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ABSTRACT Global pressure and temperature (GPT) series models can provide the underlying meteorolog-
ical parameters for tropospheric corrections without any other meteorological observations, which allows
them to be widely used for a series of geodetic as well as meteorological and climatological purposes.
Due to the height difference between the empirical model height and user location, a vertical correction of
meteorological parameters is inevitable, particularly for airborne users. Unfortunately, the GPT seriesmodels
have limitations on the vertical correction. We explored the temperature lapse rate for the vertical adjustment
using 10 years of reanalysis data provided by the National Centers for Environmental Prediction (NCEP), and
extended the GPT models to improved global pressure and temperature (IGPT) series models by introducing
a new temperature lapse rate model and a new formulation of pressure reduction. An evaluation of the IGPT
models expression determines that the IGPT models have better accuracy than the GPT models, particularly
under large height differences, which is attributed to their ability to consider the real behavior of temperature
in the atmosphere and adiabatic effects on air pressure. The performance of the IGPT models in zenith
tropospheric delay (ZTD) estimations was also evaluated by comparison with the fifth-generation European
Centers forMedium-RangeWeather Forecasts (ECMWF) Re-Analysis (ERA5) data and International GNSS
Service (IGS) data. The results confirm that our new models can effectively improve the accuracy of ZTDs,
particularly at larger altitude differences between the target height and the corresponding four grid points
of the model, not only enhancing the performance of the model in complex terrain but also extending the
feasibility of the IGPT models from the Earth’s surface to higher altitudes.

INDEX TERMS GPT series models, zenith tropospheric delay, temperature lapse rate, pressure reduction.

I. INTRODUCTION
The incorrect modeling of troposphere delays is one of the
major error sources for space geodetic techniques such as
global navigation satellite systems (GNSS) or very long base-
line interferometry (VLBI) [1]. In recent years, many accu-
rate tropospheric delay models have been proposed based
on numerical weather prediction (NWP) data, e.g., TropGrid
series models [2], [3], global pressure and temperature (GPT)
series models [1], [4]–[6], and IGGtrop series models [7], [8].
The GPT series models characterized by high accuracy
are the most widely used in meteorological and geodetic
applications.
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The GPT model was developed by Boehm [4], and can
provide pressure and temperature at any site in the vicinity
of the Earth’s surface in the form of spherical harmonics.
The meteorological parameters are derived as the mean val-
ues and annual amplitudes from 3 years of global monthly
mean profiles for pressure and temperature provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). However, it can only estimate zenith hydrostatic
delays (ZHD) using the equation given by Saastamoinen [9]:

ZHD =
0.0022768P

1− 0.00266 cos (2φ)− 0.00000028H
(1)

where P is the air pressure at the station, φ is the station
geodetic latitude and H is the station height.

To improve the limited spatial and temporal variability of
the GPT model, Lagler et al. [4] proposed a more advanced
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TABLE 1. Overview of GPT series models.

troposphere model, namely, GPT2. The six model output
parameters (air pressure P, temperature T , temperature lapse
rate dT , specific humidity Q, and dry and wet mapping
function coefficients ah and aw, respectively) are derived by
statistical analysis of monthly mean ERA-Interim profiles
over the time period 2001 to 2010. These internally derived
parameters r are provided as average values (A0) as well
as amplitudes of annual (A1,B1) and semiannual (A2,B2)
variations on a global 5◦ grid as follows:

r (t) = A0 + A1cos
(

doy
365.25

2π
)
+ B1sin

(
doy

365.25
2π
)

+A2cos
(

doy
365.25

4π
)
+ B2sin

(
doy

365.25
4π
)

(2)

where doy is the day of year. In contrast to the GPT models,
the temperature lapse rate is no longer a constant but rather
a period function, and the wet delay model provided by
Saastamoinen is added to the GPT2 model. The GPT2 model
height scaling of the surface values T , P, and the water vapor
pressure e is realized by means of the temperature lapse rate
dT , mean gravity gm and virtual temperature Tv derived from
the given input parameters T and Q as follows:

Tr = T + dT ·1h (3)

Pr = P · exp(−
gm · dMtr
Rg · Tv

·1h) (4)

Tv = T (1+ 0.6077 · Q) (5)

er =
Q · Pr

(0.622+ 0.378 · Q)
(6)

where Tr , Pr and er are the temperature, pressure and water
vapor pressure at the receiver height, respectively, 1h is the
height difference between the surface and receiver height,
dMtr is the molar mass of dry air, and Rg is the universal gas
constant.

The GPT2w troposphere model is an enhancement of the
GPT2 model. The extension, ’w’, is related to the new wet
delay model developed by Askne and Nordius [10]:

ZWD = 10−6(k ′2 + k3/Tm)
Rd

(λ+ 1)gm
e (7)

where k ′2 and k3 represent empirically determined refractivity
constants, Rd is the specific gas constant of dry air, λ is
the vapor pressure decrease factor, and Tm is the weighted
mean temperature. These two additional parameters are pro-
vided as average values as well as amplitudes of annual and
semiannual variations on a global 1◦ grid. In contrast to the

GPT2 model, the vertical extrapolation (6) for e is replaced
by the expression [10]:

er = e(
Pr
P
)
λ+1

(8)

More recently, the GPT3 model, the successor of the
GPT2w model, was developed by Landskron and Böhm [6].
Both models are based on the same data, where the meteoro-
logical quantities from the GPT2w model are left unchanged
for the GPT3 model. The main changes are the introduc-
tion of new components, namely the hydrostatic and wet
empirical mapping function coefficients derived from the
special averaging techniques of Vienna Mapping Function 3
(VMF3) data. Additionally, horizontal gradient parameters
(i.e., hydrostatic north gradient Gnh, hydrostatic east gradient
Geh, wet north gradient Gnw and wet east gradient Gew) are
introduced to model azimuthal asymmetry. The main charac-
teristics of the described GPT series models are summarized
in Table 1. It needs to be emphasized that, with the devel-
opment of GPT series models, the values of meteorological
parameters (i.e., p,T ,Q and dT ) in each model have been
updated by the newest model, which is verified by our previ-
ous experiments.

With the widespread use of GPT series models, many rel-
evant studies have emerged to improve or validate the perfor-
mance of these models [11]–[22]. However, most validations
are conducted at the surface rather than at higher altitudes.
Since troposphere empirical models should be applicable for
aviation, performance at higher altitudes must also be guar-
anteed. Unfortunately, the results of some previous studies
show that the GPT series models have a poor performance
in vertical corrections with increasing altitude [23]–[25].
Therefore, in the following section, we explore the causes of
the shortcomings in the vertical correction, and introduce an
easy way to improve the performance in the vertical extrap-
olation of GPT series models. The next section describes the
development of this approach, which is then validated against
meteorological parameters from radiosonde data and zenith
delays from NWP data and GNSS observations.

II. ANALYSIS OF THE VERTICAL CORRECTION FOR GPT
SERIES MODELS AND THEIR IMPROVEMENTS
As temperature and pressure are fundamental variables in
GPT series models, understanding temperature lapse rates
and pressure profiles is important for the extrapolation of
temperature and pressure to the target height. Therefore,
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we assessed the performance of the temperature lapse rate
model and pressure reduction method in GPT series models,
and then proposed an optimized solution for all of them.
As mentioned above, all GPT series models have the same
values of p,T ,Q and dT but with two different spatial reso-
lutions (i.e., 1◦ and 5◦; seeTable 1). Thus, we use GPT_1 and
GPT_5 to represent the GPT2, GPT2w, or GPT3 models with
1-degree and 5-degree grids, respectively.

A. ANALYSIS OF THE TEMPERATURE LAPSE RATE
MODEL IN GPT SERIES MODELS
To evaluate the temperature lapse rate in GPT_1 and GPT_5,
we analyzed their values on a global scale first. The mean dT
in GPT_1 and GPT_5 at all grid points are depicted in Fig. 1.
The mean value distribution of both models shows typical
land-sea differences; e.g., many positive values appear in the
polar regions and west coasts of Africa and America, particu-
larly in Antarctica, where the maximum value occurs (with a
value up to 18.6K ·km−1), whereas negative values of approx-
imately −9 K · km−1 appear in sea areas (see Fig. 1(a, b)).
Additionally, the mean value histogram of both models shows
a right skewed shape; a value of approximately −9 K · km−1

overwhelms the other values (see Fig. 2(a, b)), and the per-
centage reaches 20.9%. From the above analysis, it can be
concluded that the mean dT fields of both models clearly
show odd values with respect to the average value of
−6.5K · km−1 in the troposphere. This is mainly caused by

FIGURE 1. Global distribution of the annual average dT for GPT_1 and
GPT_5: (a) global distribution of the annual average of dT for GPT_5;
and (b) global distribution of the annual average of dT for GPT_1.
(unit: K · km−1).

FIGURE 2. Histograms of the annual average of dT for GPT_1 and GPT_5:
(a) histogram of the annual average dT for GPT_5; and (b) histogram of
the annual average dT for GPT_1. (unit: K · km−1).

the fact that the dT in GPT series models is derived from the
lowest two pressure levels of the ECMWF data, which limits
their applications to the lower atmosphere.

B. DETERMINATION OF THE NEW TEMPERATURE
LAPSE RATE MODEL
Therefore, an accurate dT model is needed to overcome
the abovementioned limitation. For this study, 10 years
(January 1, 2008 to December 31, 2017) of the final analy-
ses (FNL) of the Global Data Assimilation System (GDAS)
model was chosen for dT modeling, as provided by the
National Centre for Environmental Prediction (NCEP). The
NCEP reanalysis data are three-dimensional meteorological
fields with a horizontal resolution of 1◦× 1◦ as well as 6 h
temporal resolution and 31 vertical layers (up to approxi-
mately 48 km). The dT values of each grid point at a certain
moment should be calculated. dT can be estimated as a coeffi-
cient for a function of temperature and height by least-squares
fitting. The fitted function is as follows:

T = dT · H + b (9)

where T is the temperature, H is the corresponding height
of T , and b is the intercept. It needs to be emphasized that
the height H in lapse rate fitting is up to the tropopause
(approximately 11 km).

After obtaining the long-term (10 years) values of dT for
each grid point of the NCEP data, the variation characteristics
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of these time series data were analyzed with the fast Fourier
transform for each grid point. Fig. 3 illustrates the stacked
power spectral density of dT . Clearly, the 6-h sampled time
series contains significant annual, semiannual and diurnal
peaks for the lapse rate. Consequently, considering that the
new dT model should be easy to use and therefore applicable
to all GPT models, we used a periodic function only with
an annual period to establish empirical models for dT . The
periodic function proposed by Niell [26] is expressed as:

a = a0 + A · cos(
doy− 28
365.25

2π ) (10)

where a0 is the mean value, A is the annual amplitude, and
doy is the day of the year.

FIGURE 3. Stacked spectra of dT for a set of 360 × 181 grid points over
10 years with the mean value of powers. It shows significant annual,
semiannual and diurnal variations for dT .

Based on (10), the coefficients of a0 and A of dT were
estimated by using least-squares fitting. Fig. 4 illustrates the
mean values of dT and the latitudinal variations in their
longitudinally averaged values. The distributions of these
mean values show remarkable north-south symmetrical dis-
tributions with the peak in the tropics while decreasing toward
the poles. However, they are also characterized by evident
regional variation; e.g., large values mainly appear in dry-
lands, such as the Arabian Peninsula, North Africa, the west-
ern side of the North American continent, and northern Chile.
The ranges of dT are from−2.7 to−7.0 K·m−1, which seems
to be closer to reality with respect to those of dT in GPT series
models.

Subsequently, aiming at proposing an easy-to-implement
and operable vertical correction method for all GPT series
models, a piecewise linear function was used to model dT .
The breakpoints of this piecewise linear function are deter-
mined according to the actual state of the atmosphere.
Fig. 5 depicts the dividing results of dT along lati-
tude, showing piecewise linear function curves with break-
points generated according to the inflection points of the

FIGURE 4. Global distribution of the annual average of dT in K · km−1

(a) and latitudinal variations in the longitudinally averaged values of dT
(b). It shows that the distribution of dT is notably latitude dependent.

FIGURE 5. Piecewise linear function curves of dT (purple solid line) with
breakpoints generated according to the inflection points of the
dT -latitude (green dotted line).

dT -latitude curve. We can see that the piecewise linear func-
tion is divided into 6 segments on the intervals, namely,
[−90 −50], [−50 −15], [−15 15], [15 30], [30 65] and
[65 90], which provides a good account of the actual lat-
itudinal variation in dT . According to the dividing results,
we adopted a look-up table of the meteorological parameters
to account for the seasonal and latitudinal variations in neutral
atmospheric behavior.Table 2 shows the look-up table of dT ,
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TABLE 2. Average and amplitude values for the new temperature lapse
rate model.

where the data are divided into two groups to account for
the annual mean and amplitude of each parameter. The inter-
polation between latitudes for dT is performed with a linear
function as follows:

Vc∅ = Vci +
Vci+1 − Vc1

Li
(φ − Lat i) ,

×φi ∈ [Lai,Lat i+1] ,Mc ∈ {a0,A} (11)

where Vc∅ and Vci denote seasonal variation coefficients
from the mean data set of a0 or the amplitude data set of A,
φ is the latitude of the site, i denotes the i-th interval, Li is
the length of the i-th interval, and Lat i is the latitude of the
i-th interval. After calculating the annual mean and amplitude
values, the value of dT for latitude φ and day of year doy can
be obtained as:

dT (φ, doy) = Vca0φ + Vc
A
φ

(
cos

(
doy− 28
365.25

2π
))

(12)

C. VALIDATION OF THE NEW TEMPERATURE
LAPSE RATE MODEL
To assess the newly proposed dT model along with those
in GPT series models and the UNB3 model, we compared

the lapse rates calculated by the models with those derived
fromRS data. Considering the distribution of the atmospheric
temperature, the difference between the planetary boundary
layer (from the Earth’s surface to a height of 1∼2 km) and
free atmosphere (above the planetary boundary layer), tem-
perature lapse rates measured close to surfaces can differ sub-
stantially from the free-air lapse rate [27]. Moreover, the dT
of GPT series models is derived from the lowest two pressure
levels of the ECMWF data. Therefore, we chose ten schemes
with different height levels (from 1 to 10 km upon the surface)
to fit the lapse rate. A total of 512 globally distributed RS
stations data in 2019 were selected to estimate lapse rates for
the ten schemes, which were used as references.

The two statistical quantities, namely, the Bias and root
mean square error (RMSE), were selected to measure their
performance, which can be calculated via the following
equations:

Bias =
1
N

∑N

i=1
(V i

model − V
i
reference) (13)

RMSE =

√
1
N

∑N

i=1
(V i

model − V
i
reference)

2
(14)

whereV i
model andV

i
reference are the values from themodels and

reference data, respectively, and N is the number of samples.
The statistical results are shown in Fig. 5.

As can be observed in Fig. 6(a), the new dT model tends to
have negative Biases at almost all levels, whereas the Biases
of other models show similar trends, having negative Bias
below the fitting height level of 5 km but positive Bias above
that level. The largest Bias of each model appears at the 1 km
fitting height and the value reaches up to −1.37 K · km−1

for the UNB3 model. In terms of RMSE (see Fig. 6(b)),
the values of both the new and UNB3 models decrease with
increasing fitting height, but the RMSEs of the new model
are smaller than those of UNB3 at all fitting levels. However,
the RMSE values of the GPT series models are stable at

FIGURE 6. Average Biases and RMSEs of different dT models at different fitting height levels assessed with dT
derived from radiosonde data. (a): Biases at different levels (unit: K · km−1); and (b): RMSEs at different levels
(unit: K · km−1).
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approximately 2.3K ·km−1 at fitting height levels above 3 km,
where the values of the GPT series models are obviously
larger than those of the new and UNB3 models. For GPT
series models, the accuracy of dT in the lower atmosphere
does not benefit from using the lowest two pressure levels to
obtain lapse rates. Its lowest accuracy of 5.5 K ·km−1 appears
at a height level of 1 km, probably because the primary deter-
minant of surface temperatures is the local surface energy
balance (net radiative and turbulent heat flux) [27]–[29],
which results in drastic changes in lapse rates in time and
space, whereas both GPT_5 and GPT_1 cannot accurately
describe the spatial-temporal patterns of lapse rate variability
near the surface. Statistics were conducted to calculate the
average RMSE of all schemes. The results show that the
average RMSEs are 2.8K ·km−1, 2.7K ·km−1 and 2.1K ·km−1

for GPT_5, GPT_1 and UNB3, respectively. The new dT
model has an average RMSE of 1.9 K · km−1; thus, the new
model achieves precision improvements of approximately
32%, 30% and 10% compared with GPT_5, GPT_1 and
UNB3, respectively.

D. IMPROVEMENT OF THE PRESSURE REDUCTION
FOR GPT SERIES MODELS
The pressure reduction of all GPT series models uses expo-
nential trend coefficients calculated from grid pointwise vir-
tual temperature information; see (4). These isothermal scale
heights may be alternatively adjusted for adiabatic effects at
low altitude, but the benefit of this approach is not entirely
conclusive [1]. For convenience, this method is named the
isothermal model in this paper. In fact, the atmosphere is
not isothermal, where the air temperature falls very notice-
ably with increasing altitude. Therefore, using the isothermal
model will inevitably produce a large bias with respect to the
pressure reduction at high altitudes and therefore result in a
poor performance in ZTD corrections.

To overcome this problem, we use the formula given by
Kleijer [30] instead of (4):

PH = P(1+
dT ·1h

T
)

−gm
Rd dT

(15)

where dT is the temperature lapse rate, T is the temperature
at the grid points, Rd is the specific gas constant of dry air,
and the other parameters are consistent with (4). This expres-
sion was proposed based on the assumption of an adiabatic
atmosphere where temperature changes with altitude due to
adiabatic processes driven by the vertical movement of air
parcels, which makes it more realistic than (4) in modeling
the atmospheric structure of the troposphere. Thus, we named
this method the adiabatic model in this paper.

To justify the adiabatic model, three stations were iso-
lated to visualize their pressure profiles. The selection was
made to have a sample with different latitudes. Stations
89002 (Neumayer), SBPV (Porto Velho, Brazil), and PABR
(Barrow, USA) at latitudes 70.7◦ S, 8.8◦ S, and 71.3◦ N,
respectively, were chosen. Using the vertical as well as
positional and temporal information of these three stations,
we deployed the isothermal model, adiabatic-GPT model

(with dT from GPT_1) and adiabatic-new model (with dT
from the new lapse rate model), to obtain predictions of
the pressure. The surface pressure, temperature and specific
humidity derived from RS data were used to obtain pres-
sure profiles for the two models. The pressure residual pro-
files derived from the models minus RS in different seasons
are plotted in Fig. 7. With increasing altitude, the residual
values of the isothermal model and adiabatic-GPT model
vary greatly and present a systematic error, whereas those
of the adiabatic-new model are relatively stable and small.
Benefitting from the new dT and adiabatic model, the
adiabatic-new model obviously outperforms the isothermal
and adiabatic-GPT models. This finding confirms again that
the new dT model has better accuracy than GPT series
models, describing the vertical distribution of temperature
more reliably.

Having shown the good performance of the new dT model,
we use it to replace the original dT model in GPT series
models. Moreover, the adiabatic model is also introduced into
GPT series models. Here, the improved GPT series models
are denoted as IGPT.

III. VALIDATION OF THE IGPT SERIES MODELS
In this section, we compare the IGPT models with the GPT
models in terms of meteorological parameters against the
radiosonde data of 512 stations distributed all over the Earth.
Then, the accuracy of the ZTDs estimated by the two types
of models is assessed by using the ZTDs derived from
ERA5 data with a spatial resolution of 1◦×1◦. Furthermore,
the superiority of the new model for usage in geodetic
applications is demonstrated by global GNSS solutions.

A. COMPARISON OF METEOROLOGICAL PARAMETERS
TO RADIOSONDE DATA
The data from 512 globally distributed radiosonde stations
in 2019 were selected again as a reference to validate the
IGPT models. Values of meteorological parameters (air pres-
sure, temperature and specific humidity, which is converted
to water vapor partial pressure) are given as vertical profiles
with 30–70 different height levels. Considering the improve-
ment effects on the vertical extrapolation of T , P, and e,
we chose these three meteorological parameters to validate
the IGPT models. The meteorological parameters provided
by the RS data and models (i.e., GPT and IGPT) were
compared not only at the surface level but also vertically
at different heights. The vertical profile was divided into
11 levels (from the surface to 10 km by 1 km) to unify
the representation of the data. Since the values of the RS
data are at different levels, we interpolate temperature and
specific humidity at each height level with a linear function
and extrapolate pressure with (15) from the nearest height
level.

Fig. 8 provides the statistical results at all levels for the
GPT and IGPT models. As seen in Fig. 8(a), the pressure
Bias values of both GPT_5 and GPT_1 are positive and
increase along the entire height range with increasing height.
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FIGURE 7. Pressure residual profiles of station 89002, SBPV and PABR in different seasons as provided by RS
and as determined with the empirical models from the isothermal, adiabatic-GPT (with dT from GPT_1) and
adiabatic-new (with dT from the new lapse rate model) models. (Unit: hPa). (a): P residuals on January 15th

2019; (b): P residuals on April 15th 2019; (c): P residuals on July 15th 2019; and (d): P residuals on October 15th

2019.

This implies that the GPT models with the isothermal model
overestimate the pressure, particularly at higher altitudes. The
RMSE values of both GPT_5 and GPT_1 for all meteorolog-
ical parameters are very close to those of the IGPT models at
the surface level, but with increasing altitude, they increase
significantly in P and T (see Fig. 8(b, d)). In contrast, the Bias
and RMSE values of the IGPT models are relatively stable
and small. The IGPT models clearly mitigate the discrepan-
cies existing between the GPT models and meteorological
observations at higher altitudes over the entire globe. In par-
ticular, the IGPT models provide an excellent dT model and
the adiabatic model for pressure reductions that account for
the substantial reduction of the Bias and RMSE values at an
altitude of 10 km; e.g., the mean RMSEs of P of IGPT_5 and
IGPT_1 are reduced by 30.0 hPa (from 38.0 to 8.0 hPa) and
30.2 hPa (from 38.3 to 8.1 hPa), respectively, and those of T
are reduced by 11.8 K (from 20.8 to 9.0 K) and 11.4 K (from
20.4 to 9.0 K), respectively.

In terms of water vapor pressure, large negative values of
Bias for all models were observed at lower altitudes, which
indicates an underestimation of the GPT-derived surface e
(see Fig. 8(e)). Moreover, the Bias values of all models tend
to increase positively with height, but the increase in the Bias

of the GPT models is greater than that of the IGPT models.
This is rooted in the isothermal model used in the GPT model
which leads to the overestimation of P, and consequently to
overestimating e according to (8). Although the IGPTmodels
have overcome this problem by using the adiabatic model,
due to the systematic underestimation of e at the surface,
the RMSE values of e are close to or greater than those of the
GPT models within a height range of 0∼4 km (see Fig. 8(f)).
However, as the e underestimated influence weakens with
increasing altitude, the RMSE values of e are smaller than
those of the GPT models at a high altitude (e.g., 5∼10 km);
see Fig. 8(f).

The statistical results of the Bias and RMSE between the
model-derived and RS-derived pressures at the 10 km level
are shown in Fig. 9, in which the spatial variation in the
accuracy of the two types of models can be seen. From
this, it can be concluded that the GPT models obviously
overestimate the pressure at all stations with an average Bias
of 37.4 hPa and 37.7 hPa for GPT_5 and GPT_1, respec-
tively, whereas the IGPT models (i.e., IGPT_5 and IGPT_1)
have the same average Bias of 1.4 hPa, achieving a 96%
improvement. Nevertheless, the Bias distribution of the IGPT
models is approximately latitude dependent; e.g., negative

VOLUME 9, 2021 104435



J. Mao et al.: Development and Assessment of IGPT Series Models

FIGURE 8. Results of the GPT and IGPT models for the meteorological parameter estimations per level. It shows
that the accuracy of P and T for the GPT models varies significantly with increasing altitude, whereas those of
the IGPT models are stable and small with increasing altitude. (a): Biases of P at different levels (unit: hPa); (b):
RMSEs of P at different levels (unit: hPa); (c) Biases of T at different levels (unit: K); (d): RMSEs of T at different
levels (unit: K); (e) Biases of e at different levels (unit: hPa); and (f): RMSEs of e at different levels (unit: hPa).

Biases appear in the tropics, whereas positive Biases appear
in the polar regions. For GPT series models, the RMSE
shows similar characteristics to the Bias on a global scale,
and their values are fairly close to each other. This implies
that a significant part of the error in the pressure reduction
is due solely to the persistent bias. After the improvement,
the RMSE of each RS station has clearly reduced giving a
mean of 8.2 hPa, a very respectable result.

Analogously, Fig. 10 displays the distributions of the
Bias and RMSE for the temperature at the 10 km level.
Unlike the pressure, the Bias of the GPT models is evidently
characterized by land-sea differences with positive values
over continental areas and negative values along seacoasts.
The differences in T vary between −37.5 K and 78.9 K

with a maximum in the Arctic, probably linked to its dT
model designed only for the correction of near-surface mea-
surements, which also leads to enlarged total mean RMSEs
of 20.8 K and 20.4 K for GPT_5 and GPT_1, respectively.
An accuracy of better than 10 K was achieved at most sta-
tions for the IGPT models, and the percentage reached 55%
and 53% for IGPT_5 and IGPT_1, respectively. Moreover,
the mean RMSEs of IGPT_5 and IGPT_1 are equivalent, with
a value of 9 K, achieving a 57% improvement.

Since almost no water vapor remains at the 10 km level,
the Biases and RMSEs of e for all models are small and
vary slightly among the globally distributed RS stations;
see Fig. 11. However, the statistical results of e from the IGPT
models, including RMSEs and Biases, are better than those
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FIGURE 9. Biases and RMSEs of the differences between the RS-derived and model-derived P from GPT minus
RS and IGPT minus RS, calculated for 512 RS stations at the 10 km level in 2019 (unit: hPa).

of the GPT models, particularly over the tropical region (e.g.,
South Asia and northern South America). This demonstrates
that the IGPT models profit from the new dT model and the
optimized pressure reduction which allow for describing the
vertical distribution of the water vapor more reliably.

B. COMPARISON OF ZTDs TO ERA5 DATA
To compare the ZTDs with the ERA5 data, we need to calcu-
late ZTDERA5 from the vertical profiles first. The ERA5 data
are in the form of three-dimensional matrices with 37 vertical
pressure levels, which make it possible to obtain the ZTD

as an integral from the refractivity. Therefore, the integra-
tion method proposed by Wilgan et al. [31] was applied
through the pressure-level data to obtain the tropospheric
delays. A thorough description of this approach is given in
that reference.

The integration method applied in the ZTDERA5 calculation
allows us to separate the wet delay from the hydrostatic
delay. Therefore, it is possible to validate the performance
of the IGPT models in predicting the ZHDs and ZWDs with
respect to the GPT models. The ZHDs and ZWDs from
the models and those derived from the ERA5 data were

VOLUME 9, 2021 104437



J. Mao et al.: Development and Assessment of IGPT Series Models

FIGURE 10. Biases and RMSEs of the differences between the RS-derived and model-derived T from GPT minus
RS and IGPT minus RS calculated for 512 RS stations at the 10 km level in 2019 (unit: K).

compared vertically at different heights. As shown in Fig. 11,
for the GPT models, the values of ZHD Biases increased
significantly as altitude increased, whereas the values of ZHD
Biases of the IGPT models are far smaller than those of the
GPT models, particularly at higher altitudes (see Fig. 12(a)).
Apparent positive Biases can be observed in the GPTmodels,
but the IGPT models mainly have negative Biases. Fig. 12(b)
shows the height distributions of the ZHD RMSE of the
different models, from which it can be observed that at the
surface level, the uncertainties of all models are very close
to each other. However, the ZHD RMSEs of the GPT models

increase along the entire height rangewith increasing altitude,
and the mean RMSEs reach up to 80 mm at a height level
of 10 km. For the IGPT models, the ZHD RMSEs decrease
with increasing height within a height range of 0∼3 km, and
are maintained at the same level when the height is up to 3 km
(∼17 mm).

In terms of the ZWD, the surface level is characterized by
a large underestimation of the ZWD, and the mean Biases of
the 5 deg and 1 deg models are−7 mm and−6.7 mm, respec-
tively; see Fig. 12(c). As the altitude increases, the mean Bias
values of the GPT models increase, crossing the zero line for
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FIGURE 11. Biases and RMSEs of the differences between the RS-derived and model-derived e from GPT minus
RS and IGPT minus RS calculated for 512 RS stations at the 10 km level in 2019 (unit: hPa).

middle altitudes and presenting a slight overestimation for
higher altitudes (maintained at the same level of ∼1.5 mm);
however, for the IGPT models, the values of Biases tend to
zero when the height is up to 2 km. Interestingly, the absolute
values of the GPT models decrease with increasing height
more than those of the IGPT models. This is mainly because
the overestimation of P with increasing height caused by the
isothermal model leads to the overestimation of e (see (8)),
and consequently to overestimating the ZWDs of the GPT
models (see (7)), which is the reason why the ZWDs of the
GPT models are closer to the reference data than those of

the IGPT models below a height of 2 km; see Fig. 12(d).
Hence to minimize the RMSE it is imperative that the Biases
of the ZWD be reduced to as little as possible for the IGPT
models.

Figs. 13 and 14 illustrate the global distribution of Biases
and RMSEs of the differences between ERA5-derived and
model-derived ZHDs. Only the results of height levels 0
(Fig.13) and 10 (Fig. 14) are given since they represent
the cases with the minimum and maximum altitude, and
the figures of other cases are similar to them. As displayed
in Fig. 13, the distributions of both Biases and RMSEs
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FIGURE 12. Error statistics of the GPT and IGPT models per level. The Bias and RMSE differences between the
zenith tropospheric delays are provided by ERA5 data and models in mm for 360 × 181 grid points analyzed at
each level. (a): Biases of ZHD at different levels (unit: mm); (b): RMSEs of ZHD at different levels (unit: mm); (c)
Biases of ZWD at different levels (unit: mm); and (d): RMSEs of ZWD at different levels (unit: mm).

show typical latitudinal variations for all models; the positive
Biases aremainly distributed in low-latitude regions, negative
Biases are mainly distributed in high-latitude regions, and
values of the RMSEs vary in a wavy manner with respect to
latitude (i.e., small values are distributed at horse latitudes
and large values are distributed at low and high latitudes).
Large RMSE values were observed over the Antarctic Ocean,
probably due to the complex atmospheric turbulence caused
by the Antarctic circumpolar current (ACC) system [32], and
in the northern Atlantic and Pacific Oceans, which is consis-
tent with the results of Mateus et al. [33]. However, for the
GPT_5 model, the Biases and RMSEs are relatively large in
some high-altitude regions (e.g., the Himalayas and Andes).
This is mainly caused by the larger altitude differences
between the grid point of ERA5 data and the corresponding
four grid points of the model, which in combination with
using the isothermal model to conduct the vertical correction
implicates the larger uncertainties of ∼45 mm. The marked
RMSE in the GPT_5 model is reduced to only 15 mm by the
IGPT_5 model.

With the overestimation of pressure caused by the isother-
mal model, particularly at a height level of 10 km,
the GPT models show large warm Biases on a global scale
(see Fig. 14(a, e)), and the distribution of RMSEs is similar
to that of Biases (see Fig. 14(c, g)). For the IGPT models,

the negative Biases are mainly distributed in low-latitude
regions and the positive Biases are mainly distributed in
high-latitude regions (see Fig. 14(b, f)), which is the opposite
of the Bias distribution at the surface level. This may be due to
the uncertainty of the new dTmodel, which only takes the lat-
itudinal and annual variations in lapse rates into account. The
accuracies of the GPT models become particularly poor at a
height level of 10 km, and the ranges of RMSEs are from 28 to
113 mm and from 28 to 108 mm for the GPT_5 and GPT_1
models, respectively, whereas the IGPT models achieve good
RMSE results with ranges from 2 to 39 mm and from 2 to
37 mm for the IGPT_5 and IGPT_1 models respectively,
at this height level (see Fig. 14(d, h)). Furthermore, 72% of
the grid points of the GPT models had RMSEs greater than
80 mm, but for the IGPT models, the percentage < 20 mm
was 69%. The mean RMSEs of the GPT and IGPT models
are 82 mm and 18 mm, respectively. Thus, the precision
improvement of the IGPT models compared with the GPT
models is 78%.

In terms of ZWDs, analogous plots of the Biases and
RMSEs are depicted in Figs. 15 and 16. As displayed
in Fig. 15, all models show a similar distribution to each other
for both Biases and RMSEs at the surface level and have
negative Biases in many areas (the percentage reaches 96%),
showing a systematic underestimation of ZWDs for GPT.
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FIGURE 13. Global distribution of the ZHD Biases and RMSEs in the two types of models tested by using the
ERA5 data at the surface level (unit: mm).

The distribution of RMSEs is mostly altitude-dependent,
with larger values appearing in low-altitude regions (e.g.,
most sea areas, Australia, eastern China and eastern South
America and North America) and small values appear-
ing in high altitude regions (e.g., Antarctica, Greenland,
Qinghai-Tibet Plateau, and western America). This differ-
ence could be explained by the fact that the water vapor
in the atmosphere decreases with increasing altitude. Unex-
pectedly, some abnormal values of RMSEs appear in high
altitude regions, e.g., the values reach up to approximately
232 mm and 90 mm for GPT_5 and GPT_1, respectively,

in the Himalayas. This indicates that the horizontal resolution
of 1◦ for the GPT_1 model is apparently not sufficient to
capture microclimate, particularly in complex terrain, not to
mention the GPT_5 model with a horizontal resolution of 5◦.
Benefitting from the new dT model and the adiabatic model,
the maximum values of IGPT_5 and IGPT_1 are reduced
from 232 to 190 mm and from 90 to 76 mm, respectively.
This demonstrates the effectiveness of the IGPT models in
the vertical correction of ZWDs.

Fig. 16 shows the global Biases and RMSEs of ZWDs for
all models at an altitude of 10 km. Due to the overestimation
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FIGURE 14. Global distribution of the ZHD Biases and RMSEs in the two types of models tested by using the
ERA5 data an height level of 10 km (unit: mm).

of e caused by the isothermal model, the GPT models
significantly overestimate the ZWD over the tropical region,
achieving a maximum RMSE of 9 mm for GPT_5 and a max-
imum RMSE of 8 mm for GPT_1. This effect is reduced by
the IGPT models with maximum RMSEs of 5 mm and 4 mm
for the IGPT_5 and IGPT_1 models, respectively. Moreover,
the RMSEs of the IGPT models are smaller than those of
the GPT models worldwide, especially over tropical regions.
These results also indicate the superiority of the IGPTmodels
compared with the GPT models in the vertical correction of
ZWDs.

C. PERFORMANCE OF THE IGPT AND GPT
MODELS IN GNSS APPLICATIONS
A total of 409 globally distributed IGS stations in 2019 were
selected to further substantiate the performances of the GPT
and IGPT models in predicting zenith tropospheric delays.
To extract ZWDs from the IGS ZTDs, we derived ZHDs from
the NCEP data in 2019 by the integration method used in
section B for each station. Subsequently, the ZWD can be
obtained by ZTDIGS minus ZHDNCEP. Then, the values of the
ZWDs and ZHDs for each station were treated as reference
values to validate the two types of models.
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FIGURE 15. Global distribution of the ZWD Biases and RMSEs in the two types of models tested by using the
ERA5 data at the surface level (unit: mm).

The values of the Bias and RMSE for the GPT and IGPT
models are summarized in Table 3. The statistical results of
the IGPTmodels, including RMSE and Biases, are better than
those of the GPT models. The mean BiasZHD and RMSEZHD
of IGPT_1 are reduced from 4.0 to 3.5 mm and from 15.6 to
15.3 mm, respectively, and those of IGPT_5 are reduced
from 4.2 to 3.1 mm and from 15.7 to 15.1 mm, respectively.
The improvement effects of IGPT_5 are better than those of
IGPT_1, which may be caused by the fact that the altitude
differences between the IGS stations and the corresponding
four grid points of IGPT_5 are greater than those between the

IGS stations and IGPT_1. In terms of the ZWD, all models
obviously underestimate wet delays, which agrees with the
results from the comparison of ZWDs to ERA5 data. The
two 1◦ grid models are equivalent in the mean RMSEZWD and
BiasZWD as well as their ranges, whereas the absolute value
of the mean BiasZWD of IGPT_5 is slightly larger than that
of GPT_5, but the maximum of BiasZWD and RMSEZWD are
reduced from 112.1 to 92.2 mm and from 120.5 to 100.3 mm,
respectively, by the IGPT_5 model. Presumably, this stems
from the fact that the adiabatic model reduces the ZWDs
derived from the isothermal model, resulting in where the
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FIGURE 16. Global distribution of the ZWD Biases and RMSEs in the two types of models tested by using the
ERA5 data at an height level of 10 km (unit: mm).

ZWD is overestimated, the absolute values of Bias decrease,
and where the ZWD is underestimated increase.

The average altitude differences between the IGS stations
and the corresponding four grid points of the two types
of models are counted, and the changes in the stationwise
differences in the RMSE and Bias values with the altitude
difference are plotted in Fig. 16. Residuals of Biases reckoned
in the sense of ‘‘IGPTminus GPT in ZHD’’ and ‘‘IGPTminus
GPT in ZWD’’ are almost continuously with a negative sign
(see Fig. 17(a, c)), confirming that the IGPT models reduce
both ZHDs and ZWDs derived from the GPT models and
that the greater the altitude difference is, the more obvious

the reduction. In terms of RMSEs, residuals reckoned in
the sense of ‘‘IGPT minus GPT in ZHD’’ are also mostly
negative (see Fig. 17(b, d)), suggesting that the IGPT models
act to redress specific shortcomings of the GPT models in
the regions with large altitude differences. The maximum
reduction is 19.0 mm from 23.1 to 4.1 mm at the MKEA
station (Mauna Kea, United States).

Interestingly, the uncertainty of the IGPT models in ZWD
estimations looks like it depends on whether the height dif-
ference is positive or negative (see Fig. 17(b, d)); e.g., as the
underestimation of ZWDs of the GPT models appears where
the height difference is positive, the corresponding RMSE

104444 VOLUME 9, 2021



J. Mao et al.: Development and Assessment of IGPT Series Models

TABLE 3. Error statistics of the GPT and IGPT models. The Bias and RMSE differences between the zenith tropospheric delays are provided by the IGS and
models in mm for 395 IGS stations analyzed over the 2019 period (unit: mm).

FIGURE 17. Change in the Bias and RMSE with the altitude difference for the GPT and IGPT models (unit: mm).
This shows that the performance of the IGPT model in ZHD predictions improves significantly with increasing
altitude difference. (a): Bias decrease of the 5◦ grid model (unit: mm); (b): RMSE decrease of the 5◦ grid model
(unit: mm); (c) Bias decrease of the 1◦ grid model (unit: mm); and (d): RMSE decrease of the 1◦ grid model
(unit: mm).

values of the IGPT models become slightly larger, and as
the overestimation of ZWDs of the GPT models appears
where the height difference is negative, the corresponding
RMSE values of the IGPT models become smaller. This phe-
nomenon is especially obvious for IGPT_5, with a maximum
reduction of 20.0 mm at the IQQE station (Iquique, Chile).
The results are consistent with those from the comparison of
ZWDs to ERA5 data and prove once again the necessity of
correcting the systematic underestimation of the ZWD for the
GPT models.

IV. CONCLUSION
As the temperature lapse rates of the GPT models are derived
from the lowest two pressure levels of the ECMWF data

and the isothermal model is utilized in pressure reductions,
the application of the GPT models is limited to the lower
atmosphere. Therefore, the development of the GPT models,
namely, the IGPT models, was proposed by using 10 years
of 6 h pressure-level data from NCEP. The process of mod-
eling the temperature lapse rate was described in detail.
The mean values and annual amplitudes for the temperature
lapse rate, were determined and analyzed, and stored in a
look-up table. Furthermore, we redefined the expression of
the pressure reduction used in the GPT models considering
adiabatic effects in the real atmosphere.

Comprehensive comparisons between the GPT and IGPT
models were conducted by using globally distributed
radiosonde data and ERA5 data, as well as GNSS data.
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The comparisons with the meteorological parameters (i.e., T ,
P, and e) derived from the radiosonde data show that altitude
seriously affects the accuracy of the GPT models, and the
IGPTmodels can effectively reduce this effect. The statistical
results show that the RMSE values of the GPT models for
all meteorological parameters were very close to those of
the IGPT models at lower altitudes, but with increasing alti-
tude, they increased significantly, whereas those of the IGPT
models were relatively stable and small. The IGPT models
achieved the precision improvements of approximately 58%,
79%, and 39% for T , P, and e, respectively, compared with
the GPT models at the 10 km level. In comparison with
the ZTDs derived from the ERA5 data, the IGPT models
outperformed the GPT models over the entire height range
(0∼10 km) in ZHD corrections, e.g., at a height of 10 km,
the IGPTmodels had a mean RMSEZHD value of 17 mm, out-
performing the GPT models (with a mean RMSE of 80 mm),
which was an approximately 79% improvement. In terms
of ZWDs, the effectiveness of the IGPT models in vertical
correction was also demonstrated. Additionally, the zenith
delays were also compared against the IGS delays to further
verify whether the estimations from the IGPT models were
truly more realistic. The results showed that the IGPTmodels
could improve the biasZHD and RMSEZHD at most IGS sta-
tions, particularly for the large altitude differences between
the IGS stations and the corresponding four grid points of
the model. These improved models are highly recommended
to obtain high-precision ZHD estimations for high-precision
GNSS positioning and GNSS meteorology, where the ZHD
is obtained by a priori model but the ZWD is estimated as an
extra-tropospheric parameter alongside position coordinates.
Due to the systematic underestimation of e at the surface,
the IGPT models have little or no improvement in ZWD
predictions below a height of 2 km. However, for some ZWD
overestimated IGS stations, the improvement of the IGPT
models is obvious, particularly for the IGPT_5 model.

In summary, the validation results indicate that the GPT
models may have weaknesses when correcting meteorolog-
ical parameters over a large height difference, whereas the
IGPT models still have good performance when the height
difference is large; thus, these improved models are very
useful for estimating meteorological parameters or tropo-
spheric delays in areas of complex terrain and for certain
applications where the correction of a long vertical distance
is necessary (e.g., airborne positioning). Further development
of these IGPTmodels is underway, and are aimed at exploring
the causes of the systematic underestimation of ZWDs to
improve the ZWD model.
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