a small number of parameters [22], [23], they were
not suitable for real-time processing because they require
too much memory space due to dense connectivity. This is
a characteristic of the DenseNet. To address these problems,
further research is needed to design a lightweight CNN archi-
tecture by optimizing memory footprint and computational
complexity while maintaining the accuracy of facial emotion
recognition.

B. QUANTIZATION

Quantization is a method that converts parameters trained
with a 32-bit floating-point (FP) into a low-bit fixed-point
(FX) or an integer (INT). Applying quantization makes it pos-
sible to optimize memory usage and to reduce the number of
calculations using simpler hardware. Quantization is divided
into two methods. The post-training quantization (PTQ)
method [31]-[34] minimizes quantization errors by applying
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calibration when inferencing using pre-trained parameters.
The quantization-aware training (QAT) method [35]-[39]
retrains parameters considering the effects of quantization.

Nagel et al. [31] proposed bias correction and cross-layer
equalization methods to solve biased weight errors and imbal-
ances during the quantization process. Choukroun et al. [32]
introduced a method of minimizing the quantization error
using the least mean squared error between the floating-
point value and the quantized. Banner ef al. [33] minimized
quantization errors by calculating the optimal clipping value
using analytical clipping for integer quantization (ACIQ).
Cai et al. [34] suggested a distilled dataset using the mean
and variance of the batch normalization (BN) layer to obtain
the optimal quantization range.

Because the PTQ method does not require a retrain-
ing process, it saves computing resources and optimiza-
tion time and enables rapid deployment. However, existing
researches [31], [32] need fine-tuned values to minimize
loss of accuracy. In [33] and [34], different numbers of bits
should be assigned for each channel to minimize the drop in
accuracy. In other works [32], [33] should obtain separate
scale factors for each channel to maintain accuracy. More-
over, because all PTQ methods require floating-point param-
eters, dedicated operators are required when implementing
the hardware.

Choi et al. [35] proposed a method to minimize quan-
tization errors by defining a parameterized clipping acti-
vation (PACT) function to find appropriate scale factors.
Jacob et al. [36] defined the operation of the quantizer to
perform matrix multiplication using only integer-arithmetic
and presented a layer fusion method. Jung et al. [37] sug-
gested a method that minimizes task loss using parameterized
quantization intervals. Esser et al. [38] proposed a method of
learning optimal quantization mapping by making scale fac-
tors learnable parameters. Jain et al. [39] proposed a method
of mapping scale factors to power-of-two terms using scale
factor conversion equation.

The QAT method can obtain higher accuracy than the
PTQ method by training quantization parameters with other
parameters. However, some works [37], [38] did not quantize
the BN layer. In [35]-[38], the parameters required for quan-
tization are floating-point, and dedicated operators are neces-
sary when implementing hardware. In another approach [39],
calibration of the activation scale factor is required before
starting QAT. To compensate for these problems, a hardware-
friendly quantization method that does not require pre-
calibration step is needed.

C. FPGA-BASED CNN ACCELERATOR FOR FACIAL
EMOTION RECOGNITION

Performing facial emotion recognition using a GPU provides
the best performance in throughput and speed. However,
it is difficult to use a GPU in embedded systems. These
systems require solutions that consume less energy and use
fewer hardware resources. A field programmable gate array
(FPGA) has flexibility that allows designers to adapt designs
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to fit an application. It is suitable for real-time process-
ing in embedded systems because it can be programmed
to enable optimal operation speed and reasonable power
consumption.

Due to these advantages, several FPGA-based CNN
accelerators for facial emotion recognition have been pro-
posed [40]-[44]. Phan-Xuan et al. [40] implemented a CNN
accelerator on a Xilinx Zyng-XC7Z020 FPGA using high-
level-synthesis (HLS). They designed the CNN accelerator
that stores the results and inputs of the layer in DRAM to
reduce block RAM (BRAM) usage, and used VDMA for fast
DRAM access. Phuc ef al. [41] designed a CNN accelerator
by applying an efficient structure and data pre-processing
method for facial emotion recognition and implemented it on
Altera DE-10 FPGA using Verilog HDL. In Vinhe et al. [42],
the accelerator configured the processing engine core on
Altera DE-10 FPGA to accelerate the convolution operation.
Ding et al. [43] proposed the accelerator on Altera Cyclone-
V FPGA using Verilog HDL with different parallel process-
ing for different convolution layers constituting the CNN.
In Ding et al. [44], the CNN accelerator implemented on
Altera Cyclone-V FPGA using Verilog HDL. They designed
a configurable convolution computing array to maximize
DSP usage on the FPGA.

In previous works [40]-[42], a simple CNN architecture
was implemented involving fully-connected, convolution,
and pooling layers. Its number of parameters and computa-
tional complexity was low, but so was its accuracy, making
it unsuitable for applications requiring highly accurate facial
emotion recognition. In [43] and [44], DeeplD architecture is
implemented on an FPGA that requires a great deal of hard-
ware resources, making it unusable in embedded systems.
Therefore, it is necessary to design a low-power, low-cost
FPGA-based CNN accelerator for real-time facial emotion
recognition and that retains its high facial emotion recogni-
tion performance.

Ill. PROPOSED METHODS

A. PROPOSED DESIGN FLOW

In this paper, a novel lightweight CNN architecture is pro-
posed that is suitable for embedded systems. This is achieved
by optimizing the memory footprint and computational com-
plexity while maintaining the accuracy of facial emotion
recognition. In addition, log level threshold quantization
(LLTQ) is proposed, which addresses the disadvantages of
the previous works [38], [39]. Moreover, a low-power, low-
cost FPGA-based CNN accelerator is proposed for real-time
facial emotion recognition.

Fig. 1 shows the overall process for implementing
the proposed real-time facial emotion recognition appli-
cation. First, a new training dataset was generated com-
bining various image processing algorithms to enhance
CNN facial emotion recognition performance. Next, a novel
lightweight CNN optimized for embedded systems as
floating-point was trained. Then, LLTQ was performed,
which is a hardware-friendly quantization method that uses
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only integer-arithmetic. Finally, a CNN accelerator IP was
designed using an HLS compiler and a device driver was
created using a standard C/C++ compiler. The newly devel-
oped IP and device driver were implemented in the PL and
PS areas of the heterogeneous SoC platform for a real-time
facial emotion recognition application.

B. PROPOSED LIGHTWEIGHT CNN ARCHITECTURE FOR
EMBEDDED SYSTEMS

In this section, a lightweight CNN architecture is introduced
that provides optimized memory usage and computational
complexity on embedded devices. Fig. 2 shows the proposed
lightweight CNN architecture consisting of 21 convolution
layers and one global average pooling layer. The computation
block includes two basic computation modules, FireA and
FireB. The number of filters in the squeeze layer (s) and the
number of filters in the expand layer (e), which are parameters
of the computation block, were increased by two times in
the following computation block. The proposed CNN was
designed by applying the following techniques.

1) BASIC COMPUTATION MODULE

The newly designed lightweight CNN was inspired by the fire
module proposed on SqueezeNet. The fire module consists of
two types of layers. The squeeze layer (SQ) can reduce the
number of channels of the feature map, reducing the number
of operations in the expand layer that follows. The expand
layer serves to expand the channel again and comprises two
types of layers: a layer with a kernel size of 3 (EX3) and a
layer with a kernel size of 1 (EX1). The output feature map
of the SQ is divided into two paths and enters to EX1 and
EX3, respectively. Furthermore, the output feature maps of
EX1 and EX3 are merged through channel-wise concatena-
tion and then enter the next layer.

The proposed lightweight CNN uses a modified fire mod-
ule as a basic computation module and consists of two types
(FireA and FireB). The configuration of the expand layer of
FireA and FireB is the same. However, the kernel size in the
SQis setto 3 in FireA and to 1 in FireB. The reason for setting
the kernel size to 3 in FireA is to minimize the accuracy drop
by maintaining an appropriate reception field.

2) ALL CONVOLUTIONAL AND REGULAR NETWORK
The proposed CNN uses only the convolutional layer with
kernel size of 3 or 1, so no consideration of the acceleration
methods is needed for other kernel sizes when implementing
in hardware. The max-pooling layer halves the resolution
of the feature map and compresses the information. It can
become a bottleneck when implemented in hardware because
it must find the maximum value of the feature map. The
proposed CNN sets the stride of FireA to 2; this halves the
resolution of the feature map and replaces the max-pooling
layer.

The fully-connected (FC) layer, which classifies the
extracted features at the very end of the CNN, involves many
parameters. The number of parameters can be reduced by
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FIGURE 1. An overview of the process for implementing proposed FPGA-based CNN accelerator for real-time facial emotion recognition.
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FIGURE 2. Proposed lightweight CNN architecture optimized memory usage and computational complexity.

replacing the FC layer with global average pooling and a
convolution layer with a kernel size of 1. The configured
classifier minimizes the number of channels to match the
number of classes through the convolution layer, and then
compresses the resolution of the feature map to one pixel. The
activation function of all the layers is labeled ReLU. When
implemented in hardware, the ReLU function is very efficient
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because it uses only sign-bit comparison. Using the above
techniques, all layers of the CNN were made convolution
layers and designed as a very regular network. In addition,
a BN layer was inserted between the convolution layer and the
activation function to improve the CNN convergence stability
and performance. Because a BN layer can be combined with
the convolution layer through BN layer fusion, the additional
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number of operations and parameters generated by the BN
layer can be ignored when implementing in hardware.

3) POWER-OF-2 RESOLUTION AND MULTIPLE-OF-4 OUTPUT
CHANNELS

By making both the width and height of the feature map
power-of-two terms, the multiplication and division opera-
tions of the part that calculates the address of the feature map
can be replaced with a shift operation. In addition, the output
channels of the convolution layer were all set to multiples of
four for efficient parallel multiply-accumulate (MAC) hard-
ware operations. A detailed description of the parallel MAC
operations is presented in Section III-D.

C. PROPOSED QUANTIZATION METHOD

In this section, log level threshold quantization (LLTQ) is
described, which is a novel hardware-friendly quantization
method. Furthermore, an integer scale conversion method
is described, which converts quantization-affected floating-
point values to actual integer values and reconstructs CNN to
use only integer-arithmetic.

1) LOG LEVEL THRESHOLD QUANTIZATION (LLTQ)

The current state-of-the-art quantization methods (learned
step size quantization (LSQ) method [38] and trained
quantization threshold (TQT) method [39]) use uniform
quantization. A CNN with uniform quantizers inserted, per-
forms quantization-aware training (QAT) using pre-trained
floating-point parameters. Fig. 3 shows the structure of the
convolution layer with a uniform quantizer inserted and the
four-step operation of the quantizer. In the first step, the scale
process, the quantizer maps a real value range to an integer
value range of specified bit. The second step, called the round
process, converts all real values mapped to an integer value
range into integers. The third step is the clamp process. This
process removes elements that exceed the quantization range
to suit the quantization level. When the quantization bit is n,
the values after the clamp process are located inside Bound
as shown in (1):

[—Zn_l, on—1 _ 1] , signed data

[0,2" — 1], %

Bound = ,
unsigned data.

The fourth step, the de-quant process, converts values
mapped to an integer range into floating-point values affected
by quantization. The reason for converting the value quan-
tized to an integer back to floating-point is that most existing
deep learning frameworks using GPUs are optimized for
floating-point training. The overall equation for the forward
path can be described as follows:

X4 = clamp (round (%f) ,Bound) -8 2)

where x¢ is a floating-point value that is an input of the
quantizer and x4 is the output value of the quantizer that
passed de-quant process. The clamp(x, Bound) function is
the second step of the uniform quantizer and cuts the rounded
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value (x) to fit inside the Bound. The round(-) function is the
third step of the uniform quantizer. It rounds the real data to
the nearest integer. A straight-through estimator (STE) [45]
was used to solve the discontinuity occurring in the rounding
process.

The LSQ [38] method sets the trainable parameter as a
scale factor (s) and trains the scale factor along with other
parameters. Therefore, the LSQ does not require scale fac-
tor conversion in the quantization process. Although it is
well learned for use with the lightweight CNN described
in Section III-B, there is the disadvantage that dedicated
operators are needed when implementing it in hardware. This
is because this is a floating-point scale factor. The TQT [39]
method sets the trainable parameter as a log-threshold (log»t)
and maps a scale factor to power-of-two terms as follows:

2ceil(logzt)
5= q_level 3
where the g_level is the value of adding 1 to the maximum
value of the Bound in (1).

Because the TQT maps the scale factor to power-of-two
terms, there is an advantage in that multiplication and division
using the scale factor can be replaced with a shift opera-
tion. However, before starting retraining, calibration of the
activation scale factor is required. Therefore, in this paper,
a novel hardware-friendly quantization method that fixes
the problems in earlier works [38], [39] is proposed. The
proposed LLTQ can directly map the trainable parameter to
the power-of-two scale factor. In addition, unlike TQT [39],
the LLTQ method enables initializing the activation scale
factor with the activation data statistics value of the first batch
of the first epoch; there is no need for the pre-calibration
process. Moreover, by mapping the scale factor to the power-
of-two terms, the multiplication and division operations that
occur in the scale and the de-quant process could all be
replaced by shift operations. The performance of the LLTQ
method is evaluated using only integer-arithmetic through the
integer scale conversion method, which will be explained in
Section ITI-C-2. LLTQ sets the trainable parameter as a level-
threshold (level_th) and maps the scale factor to the power-
of-two terms using the following equation:

2ceil(log2 (abs(level _thxq_level))

= 4
y q_level @)

where the g_level is the same as in (3). A detailed description
of the LLTQ equation and its trainable parameter is presented
in Appendix A of the supplementary material document.
Many operations are required to calculate the scale factor (s).
However, when performing inference with a CNN reconfig-
ured to use only integer-arithmetic, only shift amounts of the
scale factor mapped to the power-of-two terms are needed.
Additionally, several hardware-friendly quantization
schemes were adapted for LLTQ. By using symmetric quanti-
zation, the computational overhead for zero-point that occurs
during uniform quantization is eliminated. By introducing
per-layer scaling, quantization can be performed with one
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FIGURE 3. The process of a uniform quantizer using the LSQ [38], the TQT [39] method, and the proposed quantization method,

LLTQ.

scale factor for all elements of a given parameter or input
tensor. The BN layer fusion, which combines the parameters
of the convolution layer and of the BN layer, was applied.
This scheme does not need to proceed with quantization on
the BN layer. This can reduce the number of operations and
inference time by eliminating the multiplication and division
operations required for the BN layer. The fire module is
a structure in which the output of a squeeze layer enters
the input of two expand layers. In floating-point, the two
expand layer inputs are the same. However, in QAT, each
convolution layer requires a different scale factor. Therefore,
the squeeze layer has to calculate the output for each expand
layer separately. This can form a bottleneck when performing
CNN inference in hardware. To solve this problem, QAT was
performed by making the quantizers of two expand layers into
a single shared quantizer.

2) INTEGER SCALE CONVERSION

In several papers researching quantization, performance was
evaluated using quantization-affected floating-point values
rather than actual integer values. Using the parameters made
by the proposed quantization method, the CNN was recon-
structed using only integer-arithmetic through the integer
scale conversion method proposed in this section. As shown
in Fig. 4 (b), (d), the red line indicates the flow of floating-
point data, and the black line indicates the flow of integer
data. The superscript of each letter represents the type of data:
f denotes floating-point data, i denotes an integer, and the
subscripts k, k + I, k + 2, k + 3 below, indicate the number of
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each layer. The term Q, is the integer-arithmetic-only (IAO)
activation quantizer, Qp, is the IAO bias quantizer, and Q,, is
the IAO weight quantizer. The terms Sy, k., Sw.k+1, and Sy, k42
are weight scale factors, Sp &, Sp.k+1, and Sp k2 are bias scale
factors, and Sy k, Sa.k+1, Sa,k+2. and S, x+3 are the activation
scale factors. Here, A, W, B, and C marked on the dataflow
arrow mean layer input, weight, bias, and activation func-
tion output, respectively. In Fig. 4, the part marked Offline
is the process of converting quantization-affected floating-
point parameters into integers. This process is done before
inference and thus does not affect inference time. The process
of converting quantization-affected floating-point parameters
into integer parameters is represented as:

W,i = clamp(round(W,{ &L Sw.k, Bound)) 5)
B}; = clamp(round(BZ < Sp.k, Bound))
K (Sak + Swk — Spk)- (6)

It was assumed that the input of the convolution layer
is an integer quantized with the bit-precision specified at
QAT. As shown in Fig. 4 (a) and (b), the general convolution
layer performs MAC operation on integer scale weights and
integer scale activations and adds the integer scale bias to the
MAC result. As shown in (6), the bias value should then be
converted to the same scale as the MAC operation result. This
method is called bias up-scaling, and without this process,
an error occurs because the bias and the MAC operation result
have different bit-precision. After adding bias, the data passes
the activation function ReLLU, and the result of the ReLLU can
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FIGURE 4. Integer scale conversion method: (a) General convolution layer. (b) Integer scale conversion method for general convolution layer.

(c) Fire module. (d) Integer scale conversion method for Fire module.

be expressed as shown in (7):
Ci = ReLU(MAC ( i W,ﬁ) +B) %

where C ,’C is the output value of ReLU, it needs to be converted
from bit-precision of the current layer’s MAC operation result
to the bit-precision specified by QAT before entering of the
next layer. This method is called activation down-scaling, and
it cancels the effect on the scale factor of the current layer
and scales to the input precision of the next layer. Activation
down-scaling can be represented as shown in (8):

Ajyy = clamp(C}, > Sa + Swk — Sak+1, Bound). (8)

In the fire module shown in Fig. 4 (c) and (d), the behavior
of the squeeze layer is the same as the general convolution
layer to which (5), (6), and (7) apply. Due to the introduction
of a shared quantizer, a single scale factor is sufficient. There-
fore, the same input can be used without calculating the input
for each expand layer. The input of each expand layer can be
described as in (9):

A2+1’A2+2 = clamp(C;; > Sak +Swk — Sak+1, Bound).
)

The output of each expand layer should be channel-wise
concatenate after activation down-scaling using (8). Scaling
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is not needed because channel-wise concatenation does not
affect a value. This process is represented in (10):

A;;+3 = concat[clamp(C};H > Sak+1 + Swok+1
—Sa.k+3, Bound), clamp(C,i_ﬂ
> Sak+2 + Swk+2 — Sa,k+3, Bound)].  (10)

D. PROPOSED CNN ACCELERATOR

In this section, A design methodology of a low-power,
low-cost FPGA-based CNN accelerator for real-time facial
emotion recognition is described. First, the entire proposed
hardware architecture is presented. Then, the parallelism
strategies and data caching strategies are explained, as well
as the post-processing module. Last, the task-scheduling of
the accelerator is described.

1) HARDWARE ARCHITECTURE

Fig. 5 shows the proposed hardware architecture of the CNN
accelerator for real-time facial emotion recognition. The
accelerator was implemented on a heterogeneous SoC plat-
form composed of CPU (Processing System, PS) and FPGA
(Programmable Logic, PL). The CPU allocates a memory
region and transfers the kernel size, stride, padding, input
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FIGURE 5. Hardware architecture of the proposed CNN accelerator for real-time facial emotion recognition.

channel, output channel, shift amounts, and address, which
are each layer configuration information, to the FPGA accel-
erator IP through the AXI_LITE bus. Data for MAC oper-
ation, such as input images, feature maps, and parameters,
are transferred from DRAM to the FPGA accelerator through
the AXI_MEM bus. Each layer constituting the CNN shares
multiply-accumulate unit (MACU) and post-processing mod-
ule (PPM) to perform operations. The operation result is
transferred from the FPGA accelerator to the DRAM using
the AXI_MEM bus.

2) PARALLELIZED PROCESSING MODULE

The general-purpose embedded CPU is very slow to per-
form convolution operations with six nested loops. To solve
this problem, the CNN inference process was accelerated
by implementing parallelized processing modules in the PL
area of the SoC platform. It was necessary to find a part
where the parallelism strategy could be applied in six nested
loops to implement a parallelized processing module. Two
among several possible parallelism strategies were used to
implement the loop-level parallelism efficiently on embedded
devices [46].

First, the intra-convolution parallelism strategy was
invoked. Intra-convolution parallelism was achieved by fully
unrolling the loop corresponding to the MACU internal
operation shown in Fig. 5. The fully unrolled loop was
implemented with a MACU consisting of nine parallelized
multipliers and eight adders for the 3 x 3 convolution opera-
tions. Second, the inter-feature map parallelism strategy was
applied. MACUs shown in Fig. 5 were used to achieve inter-
feature map parallelism by partially unrolling loops for dif-
ferent channels of the output feature map. Because the unroll
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factor of the partially unrolled loop was 4, the accelerator
could be executed MAC operations in parallel for four other
channels of the output feature map. The 1 x 1 operations are
performed by reusing a part of the fully unrolled MACU for
3 x 3 convolution operations.

In given the SoC platform, there were opportunities to use
more parallelism strategies. However, in the case of intra-
feature map parallelism, it was not free from data dependency
because all the results of the MAC operation for each input
channel targeting the pixels of the same output channel had to
be accumulated; thus, a great deal of resources were likely to
be utilized. In the case of inter-convolution parallelism, it was
not suitable for implementation in embedded devices because
a large amount of data would have to be loaded in the on-chip
buffers in advance.

3) DATA CACHING MODULE

The process of accessing data from off-chip memory every
time for MAC operation is expensive both in terms of latency
and energy. Moreover, the on-chip memory inside the PL area
is not large enough to store all the parameters and calculation
results of a CNN. Therefore, there is a need to minimize the
number of accesses to off-chip memory by maximizing data
reuse in the on-chip memory. Three data caching modules
(FMCM, PCM, OCAM) were used in the PL area.

In the MACU with the intra-convolution parallelism strat-
egy applied, the 3 x 3 convolution filter requires 9 pixels
of the input feature map for MAC operation. For efficient
prefetching of the input feature map, the accelerator needs
line buffers that can store at least 3 rows. Line buffers that
could store 4 rows of the input feature map were made for
convenience in addressing. These line buffers were bundled
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together and called a feature map caching module (FMCM).
To maximize parameter data reuse, an on-chip memory was
created that can store all parameters of the layer in which the
operation is performed, which memory is called the param-
eter caching module (PCM). In addition, the PCM for each
processing module was divided to use the inter-feature map
parallelism strategy. A memory was created to accumulate the
MAC operation results for the channel of the output feature
map during MAC operation, which memory is called output
channel accumulation module (OCAM).

4) POST-PROCESSING MODULE

All the remaining operations except convolution operations
are performed in the PPM. The PPM consists of the shift oper-
ations, add operations, and sign-bit comparison operations.
The PPM receives the final output value of the OCAM as
an input. Moreover, like the parallelized processing module,
the inter-feature map parallelism strategy is applied with
the unroll factor set to 4. The final output of the PPM
is writeback to the DRAM to enter the input of the next
layer.

5) TASK-SCHEDULING

Fig. 6 shows task-scheduling that optimizes the dataflow
of each of the parallelized modules constituting the CNN
accelerator. First, the CPU calculates the size of the data
caching module and the address of the layer and data region
using the pre-calculated network constraints before starting
the CNN operations. The computed addresses and layer con-
figurations are transferred from the PS to the PL config-
uration registers through the AXI_LITE bus. Data caching
modules (FMCM, PCM) prefetch the data from DRAM
through the AXI_MEM bus using the pre-transferred address
and layer configurations. The prefetched data is loaded into
the pixel buffer and parameter buffer, and the MAC oper-
ation is performed in the parallelized processing module.
The OCAM stores the intermediate results of the MAC
operation and performs accumulation. After the accumula-
tion is completed, the PPM executes the remaining opera-
tions. This dataflow lasts until all processes in the layer are
terminated.

IV. EXPERIMENTAL RESULTS

In this section, the experimental environment and results are
described that were set to evaluate the performance of the
proposed CNN optimized for embedded systems and the
proposed hardware-friendly quantization method. All evalu-
ations and measurements were performed on a workstation
equipped with Intel®Xeon®Gold 512 CPU @ 2.2 GHz,
180 GB RAM, and an NVIDIA Tesla V100 (SXM2) GPU.
A new training dataset was created using the OpenCV
library. The CUDA library and Pytorch framework were used
for floating-point training, quantization-aware training, and
integer-arithmetic-only inference. The number of operations
was measured using the framework of [47]. The proposed
CNN accelerator for real-time facial emotion recognition was
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FIGURE 6. Overall task-scheduling for the proposed CNN accelerator.

implemented using the Xilinx Zyng-7000 SoC ZC706 Eval-
uation Kit. It consisted of a dual-core ARM Cortex-A9 pro-
cessor (PS) and XC7Z045 FPGA (PL).

During floating-point training, the batch size was 64, and
the number of epochs was 200. The Adam method was
chosen as the optimization algorithm with a learning rate
of le-2 and weight decay of le-5. The quantization-aware
training methods used in the experiment herein included
LSQ [38], TQT [39] and the proposed LLTQ. The hyper-
parameters of the three quantization methods were set as
follows: the batch size was 32 and the number of epochs was
100. The initial learning rate was set to le-5 for weights and
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FIGURE 7. Some samples for the FERPlus-A dataset: (a) Original image. (b) Bilateral filter, CLAHE applied to (a). (c) Sharpening filter, CLAHE

applied to (a). (d) Bilateral filter, CLAHE, sharpening filter applied to (a).

biases, and le-3 for scale factors, log-thresholds, and level-
thresholds.

A. RESULTS FOR THE NEW TRAINING DATASET
In real-world situations, it cannot be assumed that only
images of good quality become CNN input. Therefore, data
were added considering various conditions to assure high
performance of the CNN in real-world situations. A bilateral
filter [11] was applied to add noise-removed and border-
preserved face images. CLAHE [12] was used to add high-
contrast images and appropriate contrast images. By applying
a sharpening filter, images were added that emphasize
the boundary features of the face. In this way, FERPlus-
A was constructed. This is a dataset that can build a
more robust CNN in real-world situations. The FERPlus-
A training dataset includes 143,545 images that were
added to the 28,709 FERPlus training dataset, resulting
in 172,254 images. Fig. 7 shows some samples from
the FERPlus-A training dataset. The CNN proposed in
Section III-B was used to evaluate whether the FERPlus-A
dataset showed improved performance. The CNN was
trained using the FERPlus and FERPlus-A training dataset
and their performance was evaluated using the same
FERPlus test dataset. When trained using the FERPlus
training dataset, the facial emotion recognition accuracy
was approximately 71.85%, and when trained with the
FERPIlus-A training dataset, the accuracy was approximately
86.58%. A performance improvement of approximately
14.73% was confirmed when using the FERPlus-A training
dataset.

B. COMPARISON OF OTHER QUANTIZATION WORKS

Eight-bit quantization-aware training was performed for all
three quantization methods. Table 1 shows the experimental
results. Compared to the floating-point, the method of [38]
improved accuracy by approximately 0.13%, but because the
scale factor was still a floating-point type, the method was not
hardware-friendly. This is because it still required a dedicated
operator. The method of [39] is hardware-friendly, but it
reduced accuracy by approximately 0.45% compared to the
floating-point result. After quantization-aware training using
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LLTQ, CNN inference was conducted using only integer-
arithmetic. As a result of applying LLTQ, it was confirmed
that there was no accuracy drop relative to the floating-point
method. Additional experiments of the LLTQ are provided in
Appendix B of the supplementary material document.

C. COMPARISON WITH OTHER LIGHTWEIGHT CNNs

The performance of the proposed lightweight CNN optimized
for embedded devices was compared with other facial emo-
tion recognition studies using a lightweight CNN. Compar-
ison of facial emotion recognition accuracy, the number of
operations, and parameter size are shown in Table 2. The
proposed CNN parameter size is 0.39 MB, the number of
operations is 28 M IOPs, and the accuracy is approximately
86.58%. The accuracy of facial emotion recognition by the
proposed CNN achieved the highest facial emotion recogni-
tion accuracy among the other methods considered [14]-[23].
As shown in Table 2, the new method outperforms the
methods of [14]-[16], [18]-[21], [23]-2, [23]-3 in terms of
accuracy, the number of operations, and parameter size. In a
comparison with the method of [22], it was not possible to
measure the number of operations and parameters, but the
proposed method exhibits 5.07% higher accuracy. Compared
to [17], the new method is 6.33 times smaller parameter size
and 3.28% more accurate. Although its number of opera-
tions is 1.4 times larger, it is more efficient because it uses
only integer-arithmetic. Compared with the method of [23]-1,
the proposed method is 1.05 times larger parameter size but
2.52% more accurate. Compared with the method of [23]-2,
the new method is 2.15 times smaller and 1% more accu-
rate. Regarding the method of [23]-3, the new approach is
1.67 times smaller, uses 6.07 times fewer operations, and
has 0.91% greater accuracy. These results indicate that the
proposed CNN achieved the best trade-off between memory
usage, number of operations, and accuracy.

D. HARDWARE IMPLEMENTATION ON FPGA

HLS is a way of designing hardware using a high-level
language. Implementation details such as state machine and
interface are handled by the HLS compiler, so an abstract
design can be possible, code can be shared during design and
simulation, and rapid deployment is possible. Taking note
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TABLE 1. Comparison of three different quantization-aware training methods.

Method ?&mg;l Scale factor Accuracy (%)  vs Baseline  # of Operations Remark
Baseline 32/32/32 - 86.58 - 28M FLOPs Floating-point
TQT [39] 8/8/8 Power-of-two 86.13 -0.45 28M FLOPs Need de-quant, Need pre-calibration
LSQ [38] 8/8/8 Floating-point 86.71 +0.13 28M FLOPs Need de-quant
LLTQ (This work)" 8/8/8 Power-of-two 86.58 - 28M IOPs Integer-arithmetic-only

* Inference result using integer-arithmetic after quantization-aware training

TABLE 2. Comparison with other facial emotion recognition studies using a lightweight CNN.

Method Precision Input Resolution Accuracy (%) Parameter Size (MB) FLOPs (M)
[21] FP32 224 86.54 33.23 204
[23]-3 FP32 48 85.67 0.65 170
[23]-2 FP32 48 85.58 0.84 -
[20] FP32 48 85.29 5.40 394
[14] FP32 64 84.89 33.42 1,940
[19] FP32 64 84.80 1.37 70
[18] FP32 64 84.47 1.37 70
[16] FP32 32 84.30 3.62 288
[15] FP32 48 84.30 1.22 190
[23]-1 FP32 48 84.06 0.37 -
[17] FP32 64 83.30 2.47 20
[22] FP32 64 81.51 - -
This work INTS 64 86.58"" 0.39 28"

* Integer Operations (IOPs)

** The best two results are highlighted in red and blue colors, respectively.

TABLE 3. Resource utilization and power consumption of the proposed
CNN accelerators.

Resource / Power Type-1  Type-2 Area / Power Reduction
(FP32)  (INT8) Ratio (Type-1 vs Type-2)
LUT
(Avail. 218,600) 16,453 5,090 x3.23 |
FF
(Avail, 437,200) 33,326 7,588 x4.39 |
BRAM
(Avail. 1,090) 120 61 x1.97 |
DSP
(Avail. 900) 205 49 x4.18 |
PS 1.670 1.670 -
Power PL 2.398 0.415 x5.78 |
(W) Others 0.244 0.225 x1.08 |
Total 4312 2.310 x1.87 |

of these advantages, HLS was chosen for the design. The
CNN accelerator IP was designed using Vivado HLS 2019.2.
The target clock frequency was 250 MHz. In Vivado 2019.2,
the designed IP was connected to the PS and then synthesis
and implementation were carried out. Petalinux 2019.2 was
used to create the boot image and Linux kernel. A device
driver was developed, and real-time facial emotion recogni-
tion application was built using Vitis 2019.2. The operation
of the CNN accelerator was verified at the terminal connected
to the UART.
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Here, two types of FPGA-based CNN accelerators are
shown in Table 3: Type-1 using 32-bit floating-point parame-
ters (FP32) and Type-2 using 8-bit integer parameters (INTS)
that quantized. Table 3 shows the resource utilization and
power consumption of the proposed CNN accelerators. When
comparing the area reduction ratio of Type-2 to that of
Type-1, it was possible to reduce LUTs by 3.23 times,
FFs by 4.39 times, BRAMs by 1.97 times, and DSPs by
4.18 times. Furthermore, the power was measured using the
Vivado power estimator. The three factors that cause power
consumption are the power generated by the CPU in the PS
area, the power generated by the CNN accelerator IP in the
PL area, and other power. The power consumption of the PS
area that occurs in Type-1 and Type-2 is the same. However,
the power of the PL area decreased by 5.78 times and the
other power decreased by 1.08 times; thus, the total power
decreased by 1.87 times. As shown in Table 4, The proposed
CNN accelerator was compared to previous implementations.
Compared with the method of [40], the new Type-2 method
was found to be more accurate, to use fewer resources, and
to have frame rate approximately 25 times faster. Compared
to the work in [41], the new Type-2 approach is more accu-
rate, uses 2.2 times fewer DSPs, and has a frame rate about
20 times faster. Compared to the accelerator in [42], the new
Type-2 CNN accelerator is more accurate, but has a frame
rate of about 5 FPS slower. Even so, the new accelerator

VOLUME 9, 2021



J. Kim et al.: Resource Efficient Integer-Arithmetic-Only FPGA-Based CNN Accelerator

IEEE Access

root@petal inux: ./fpga_inference.elf ./image.bin

Pre Processing : Oms

Xilinx ZC706 Board

B abel : neutral)
3 (output -12.38 /  label : sad)

0 (output -

00.00%: class
00.00%: class

2 (output -14.38 /  label
4 (output -14.69 /  label

: surprise)
angry)

Test Result : happy

FIGURE 8. Demonstration of an FPGA-based CNN accelerator using only 8-bit integer-arithmetic for real-time facial emotion recognition.

TABLE 4. Comparison with other FPGA-based CNN accelerators for facial emotion recognition.

Method [40] [41] [42] [43] [44] (ngp;'o'rk) (Tgiysp@'ozrk)
Test Dataset FER2013 FER2013 FER2013 - - FERPlus FERPlus
Accuracy (%) 60.3 65.0 66.0 - - 86.58 86.58
Design Entry HLS RTL RTL RTL RTL HLS HLS
FPGA Vendor Xilinx Altera Altera Altera Altera Xilinx Xilinx
Platform XC7Z020 DE-10 DE-10 Cyclone-V Cyclone-V XC7Z045 XC772045
Bit-Width FP32 FP32 INT16 FX16 FX16 FP32 INT8
Frequency (MHz) 200 200 130 125 50 250 250
LUT or ALM 36K - 22K 61K 52K 16K 5K
FF 24K - - 47K 58K 33K 7K
BRAM 118 - 553 171 63 120 61
DSP 152 108 112 274 270 205 49
Power (W) - - - - - 431 2.31
Frame Rate (FPS) 0.4 0.5 15" - - 7 10™

* The best two results are highlighted in red and blue colors, respectively.

** FPS was measured by test dataset with the batch size of 1 and averaged them.

uses about 4.41 times fewer LUTs, 9.07 times fewer BRAMs,
and 2.29 times fewer DSPs. Compared with the methods
in [43] and [44], the proposed method uses fewer resources.
The runtime profile table of the proposed CNN accelerator
is provided in Appendix C of the supplementary material
document. The results show that the proposed accelerator
achieved real-time face emotion recognition while consum-
ing low power and utilizing low resources. This has great
advantages as a real-time facial emotion recognition appli-
cation that requires high classification accuracy in embedded
systems.
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V. CONCLUSION

In this paper, a new training dataset is presented that was
created by combining various image processing algorithms
to improve the performance of facial emotion recognition.
Furthermore, a lightweight CNN architecture that optimizes
memory usage and the number of operations for embed-
ded devices was proposed. The use of log level thresh-
old quantization (LLTQ) was also proposed. This is a
novel hardware-friendly quantization method that uses only
integer-arithmetic by addressing the problems of existing
methods. After applying the proposed methods, the proposed
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CNN was evaluated using the FERPlus test dataset. The
accuracy of the proposed CNN for facial emotion recognition
was approximately 86.58% and exhibited no accuracy drop
compared to the floating-point approach. The parameter size
was 0.39 MB and the number of operations was 28 M IOPs.
A CNN accelerator for real-time facial emotion recognition
was implemented on the SoC platform and used 5,090 LUTs,
7,588 FFs, 61 BRAMs, and 49 DSPs. It consumes a power
of about 2.3 W and demonstrates a frame rate of about
10 FPS. We believe that our proposed CNN accelerator design
methodology for real-time applications in embedded systems
can be applied to other CNN accelerator designs in the same
manner.
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