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ABSTRACT This paper studies vehicle platooning with communication channels subject to random data
loss. We focus on homogeneous discrete-time platoons in a predecessor-following topology with a constant
time headway policy. We assume that each agent in the platoon sends its current position to the immediate
follower through a lossy channel modeled as a Bernoulli process. To reduce the negative effects of data
loss over the string stability and performance of the platoon, we use simple strategies that modify the
measurement, error, and control signals of the feedback control loop, in each vehicle, when a dropout occurs.
Such strategies are based on holding the previous value, dropping to zero, or replacingwith a prediction based
on a simple linear extrapolation. We performed a simulation-based comparison among a set of different
strategies, and found that some strategies are favorable in terms of performance, while some others present
improvements for string stabilization. These results strongly suggest that proper design of compensation
schemes for the communications of interconnected multi-agent systems plays an important role in their
performance and their scalability properties.

INDEX TERMS Vehicular platoon control, lossy channels, string stability, constant time-headway,
networked systems.

I. INTRODUCTION
The development of new technologies in the field of traffic
highway management is currently a great challenge for the
transition to a more efficient mobility. One widely stud-
ied alternative for improving the efficiency of highways is
that of platoons of autonomous vehicles that navigate in a
coordinated fashion at a consensus speed, keeping a desired
inter-vehicle distance between them [1], [2]. In a cooperative
setting, it is often assumed that inter-vehicle communication
allowing the interchange of information, such as speeds or
positions, is present. This leads to the concept of Cooperative
Adaptive Cruise Control (CACC) [3], [4]. The advantages
of such cooperative schemes include reductions in vehicular
traffic, reduction of fuel consumption and polluting emis-
sions, increase of road safety, decrease of aerodynamic drag
losses, among several others [5], [6]. Nevertheless, a non ideal
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inter-vehicle communication may have an important impact
on the platoon performance [7]–[11]. In this paper we analyze
the effect that lossy inter-vehicle communication channels
may have on the platoon performance.

To evaluate the platoon performance and safety, the track-
ing errors between vehicles are usually analyzed. How these
errors behave when more vehicles are added to the platoon
is a key aspect of the broader concept of scalability. Indeed,
the tracking errors caused by a disturbance at any vehicle may
increase in amplitude along the string of vehicles, having a
detrimental effect on the tracking errors and affecting said
scalability. A well-studied property of platooning systems,
known as string stability, ensures that disturbances are not
amplified as they propagate along the string independently of
the size of the of the vehicle chain [12].

In a majority of cases, string stability has been stud-
ied for platooning with perfect inter-vehicle communication
[2], [13]. It has been found that the topology of the network
and the spacing policy between vehicles play key roles when
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determining the string stability of the platoon [2], [14], [15].
One of the most relevant topologies, due to its simplicity,
is the predecessor-following topology, in which the commu-
nication is unidirectional and each agent can obtain infor-
mation only from its nearest predecessor [16]. To achieve
string stability with this topology, it is necessary to consider
a constant time headway spacing policy, in which the desired
inter-vehicle spacing between vehicles increases with the
speed of the agents [16], [17]. The most used theoretical tool
for obtaining results concerning the string stability proper-
ties of platooning schemes is the frequency domain analy-
sis. Within the aforementioned framework, string stability is
ensured when the frequency response peak of a sequence of
transfer functions relating the inter-vehicle spacing of con-
secutive vehicles, remains uniformly bounded with respect to
the number of agents, ensuring disturbances are not amplified
as they propagate [3], [18], [19].

When the platoon is subject to communication problems
(e.g. channel noise, random delays or random data loss),
the signals of interest become stochastic due to the random
nature of the communication channels, and thus, the deter-
ministic analysis of string stability must be reconsidered.
Many questions regarding scalability of platooning schemes
remain open in a stochastic setting, including a clear defini-
tion of string stability that is valid for stochastic scenarios
including several types of communication problems. More-
over, analytical conditions for string stability in these stochas-
tic scenarios have not been derived yet [13]. Nevertheless,
important progress has been made in this regard, indicating
that the second-order moments of the tracking errors should
be analyzed with a string stability criteria [8], [20]–[24].

Within the recent literature, communication issues have
been incorporated in the study of platooning, although the
analysis of string stability is restricted [7], [22], [23] or
absent [25]–[27]. Among several communication problems,
random data loss is one of the most relevant and recurring.
Lossy communication links can be modeled as erasure chan-
nels, which use a Bernoulli stochastic process to describe
whether the transmitted data is received or lost. A key aspect
for dealing with this case is defining an action to perform
at the receiver end when the expected data does not arrive.
This yields strategies or protocols to deal with data loss
that would result in different performances. In the context
of networked control systems, two of the most common and
simpler protocols are those that hold the last available data of
the signals of interest, and those that set their values to zero
when a dropout occurs. These strategies are simply referred to
as to-hold or to-zero type, and neither can be claimed superior
to the other [28].

In the context of platooning, these simple strategies have
also been adopted not only to replace the lost data, but also
to manage the controller input or the controller output. For
instance, in [21] the previous available measurement vector
is used to replace the non-received position. A to-hold type
strategy is applied to the plant input in [29]–[32]. In [23]
the authors considered that the controller input (inter-vehicle

spacing error) is equal to zero whenever there is data loss.
As far as we are aware, a study where such strategies are
compared and the consequences that they may have on the
string stability of the platoon is not available in the literature.

In this work we study predecessor-following platoons
where the inter-vehicle communication is affected by random
data-loss. We adopt different strategies to deal with data loss
in the context of platooning and compare them. Specifically,
we use simple strategies to deal with data loss that turn a
signal to zero (to-zero), or maintain the previous value of
the signal (to-hold). We also use a strategy that replaces the
missing measurements with a linear extrapolation, estimating
the lost data using older measurements (to-extrapolate). For
the platoon configuration, the signals in each vehicle man-
aged by these strategies are: the measured input, the local
error and the control signal. This yields three different groups
of strategies, namely: measurement-based, error-based and
control signal-based. We also consider all possible combina-
tions among these basic strategies. The contribution of this
work is twofold:

• We show, via numerical results, that the string stability
of a platoon subject to data loss could be affected by
the adopted strategy. Indeed, for the same time headway
constant value and probability of successful transmis-
sion, some strategies exhibit a string stable behavior,
while some others do not. For each strategy and keeping
the vehicle dynamics and controllers fixed, we deter-
mine a region in the space formed by the time headway
constant and probability of successful transmission, that
is compatible with string stability.

• We numerically compared a set of strategies beyond the
string stability criteria, and found that there are strategies
that present higher tracking error variance compared
with some others that yield considerably lower values.
However, such strategies with low variances are not
those having a broader region in the parameter space
compatible with string stability.

The outline of this paper is as follows: In Section II we
present the platooning configuration under study assuming
perfect communication, while in Section III we incorporate
the lossy channels in the framework and discuss the notion
of string stability for platooning under random data-loss.
In Section IV we present the set of strategies to deal with
data loss analyzed in this paper. Simulation results and their
analysis are provided in Section V. Finally, conclusions and
future work are placed in Section VI.

A. NOTATION
We use the notation of the standard systems and control
literature. Lowercase is used for real scalar signals, w : Z→
R with specific values of the signal denoted by w(k) at the
discrete instants k ∈ Z. Uppercase is used for scalar complex-
valued Z−transforms of signals and transfer functions, W :
C→ Cwith specific values denoted byW (z). For the sake of
brevity in the notation, where there is no place for confusion,
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the argument (z) will be omitted. Vectors will be denoted as
w(k) ∈ Rn and W ∈ Cn, while w(k)> and W> denote their
transposes. The imaginary unit is denoted by j, with j2 = −1.
Boldface will be used for matrices G ∈ Cn×m and the (i, k)-
th entry of G is denoted by Gi,k . The magnitude of W when
z = ejω, ω ∈ [0, 2π ], is denoted by |W | and its magnitude
peak over all possible values of ω ∈ [0, 2π ] is denoted as
||W ||∞ := supω |W (ejω)|. For z ∈ C, <(z) and =(z) denote
the real and imaginary parts of z respectively. Finally, we use
E {·} to denote the expectation operator.

II. PLATOONING WITH PERFECT COMMUNICATION
In this section we describe the general platoon setup under
analysis (vehicle dynamics, information flow topology and
spacing policy), and introduce the idea of string stability for
deterministic platoons (i.e. ideal communication channels).
This section motivates the present work and serves as com-
parison for the case where the considered platoon is affected
by random data losses.

A. PLATOON SETUP
The problem of interest in this work is based on a standard
deterministic platooning setup. However, much of the setup
can be used for an arbitrary collection of systems. In par-
ticular, we consider a collection of N + 1 ∈ N identical
agents, each modeled by a feedback system composed of a
discrete-time LTI plant, G(z), and its local LTI controller,
C(z).

We denote as yi(k) the position of the i-th agent for
i = 0, . . . ,N , at the discrete time instant k , where the
indexes reflect the ordering of the vehicles within the string.
The leader is labeled as i = 0 and moves independently,
setting the desired trajectory for the platoon. We consider
a homogeneous platoon, with every agent having the same
dynamical model and local controller, and all vehicles mov-
ing in a straight line as depicted in Fig. 1.

FIGURE 1. Three consecutive agents of the platoon configuration.

Remark 1: A more realistic scenario would be a hetero-
geneous platoon, that is, a platoon formed by vehicles with
different dynamics. However, homogeneous platooning has
been widely used in the literature (see for instance [10],
[14], [17], [18], [25]) since this simplified representation of
the platoon is, naturally, the first approach for introducing
the basic properties of scalability and convergence of the
system. Additionally, with an appropriate controller design,
a homogeneous platoon may be a feasible situation in some
applications [18], [26]. A vast part of the recent literature
considers this assumption for platoon analysis and real world
oriented applications [33].

Each agent is able to communicate its current position to its
nearest follower through a wireless communication channel.

This communication is unidirectional, which locks the infor-
mation flow, and corresponds to a predecessor-follower
topology where the vehicle with index i receives as an input,
or reference, the position of the vehicle with index i− 1. It is
also possible to assume that the predecessor position can be
estimated by the follower through ranging sensors and its own
position, however this requires the predecessor to be close
enough, limiting the maximum distance between vehicles.
Also, the ranging sensors present their own limitations which
could also be considered as lost measurements.

A first control goal in platooning aims to having the sepa-
ration between agents equal to predefined desired references
ri(k). Therefore, we will define as a performance signal the
tracking error ζi(k), computed as the difference between the
measured vehicle separation (by the i-th agent), `i(k) =
yi−1(k)− yi(k) and the desired separation ri(k), that is,

ζi(k) = `i(k)− ri(k). (1)

For safety reasons, in order to avoid possible collisions due
to unexpected disturbances, the inter-vehicle distances should
increase with the speed of the platoon. A way to implement
this spacing policy is to consider desired inter-vehicle sepa-
rations ri(k) with the form

ri(k) = εi + h(yi(k)− yi(k − 1)), (2)

where εi is a constant corresponding to the minimum desired
separation, yi(k)− yi(k − 1) represents the discrete time rate
of change of the position (speed) of the vehicle with index i,
and h is a constant parameter known as the time headway con-
stant, which allows tomodify the desired inter-vehicle separa-
tion ri(k) along with the speed of the agent. In the platooning
literature, this setting is known as a constant time-headway
spacing policy [10], [16], [17], [22]. We will consider that the
agents have no volume and that εi = 0 for all i = 1, . . . ,N
in accordance to similarly themed works [11], [27]. These
assumptions are adopted for simplicity in the exposition, and
should have no impact on the controller design nor on the
stability properties of the platoon.Moreover, we will consider
that the agents at the time instant k = 0 start at rest and in the
desired spatial formation and ordering.

With this considerations, the tracking errors can be written
as ζi(k) = ei(k), where

ei(k) = yi−1(k)− vi(k) (3)

with vi(k) = (h+ 1)yi(k)− hyi(k − 1). It is worth to mention
that ζi(k) and ei(k) are the same signals if the communication
is perfect. However, when the channel is lossy, this will not
be the case, which motivates the use of different notation for
these error signals.

The second control goal considers the tracking of a con-
stant speed by the collection of agents. We use ui to denote
the control output signal. With this in mind we will translate
the mathematical description to the frequency domain.

To implement a reference depending on the speed, an alter-
native is to use a control scheme using two degrees of free-
dom [5], where a block H (z) is incorporated in the feedback
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loop and represents the transfer function between the position
yi and the feedback signal vi introduced in (3) to construct
the tracking error. Thus, the control loop of each vehicle
(see Fig. 2) is described by the plant modeling the vehicle
dynamics, G(z), the local stabilizing controller, C(z), and the
transfer functionH (z) closing the feedback loop and given by

H (z) = (1+ h)−
h
z
, (4)

allowing to include the speed of the i-th agent as a part
of the spacing policy. Note that the reference ri(k) is not
explicit within Fig. 2, however, said scheme represents the
same problem as the one described earlier.

FIGURE 2. Local control loops at each vehicle assuming perfect
communications.

Usually, the vehicle dynamics are modeled as a first or
second order system [13], [18], with the product C(z)G(z)
having at least double integral action, that is, two poles at
z = 1. This is necessary for the agents to achieve the track-
ing of a constant speed reference with zero error in steady
state, a second important goal in platooning. It is common
to consider that one integrator is in the plant G(z), since this
is a simple model for the inertia of the agent. To obtain our
results, in subsequent sections we assume that the model of
the plant G(z) is a simple integrator (see e.g. [34], [35]), and
the controller C(z) also includes integral action.
The dynamics from the position of the (i− 1)-th vehicle to

the i-th vehicle are given in the frequency domain by

Yi(z) = T (z)Yi−1(z), (5)

where the complementary sensitivity function of this two
degree-of-freedom loop, T (z), is given by

T (z) =
G(z)C(z)

1+ G(z)H (z)C(z)
. (6)

The lead vehicle is assumed to move with a constant speed
in regular operation. However, in the simulation section,
we consider a period of acceleration that brings the vehi-
cle from rest to a given speed. Also, a braking maneuver
(with constant deceleration) is added to the leader’s refer-
ence. Moreover, H (z) is such that T (z) is a stable transfer
function and there are no unstable cancellations in the product
G(z)H (z)C(z).

B. STRING STABILITY WITH PERFECT COMMUNICATION
A conventional string stability definition for the deterministic
case considers that a platoon is string stable if disturbances at

particular agents are not amplified as they propagate along
the string, independently of the string size N + 1. It will
be considered string unstable otherwise. This is sometimes
formalized using the H∞ norm of a sequence of transfer
functions relating disturbances and inter-vehicle spacings.
In fact, for the platooning configuration presented above, it is
only required that the transfer function from the output of
an agent to the output of the follower, satisfies the condition
||T (z)||∞ ≤ 1 to guarantee string stability in the deterministic
perfect communication case.

In the following, we will study the string stability of
a platoon with ideal inter-vehicle communication, arising
from (5), and provide an analytical condition on the vehicle
dynamics to guarantee it. In order to do so, we first study
the collective platoon dynamics. For simplicity we will omit
the argument (z) whenever it is safe to do so without causing
confusion.

The string stability property is unavoidable in the contin-
uous time case if the constant h = 0, and there exists an
infimum value of this parameter that provides string stabil-
ity [17]. Consequently, as we are considering the discrete
time case, we must obtain conditions over this parameter to
guarantee string stability.

If we consider that the lead vehicle moves independently
and its trajectory is set by Y0 = GD0, where D0 is a certain
reference, using straightforward computations, we have that
the effect of D0 on the n-th inter-vehicle spacing is simply
given by

En = T n−1SD0 (7)

where En denotes the Z-transform of the n-th error and S is
a stable transfer function that does not depend on the number
of agents, N + 1.

The following lemma, taken from [36], implies that the
strategy considered above is string unstable whenever h = 0.

Lemma 1: Let T be a real rational scalar function of
z ∈ C. Suppose that T (1) = 1 and also that T is stable.
Then ∫ π

0
ln
∣∣∣T (ejω)∣∣∣ dω

1− cos(ω)
≥ πT ′(1).

�
Indeed, for T given in (6) and h = 0, that is H (z) = 1,

it is straightforward to show that T ′(1) = 0, due to the two
integrators ofGC of the open loop. SinceGC = G̃C̃/(z−1)2

with G̃(1) 6= 0 and C̃(1) 6= 0 we have that

d
dz
(T ) =

G′C + GC ′

(1+ GC)
−
GC(G′C + GC ′)

(1+ GC)2
(8)

=
(G′C + GC ′)
(1+ GC)2

. (9)

Now, (1+GC)−1 has two zeros at z = 1 (due to the stability
of the closed loop), and therefore (1+GC)−2 has four zeros
at z = 1. Moreover, (G′C + GC ′) has at most three poles at
z = 1 which yields that T ′(1) = 0. Lemma 1 now implies
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that ||T ||∞ > 1 when h = 0. Notice that this is also valid for
more complex transfer functions G than a simple integrator,
as long as GC has double integration.

As an illustrative example, Fig. 3 shows the magnitude
plots of |T (ejω)|, ω ∈ (0, 2π ) for fixedG, a stabilizing C , and
different values of the parameter h. We see that for values
of h < 3.4, ||T ||∞ > 1, and for h > 3.4, T satisfies
the condition for string stability, that is, ||T ||∞ ≤ 1. This
indicates the existence of an infimal value of h that ensures
string stability in this case. This infimal value of h, obtained
numerically, will be used in the platoon setup simulations
in section V. In Fig. 4 we can observe the trajectories of a
platoon of N = 50 agents for two different values of the
time headway constant h, and how the inter-vehicle spacings
reveal the undesirable effect of string instability when h = 3
and a well behaved disturbance propagation when h = 4.
It should be noted that the price to pay for this is larger
inter-vehicle spacings whenever the vehicles travel at higher
velocities.

FIGURE 3. Bode plots of |T (ejω)|, ω ∈ (0,2π) for h ∈ [2.5,4.5].

FIGURE 4. String stable (h = 4) and unstable (h = 3) behavior for the
position and tracking error of a platoon of N = 50 agents with perfect
communication.

Remark 2: Most of the numerical results are presented
through figures that use a color code, as in Fig. 4, to help
the reader to identify the dynamic response of the vehicles of
the platoon. The first agent is represented by the curve with
the blue color at the beginning of the color bar. As the agent
index increases along the chain of vehicles, so does in the
color bar. The last vehicle is represented with the red color at
the end of the color code.

III. PLATOONING WITH IMPERFECT COMMUNICATION
In this section we describe the framework where the wireless
communication channel of each vehicle in Section II is con-
sidered to be affected by random data-loss.

When lossy channels are in place, the platooning scheme
becomes the one in Fig. 5, where f (·) is a possibly non-linear
function that represents the feedback loop in each vehicle,
that now depends not only on the vehicle dynamicsG, the lin-
ear controllerC , and the constant time headway h, but also on
the strategies to deal with data-loss, which are described in
Section IV, and also on the channel model, which is described
next.

FIGURE 5. Platoon with inter-vehicle communication subject to data loss.

A. COMMUNICATION CHANNEL MODEL
The lossy inter-agent communication channels are modeled
as erasure channels, which are defined by a Bernoulli process
θi ∈ {1, 0}. This process is such that, when θi(k) = 1,
the position of the predecessor vehicle with index i − 1,
namely yi−1(k), is received successfully at the vehicle with
index i. When θi(k) = 0, the data is considered lost. The
channel model for the i-th vehicle can be described by

ỹi−1(k) = θi(k)yi−1(k), (10)

where yi−1(k) is the channel input and ỹi−1(k) corresponds to
the channel output.

We assume that θi(k), with i = 1, . . . ,N are mutually
independent and identically distributed (i.i.d.) processes with
successful communication probability p. We also assume that
θi(k) is an argument of the feedback control function f , since
each vehicle is able to determine at a given instant k whether
the data from the predecessor arrives or not.

The type of model described above is widely used in the
context of networked control systems [28], [37]. It should
be noted that, in practice, the transmitted data being lost is
not equivalent to receiving a zero value as a measurement.
The Bernoulli variable θi(k) in the channel model should be
interpreted as an indicator for data loss, but the value that will
be considered in the receiver depends on the adopted protocol
which should be activated by θi(k).

B. PERFORMANCE CRITERIA
1) TRACKING ERROR DEFINITION
When the data from the predecessor is lost, the i-th vehicle
cannot determine the current tracking error ζi(k) defined
in (1) as in the deterministic case. It is then necessary to
distinguish between two types of errors: the local error and
the true error.

The local error corresponds to the error that each vehicle
measures locally using the available data. The local controller
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in each vehicle defines its control signal to track its prede-
cessor based on the local error, which is denoted by ei(k),
as in the deterministic case and given by given in (3) (see
also Fig. 2). This error is affected by the communication
impairment, which means that the local controller is tracking
the received predecessor position, which could not be the
true position. Thus, the true tracking error corresponds to
ζi(k) in (1). The local controllers do not have access to ζi(k),
nevertheless, to globally evaluate whether a platoon shows
an appropriate behaviour or not, it is necessary to use the true
error ζi(k) as a performance signal.

2) PERFORMANCE EVALUATION
Since the channels have a random nature, the signals of
interest become stochastic processes, and thus, to evaluate
whether a controller achieves a reasonable performance or
not, it is necessary to consider a suitable performance cri-
teria. In stochastic feedback control systems it is a basic
criteria to consider controllers that guarantee mean square
stability (MSS) of the feedback loop [38], [39]. Moreover,
controllers achieving zero mean in steady state for the error
signal are also part of the design criteria. In addition, a small
error variance is desirable, which reduces the probability of
having outcomes far from the error mean. Unfortunately,
since the platooning framework turns to a stochastic scenario,
it is in general not possible to guarantee that every vehicle will
perform in an appropriate fashion. In practice, this implies
that the vehicles could have an erratic behaviour or even
collide. However, reducing the variance will also reduce the
probability that such poor behaviour occurs, or at least it
should make it negligible.

Hence, to analyze different strategies to deal with data loss
we consider as a minimum for a reasonable performance,
controllers that achieve mean square stability and also ensure
that

lim
k→∞

µζi (k) = 0, ∀i ∈ {1, · · ·N }

where µζi (k) , E {ζi(k)} corresponds to the mean of the
tracking error. Additionally, we can examine the variance of
the errors,

σζi (k) , E
{
(ζi(k)− E {ζi(k)})2

}
,

and determine which strategy achieves a lower variance.
Another performance requirement on the context of pla-

tooning corresponds to string stability, which is discussed in
the next section for stochastic scenarios.

C. STRING STABILITY WITH LOSSY
COMMUNICATION CHANNELS
Due to the stochastic nature of the communication channels,
the tracking errors in this framework are not deterministic
signals, and thus the string stability notion in Section II-B
cannot be adopted. Indeed, in Fig. 6 it is shown how the
tracking errors behave when lossy channels are in place and
for different values of the successful transmission probability

FIGURE 6. Tracking errors for different values of h and p when
considering a platoon of N = 50 agents with imperfect inter-vehicle
communications.

p and time-headway constant h. It is clear that the erratic
behaviour of the error is not compatible with the standard
notion of string stability, since the uniform convergence
observed in Fig. 4 is not present in this case, as expected.

The notion of string stability for a stochastic frame-
work has not been completely addressed in the cur-
rent literature, although some progress has been made
(see e.g. [8], [20], [23]). From these works it can be inferred
that, in the stochastic scenario, the notion of string stability
should be applied to the moments of the tracking errors,
rather than to the tracking error signals. Thus, we consider
the following definition
Definition 1: The platoon subject to data loss given

in Fig. 5 is said to be compatible with string stability if the
mean µζi (k) and the variance σζi (k) of the tracking errors
exhibit a string stable behaviour.

Clearly, a first condition for a platoon to be compatible
with string stability can be obtained from the deterministic
analysis in which a transfer function between two vehicles
must satisfy a frequency domain restriction. Even though this
does not guarantee string stability for the stochastic case,
it would be a necessary condition.

Additionally, it is clear that the first and second moments
of each tracking error must converge to a constant value when
k → ∞. In particular, the mean of the tracking errors must
converge to zero since the local controller is designed to do
so. The convergence of the second order moments implies
that the local controller must be designed to guarantee MSS
for the tracking errors. Since the system is subject to random
data loss, MSS is not achieved, in general, with a controller
designed only to ensure internal stability. This imposes an
extra degree of complexity. The MSS requirement, together
with the string stable behaviour on the second order moments
of the errors, are the main challenges in these type of prob-
lems, and have limited the analysis in the literature to mostly
numerical results, rather than analytical expressions.

IV. STRATEGIES TO DEAL WITH DATA LOSS
In control systems subject to measurement loss, the controller
must have a protocol to decide what to do when a measure-
ment does not arrive. Various strategies could be adopted to
mitigate the potential negative effect on the control system.
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Inspired by simple strategies like those in [28], in this section
we propose and analyze some simple strategies to deal with
data loss within the current platooning setup. We divide such
strategies in three groups depending on the signal that is
modified by the protocol. We also use three different types of
numbering symbols in order to identify such protocols. This
aims to clearly identify these basic protocols in Section IV-D,
where several combinations of these basic strategies are
presented.
Remark 3: The platooning setup in this paper considers

that G is a simple integrator, and that the measurements
represent position. If the platoon setup is modified, these
strategies should be modified accordingly.

A. MEASUREMENT BASED
These strategies maintain the closed loop system T invariant,
and focus on a pre-treatment of the received measurement.
Specifically, this type of strategies consist of replacing the
lost measurement yi−1(k) with the value ŷi−1(k), which is
computedwith a predefined protocol. In the sequel we present
three different protocols, whose block diagrams are depicted
in Fig. 7.

FIGURE 7. Measurement-based strategies: a) To-zero type, b) To-hold
type, c) To-extrapolate type.

1) STRATEGY a)
The first strategy is given by default in our setup since it
is inherited from the erasure channel model and consists of
replacing the missing data with a zero value. That is:

ŷi−1(k) =

{
yi−1(k) if θi(k) = 1,
0 if θi(k) = 0.

(11)

Thus, strategy a can be implemented by

ŷi−1(k) = yi−1(k) θi(k). (12)

This to-zero type strategy yields an exaggerated error in
the local control loop of the follower when a loss occurs. This
should yield an overreacted movement that could be desirable

in a worst case scenario, for instance, whenever the predeces-
sor moves backwards and its position signal is not arriving
at the follower. On the contrary, in stationary navigation it is
highly expected that this protocol will not work properly. This
strategy is only added for completeness, and it represents the
non-use of a proper measurement protocol when the erasure
channel model described in Section IV is adopted. Notice
that, if the transmitted data were to be acceleration rather than
position, this strategy is quite reasonable. A diagram with the
aforementioned strategy is given in Fig. 7.a)

2) STRATEGY b)
In this case, the missing measurement is replaced by the pre-
viously received predecessor position. Thus, from the point of
view of the follower, the predecessor has temporarily stopped.
This should yield a preventive speed reduction of the follower.
In other words:

ŷi−1(k) =

{
yi−1(k) if θi(k) = 1,
ŷi−1(k − 1) if θi(k) = 0.

(13)

Thus, strategy b can be implemented by

ŷi−1(k) =
[
ỹi−1(k)−ŷi−1(k−1)

]
θi(k)+ŷi−1(k−1), (14)

which is depicted in Fig. 7.b). This is a hold-type strategy
with a conservative purpose: to avoid collisions when the
predecessor stops and it is not perceived by the follower due
to communication dropouts.

3) STRATEGY c)
This strategy consists of using previously received data to
replace the lost measurement yi−1(k) according to a suit-
able estimation ŷi−1(k). Sophisticated algorithms to construct
ŷi−1(k) can be proposed, however this is out of the scope
of this paper since we are focusing on simpler protocols.
Hence, in our case, we construct the estimates based on a
linear extrapolation. The reasoning behind this protocol is
that the platoon has reached its equilibrium state, and thus,
yi−1 behaves as a ramp signal. This yields

ŷi−1(k) =

{
yi−1(k) if θi(k) = 1,
ŷi−1(k − 1)+1(k) if θi(k) = 0,

(15)

where 1(k) corresponds to an estimate of the travelled dis-
tance during the time period between k − 1 and k . This
distance can be estimated as

1(k) = ŷi−1(k − 1)− ŷi−1(k − 2). (16)

Given the fact that ỹi−1(k) = yi−1(k)θi(k), we can write the
protocol as

ŷi−1(k) = ỹi−1(k)−
[
2ŷi−1(k − 1)− ŷi−1(k − 2)

]
θi(k)

+ 2ŷi−1(k − 1)− ŷi−1(k − 2). (17)

Fig. 7.c) represents the proposed strategy, where

F(z) = (2z− 1)/z2.
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This proposed protocol exploits previously received data
to construct the measurement extrapolation using a second
order FIR filter. Certainly, higher order or more sophisticated
estimators to calculate ŷi−1(k) can be used, but they are out
of the scope of this work.

This strategy is designed for an equilibrium behaviour, and
thus, cases where a transient response due to disturbances or
a change of leader speed is present may affect the platooning
performance, at least momentarily. Also, since F is of second
order, this protocol may not work properly in cases where
two or more consecutive losses in the channel are frequent.
Opposite to Strategy b), this strategy considers that data loss
and disturbances are not so frequent, which is not a preventive
strategy.

B. LOCAL ERROR BASED
Since the local errors are the inputs to the controllers, we can
incorporate strategies that manipulate the local errors, and
thus, indirectly manipulate the controller output in case of
data loss. Also, since controllers are in general dynamical
systems and hence with memory, how the controller input
is defined when measurements are missing would have an
impact on future control inputs. We propose two types of
strategies based on the local errors.

1) STRATEGY 1)
In this case, a zero-type strategy is adopted. Thus, the error
is set to zero if no measurement is available. The controller
input êi(k) is given by

êi(k) =

{
ei(k) if θi(k) = 1,
0 if θi(k) = 0.

(18)

The reasoning behind this strategy is, given the fact that
the controller has integral action, setting the error to zero
would mimic a stationary behaviour, yielding as a control
signal the one in the controller memory due to the integral
action.

This protocol can be implemented using

êi(k) = ei(k)θi(k), (19)

and this strategy is depicted in Fig.8.1).

FIGURE 8. Error-based strategies: 1) To-zero type, 2) To-hold type.

2) STRATEGY 2)
In this case a hold-type strategy for the error signal is used,
maintaining the previous error when a dropout occurs. That is

êi(k) =

{
ei(k) if θi(k) = 1,
êi(k − 1) if θi(k) = 0.

(20)

This is a risky strategy in which several losses in a row
would keep a constant error that, given the controller integral
action, could motivate a stronger control action to reduce the
error, possibly bringing a follower dangerously closer to its
predecessor. At first, this risky strategy does not seem reason-
able in our setup, however, in a real application, the quality
of communications could improve if both vehicles are closer.

This protocol can be implemented using

êi(k) =
[
ei(k)− êi(k − 1)

]
θi(k)+ êi(k − 1), (21)

whose block diagram representation is shown in Fig. 8. 2).

C. CONTROL SIGNAL BASED
These strategies seek to directly manipulate the behavior of
the plant when there is data loss, managing the controller
output to generate the new control signal ûi(k), reaching the
actuator. We consider two cases.

1) STRATEGY i)
Here we use a zero-type strategy, in which the control input
is set to zero whenever a lost measurement is detected. Thus
we have

ûi(k) =

{
ui(k) if θi(k) = 1,
0 if θi(k) = 0.

(22)

This protocol can be implemented using

ûi(k) = ui(k)θi(k), (23)

leading to the scheme in Fig 9.i). Since the agent dynamicsG
are modeled as a simple integrator, this protocol tends to stop
the vehicle when a measurement loss occurs.

FIGURE 9. Control signal-based strategies: i) To-zero type, ii) To-hold type.

2) STRATEGY ii)
This strategy aims to maintain the behavior of the controller
when a loss occurs. For this, the last control action is used,
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FIGURE 10. Example of a block diagram for the combined strategy a.2.ii .

whenever data loss is detected. This yields

ûi(k) =

{
ui(k) if θi(k) = 1,
ui(k − 1) if θi(k) = 0.

(24)

We can also write

ûi(k) = [ui(k)− ui(k − 1)] θi(k)+ ui(k − 1), (25)

which is depicted in Fig.9.ii). This protocol is expected to
yield an acceptable platoon behavior for a stationary case,
when it is reasonable to consider that ui has reached steady
state.

D. MIXED STRATEGIES
Here we use the basic strategies and combine them to cre-
ate new enhanced ones to deal with data loss. It is impor-
tant to note that, since the lossy channel model yields the
strategy a) by default, it is clear that the use of one of
such measurement-based strategies is unavoidable. Thus,
we consider all possible combinations that include one
measurement-based strategy. Such combinations are listed in
the first three columns of Table 1, where we have used the
nomenclature previously introduced for the 3 types of basic
strategies. The block diagram of these strategies is composed
by the corresponding block diagrams in Figs. 7, 8 and 9. For
instance, in Fig. 10 the strategy a.2.ii is depicted, which is the
combination of the individual strategies a, 2 and ii.

TABLE 1. Combinations of simple strategies.

In Table 1 we also added the measurement-based strategies
to be employed individually, giving a total of 27 different
strategies. However, instead of analyzing the 27 strate-
gies, we can analyze a reduced number by noticing that
some combinations are redundant. Indeed, from (18) it is
clear that, when a loss occurs, the term ŷi−1(k) is not get-
ting into the feedback loop. On the other hand, since the

measurement-based strategies satisfy ŷi−1(k) = yi−1(k) for
θi(k) = 1, the local error ei(k) corresponds to the true
error regardless of the chosen measurement-based strategy.
Hence, the effect of any measurement-based strategy is can-
celled by the zero-type local-error strategy. This implies
that the strategies {(a.1), (b.1), (c.1)} yield exactly the same
platoon behaviour. To simplify our notation, we name any
of these cases as an x.1 strategy, emphasizing that the
measurement-based protocols are not important in these
cases. The same conclusion is valid for the group of strategies
{(a.1.i), (b.1.i), (c.1.i)} and {(a.1.ii), (b.1.ii), (c.1.ii)}, which
are named x.1.i and x.1.ii respectively. A similar analysis can
be done if a hold-type error-based strategy is used, yielding
the protocols x.2, x.2.i and x.2.ii. The last column in Table 1
refers to the set of equivalent strategies which are in the same
row. Considering the equivalent combined strategies, the set
of possible different cases is reduced from 27 to 15.

V. SIMULATION RESULTS
In this section we perform a comparison of the results
obtained by simulating the formation control strategies pro-
posed and their effect in the string stability properties of the
system.

For our simulation analysis purposes, we are more inter-
ested in the influence of the adopted compensation strategies
for data loss, rather than the controller design, over the string
stability properties of the platoon, thus, we consider any
admissible stabilizing controller. In particular, we consider
that each vehicle is characterized by

G(z) =
1

z− 1
, C(z) =

(1/(1+ h))z
(z− 1)(z+ 0.7)

,

with H (z) given in (4). The controller C(z) of this example
was synthesized using Matlab, and is such that allows to
stabilize the internal loops in the ideal case, that is, with
perfect communications. Moreover, C(z) allows to satisfy the
classic string stability condition, that is, the transfer function
T (z) between two vehicles is such that ||T (z)||∞ ≤ 1. In the
general case, the poles of T (z) depend on h. The chosen
controller also depends on h to remove the dependence of the
closed loop poles on this parameter (by canceling the dynam-
ics of H (z) in the product G(z)H (z)C(z)). This is a common
strategy to facilitate the computation of the infimum value
of h that is compatible with string stability in deterministic
scenarios [17]. In this particular case, such infimum value is
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h = 3.4, obtained in a numerical fashion as seen in Fig. 3
(a general derivation of this infimum can be seen in [23]).

To analyze the strategies in Table 1, we first numerically
evaluate their performance and then we delve only into those
strategies having a behavior compatible with string stabil-
ity, discarding the cases that do not achieve it. Given the
insight discussed in Section III-C, we designed experiments
to analyze the mean and variance convergence of the tracking
error for different probability of loss p and time-headway
constant h. The results were obtained using a Monte Carlo
simulation with 5× 105 realizations.

A. DISCARDED STRATEGIES
We perform a set of experiments to observe the overall
behaviour of each strategy in Table 1 and found that some
strategies seem to not be compatible with string stability.
Indeed, a deeper analysis shows that the platoon consistently
exhibits a bad performance using such strategies for awide set
of values of h and p. We also modified the controller and such
behaviour remains. This suggests that, under our platooning
setup, string stability is not possible with such strategies.

More specifically, we identified two types of platoon
behaviours that are classified as not compatible with string
stability. In the first case, each vehicle in the platoon is not
able to achieve mean square stability, and therefore, the mean
and the variance of the errors grow unbounded over time. This
bad performance is depicted in Fig. 11, where the strategy a)
is used with favorable conditions for string stability, that is,
a high probability of successful transmission p = 0.98 and
a large time-headway h = 20. Similar results were obtained
for higher values of h and p. Certainly, if mean square sta-
bility cannot be achieved, there is no way to achieve a string
stable behaviour. Strategies that exhibit this performance are
{(a), (a.i), (a.ii)}.

FIGURE 11. Mean and variance behaviour of the strategies that are not
compatible with mean square stability (Simulation parameters: N = 25,
h = 20, p = 0.98).

On the other hand, the second type of behaviour corre-
sponds to one where the means and the variances converge
to non-zero constant values. This behavior is indeed stable in
the mean square sense, and could be compatible with string
stability in some scenarios, however, in our setup, we design
the controller to achieve zero error in steady state for a
deterministic case. Consequently, it is expected that the mean
of the error of each vehicle converges to zero for the stochas-
tic case. This behaviour is depicted in Fig. 12, where the

FIGURE 12. Mean and variance behaviour of the strategies that do not
converge to zero (Simulation parameters: N = 25, h = 20, p = 0.98).

strategy b) is employed. The simulation results show that the
stationary mean of the error increases as p decreases, which is
undesirable.We discard strategies that always exhibit this per-
formance, which are {(x.1.i), (x.2.i), (b), (b.i), (b.ii), (c.i)},
where the use of x indicates that it can be replaced by any
measurement-based protocol.

Finally, the remaining strategies that are compatible with
string stability are:

x.1, x.1.ii, x.2, x.2.ii, c, c.ii.

B. PLATOON PERFORMANCE
To discuss the platoon performance, we run simulations
where the lead vehicle speeds up with a constant acceleration
and then it keeps moving with constant speed. As mentioned
before, the platoon uses a predecessor follower topology,
being the lead vehicle’s position, the only deterministic signal
in the platoon. Moreover, all the vehicles in the platoon start
from rest and move in a straight line.

We are interested in comparing the behavior of the six
principal combined strategies. To do so, in Figs. 13, 14, 15
and 16, we present the mean and variance of the tracking
errors for each strategy (respectively labeled on the upper
right side of each plot) for different values of h and p. It is
important to notice that such figures are not always in the
same amplitude scale.

First, we consider h = 5 and p = 0.85, in Figs. 13 and 14,
and observe a convergent behaviour for all the strategies
under study. Therefore, we focus on analysing the mean
and variances of the errors. Notice that, both the mean and
variance uniformly converge to zero as the number of vehicles
and time grow, which is compatible with string stability.

Concerning the mean of the tracking error, we see a similar
behavior among the strategies. Although, strategies x.1 and
x.1.ii are the ones with slightly higher amplitude. On the other
hand, the differences in performance among strategies can be
appreciated in the variance of the tracking error. In compar-
ison, strategy x.1.ii has the highest amplitude, followed by
x.1, which suggests that replacing the error with a zero value
is not a suitable strategy in terms of performance, as it was
possible to predict. Also, holding the previous control signal
shows a poor performance too (x.2.ii, x.1.ii, c.ii). Strategies
x.2 and c on the other hand exhibit the best performances.
Moreover, the amplitude difference of these two strategies
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FIGURE 13. String stable behavior of the mean of the tracking error
(Simulation parameters: N = 70, h = 5, p = 0.85).

FIGURE 14. String stable behavior of the variance of the tracking error
(Simulation parameters: N = 70, h = 5, p = 0.85).

compared with the remaining ones is significant. Between
these two strategies, x.2 is the one with minimum variance.
This suggests that holding the previous error strategy is the

FIGURE 15. String unstable behavior of the mean of the tracking error
(Simulation parameters: N = 70, h = 3.2, p = 0.95).

FIGURE 16. String unstable behavior of the variance of the tracking error
(Simulation parameters: N = 70, h = 3.2, p = 0.95).

best option for the setup considered in this paper, regardless
of the adopted measurement-based strategy. Extrapolating
the missing position seems also a suitable option. We also
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notice that the variance of the tracking error in strategy x.2
has a particular behavior that can be appreciated as a dou-
ble peak. Nonetheless, this behavior is still compatible with
string stability. On the other hand, we can observe that adding
strategy ii has a detrimental effect on the performance of the
strategies. In fact, strategies c.ii, x.1.ii and x.2.ii present
higher error variances compared to c, x.1 and x.2, respec-
tively. This suggests that holding the previous control signal
is not a good option in terms of performance.

On the other hand, Figs. 15 and 16 present the results of
a string unstable behavior for all strategies. For the values of
h = 3.2 and p = 0.95, we can see the mean and variance
of the tracking error of each vehicle converging to zero as
time grows large, implying that each local control loop is
mean square stable. However, the string unstable behavior
can be observed in the increase of both peak amplitudes and
oscillations along the string. It is important to recall that even
though the mean and variance vanish, it does not mean that
the platoon is string stable.

Although in this case the platoons are not string stable,
we still can compare the performances of each strategy,
as mitigating the effects of string instability may be enough to
enable platoons of a smaller and fixed size (no new vehicles
merge the platoon). As a matter of fact, having the same
parameters and platoon length, we can evaluate the behaviour
of each strategy and conclude that they are ranked almost in
the same order than in the stable case, except for the strategy
showing the best performance. Moreover, strategy c presents
lower error variance compared to x.2. Nevertheless, these two
strategies are considerable better than the remaining ones.
The worst case is still strategy x.1.ii, which presents a poor
behaviour in both the mean and the variance.

For completeness, we tested a different reference that
contains a change in speed and a braking zone to deter-
mine whether this affects the string stable behaviour. In this
experiment, the lead vehicle has two periods with constant
acceleration, at the beginning of the movement, and at instant
k = 300. Finally, at instant k = 550, the leader brakes
to a stop with a constant deceleration. In this experiment
we found that, independently of the perturbations, the mean
and variance behavior is consistent with the ones showed
previously for every strategy, suggesting that perturbations
may not play a major role on the string stability property in
these kind of setups. To illustrate this, in Fig. 17 we present
the mean of the position, and the mean and variance of the
tracking errors for a platoon with strategy a.1, for a stable
behaviour. A string unstable behaviour is depicted in Fig. 18.
In both cases, the braking yields higher peaks due to the
amplitude of the deceleration applied, compared to the two
acceleration maneuvers.

C. STRING STABILITY ANALYSIS
As seen before, analysing the convergence of the statistics
of the tracking error, we can determine whether the platoon
is compatible with string stability given certain values of h
and p. However, in the previous experiments we consider

FIGURE 17. String stable behaviour for a reference with changes in the
speed and breaking zone (Simulation parameters: strategy a.1, N = 25,
h = 5 and p = 0.9).

FIGURE 18. String unstable behaviour for a reference with changes in the
speed and braking zone (Simulation parameters: strategy a.1, N = 25,
h = 5 and p = 0.5).

values for h and p where all strategies yields stable platoons,
or unstable platoons. We are now interested in determining
the values of h and p where some strategies exhibit a stable
behaviour and some others do not, which would reveal that
the chosen strategy affects the string stabilization property of
the interconnected system with respect to the characteristic
parameters of the spacing policy and the communication
channels.

Therefore, we test for string stability using different values
of time headway (from h = 0 to h = 15) and probabilities
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FIGURE 19. Approximations of the boundary of the string stability region
for the strategies under consideration.

(from p = 0 to p = 1). The results of this heuristic-based
method allow us to determine and approximation of a region
in the parameter space formed by h and pwhich is compatible
with string stability for all the strategies.

In Fig. 19 we show the six curves corresponding to bound-
ary of the aforementioned region, for each strategy under
analysis. The area above each curve corresponds to the
region compatible with string stability and the area below a
curve is the string unstable region. Generally speaking, if the
losses increase (p decreases), a greater separation distance is
required to ensure string stability (h increases), which is to
be expected. In Fig. 19 we can also see that each curve may
have a vertical asymptote, which could represent infimum
values of the probability of successful communication for
which the platoon would be string unstable whenever p is
less than them and regardless of how large the value of h
is. An infimum value of p has been reported in the context
of networked control systems subject to data loss for mean
square stabilization problems (see e.g. [40]), an aspect that
may also be a characteristic for stochastic string stabilization
problems as our results suggest. Strategies x.1 and x.1.ii are
the strategies with the smaller value of p at which the platoon
can still be stabilized in the string sense. On the contrary, c and
c.ii are such that they cannot achieve a string stable behaviour
unless the channel quality is better, measured by the size of
p, when compared with the other strategies. Nevertheless,
notice that all strategies can achieve string stability with a
probability about p = 0.7, which means that an average of
30% of the transmitted data is lost. That represents a really
poor channel in real applications.

Strategies x.1 and x.1.ii are the ones that allow a greater
probability of losses and therefore present a broader region
of stability. Nevertheless, these two strategies have also the
highest amplitude peak for the mean and variance of the
tracking error. Although these two strategies have quite sim-
ilar stability regions, they perform differently, as explained
before. Between the two strategies with the best performance
for the error variance, c and x.2; strategy x.2 has the broader

stability region. Strategy c on the other hand seems to depend
mainly on the value of h rather than the changes in p.
It is also worth to notice that adding the strategy ii, does

not improve the string stability region. Indeed c.ii, x.1.ii and
x.2.ii present a reduced region for string stability compared
to c, x.1 and x.2, respectively. Hence, holding the previous
control input seems to be a non-suitable alternative since it
also has an undesirable effect on the error variance. In Table 2
we present a summary of the most relevant comparisons
between strategies.

TABLE 2. Summary of some comparisons made between strategies for
the simulation setup.

D. OVERALL DISCUSSION
In this paper we study a set of simple strategies to deal with
data loss and found that choosing such strategies must be
carefully done. In particular, an initial design considers that
the controller C is able to achieve string stability for the
ideal communication case. However, channels suffering data
dropouts may turn the platoon string unstable, mean square
unstable, or not achieving an acceptable performance in terms
of the mean and variance of the tracking errors.

An appropriate strategy to deal with data loss should
be chosen. We found that some combination of such
strategies may cancel some others, which is the case of
measurement-based strategies that are irrelevant when they
are used in combination with an error-based strategy. In other
cases, simulation results show that some combinations do not
achieve mean square stability or zero mean for the track-
ing error for any combination of the parameters h and p.
In terms of performance, replacing the missing measurement
with a simple estimation or using a strategy where the con-
troller input is hold, are the best options. On the other hand,
replacing the local error with a zero yields a broader region
compatible with string stabilization. Additionally, simulation
results suggest that holding the previous control signal has
a detrimental effect on both performance and string stabi-
lization. Certainly, these statements are valid for the current
framework and simulation setups, and cannot be generalized
to other topologies, controller or plant models. However,
given the results of our exploration, we can confidently infer
that the string stability, and moreover, the performance of a
platoon with lossy communication channels, depends on the
chosen data loss compensation strategy.
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VI. CONCLUSION AND FUTURE WORK
In this article we studied platooning with random commu-
nication losses in the inter-vehicle channels that link two
adjacent followers. We considered a predecessor-following
topology for a homogeneous platoon described in the
discrete-time domain. To reduce the impact of data loss on
the platoon response, we use a set of simple strategies to deal
with missing data based on well-known techniques such as
holding the previous value, replacing by zero, or replacing
by a prediction based on a linear extrapolation. We compared
a set of different strategies through simulated experiments.
In each case, we studied the convergence of the mean and
variance of the tracking error to determine if the system is
compatible with string stability. From our results it can be
inferred that the strategy to deal with data loss may affect the
string stabilizability of the platoon. We also noticed that the
performance of the platoon, measured by the tracking error
variance of the vehicles, also depends on the chosen strategy
and, in general, the best option for performance is not the one
that presents favorable conditions for string stability, which
could hint towards a certain type of trade-off condition.

As future work, we consider the development of analytical
expressions to determine whether a given strategy yields
string stability or not. It is also in our interest to study the
effect of data loss in other platooning topologies beyond the
predecessor-following framework, such as leader-following
and bidirectional topologies. Considering heterogeneous pla-
toons and more complex dynamical models are also part of
the future work.
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