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ABSTRACT The behaviors of dairy cows, such as feeding, ruminating, running, resting (standing, lying),
head-shaking, drinking, and walking, can indicate their health status. In this study, a multi-sensor was used
to collect data of cow’s multi-behaviors for research on behavior recognition. Firstly, a collar style data
acquisition system equipped with geomagnetic and acceleration sensors to collect the behavioral data of
dairy cows during their daily activities was designed. Secondly, the dairy cow behavioral recognition fusion
model based on K-Nearest-Neighbors (KNN) and Random Forest (RF) models were used for behavior
classification. To verify the accuracy of the fusion model, the algorithms of KNN, RF, Gradient Boosting
Decision Tree (GBDT), Support Vector Machine (SVM), and Learning Vector Quantization (LVQ) were
introduced for comparative recognition experiments with different algorithms. The KNN-RF fusion model
had the highest average recognition accuracy of 98.51%, followed by the KNN model with an average
recognition accuracy of 95.37%, and the LVQmodel had the lowest average recognition accuracy of 80.81%.
For the recognition and verification of each behavior, the KNN-RF fusion model had the most obvious
improvement in the recognition of dairy cow feeding behavior, with a recognition accuracy of 99.34%,
followed by the KNN model with a recognition accuracy of 95.07%. All six models had the lowest
recognition accuracy for cow head-shaking behavior: a recognition accuracy of 89.11% with the KNN-RF
model followed by the RF model with a recognition accuracy of 85.14%. The system can quickly and
continuously collect cow behavior information, accurately recognize individual behaviors, and provide a
scientific basis for the optimal design and efficient management of digital facilities and equipment for dairy
cows.

INDEX TERMS Cow behavior, geomagnetic, acceleration, recognition, KNN-RF model.

I. INTRODUCTION
Dairy farming in China is developing rapidly towards large-
scale production. Therefore, the physical health, breeding
status, feed intake, and physiological indicators of the indi-
vidual dairy cow indicate the sustainable development of the
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dairy industry and the economic interests of dairy farmers.
The modernization level of individual cow behavior monitor-
ing equipment in China is generally low. Rumination is an
essential physiological activity of a dairy cow that is closely
related to its milk production and reproductive performance,
and this reflects the health status of a dairy cow to a certain
extent [1]. Feeding and activities can indicate the nutritional
status of cows. Traditional manual monitoring methods are
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labor-intensive and will perturb dairy behavior. The com-
bination of computer technology and intelligent algorithm
analysis can improve detection accuracy by analyzing the
geomagnetic and acceleration differences generated by cows
under normal living conditions [2]. In addition, compared
with traditional methods, such a monitoring method has
the advantages of being non-contact and non-invasive [3],
thereby promoting the development of dairy cow production
without adverse effects.

For distinguishing animal behaviors, Wang et al. [4]
installed 12 legs-tags and six location sensors on dairy
cows and classified the acceleration data using the Semi-
Supervised Fuzzy C-Means (SS-FCM) algorithm to quan-
tify behaviors such as feeding, lying, standing, walking, and
running. Arcidiacono et al. [5] developed a threshold clas-
sifier based on cow behaviors, collecting acceleration data
from wearable sensors attached to cow collars. Vázquez-
Diosdado et al. [6] designed a mixed multi-level model to
automatically detect the drinking behavior of dairy cows,
with environmental temperature, parity, and average monthly
milk production. Benaissa et al. [7] installed accelerometers
on cows to identify their feeding, rumination, and other diges-
tive activities and classifying the behaviors with a Decision
Tree (DT) model. By installing an inertial measurement unit
on the backs of cows, Achour et al. [8] monitored the stand-
ing, lying, and walking behaviors of cows. Tani et al. [9]
simulated audio signals using a single-axis accelerometer and
pattern recognition algorithms to recognize and correctly dis-
tinguish grazing and chewingmotion. A real-timemonitoring
system for the individual behaviors of natural mating in the
cage breeding chickenswas established by Li et al. [10], using
a nine-axis accelerometer. Guo [11] collected data through
a three-axis accelerometer and used the K-means clustering
algorithm to obtain a stable clustering center for the classi-
fication and recognition of typical goat daily behaviors and
characteristics. The system provided a basis for determining
the relationship between goat daily behaviors and diseases,
increasing animal welfare, and establishing goat disease pre-
diction models.

Wang et al. [4] used acoustic signals to monitor the feed-
ing behavior of grazing cattle to evaluate the daily forage
intake, and the true positive detection rate of cattle feeding
events reached 95%. Milone et al. [13] adopted a hidden
Markov chain model to segment and recognize the acous-
tic signals of cattle feeding for the evaluation of forage
intake. Navon et al. [14] designed an audio processing algo-
rithm to recognize the chewing motions of cows, goats,
and sheep during outdoor feeding and verified the system
through experiments in which the recognition accuracy of
cow chewing reached 96%. Chelotti et al. [15] designed an
acoustic monitoring system that employed directional wide-
frequency microphones mounted on the foreheads of cows.
A real-time decision logic algorithm was used to analyze and
measure the signal frequency and amplitude. The cow feeding
behavior was detected and classified through the duration
and energy iteration of the sound signals, thus realizing the

automatic detection of feed intake. Ambriz-Vilchis et al. [16]
mounted a RCmicrophone monitoring collars on the necks of
cows. The reliability of themicrophone collar was determined
by comparing the methods of artificial visual observation
and video analysis of cow rumination. Yao [17] designed
a cow rumination information acquisition system that was
composed of sensor nodes, a wireless transceiver module,
an ANT networkmodule, and a PC. The system collected cow
rumination data through the acoustic sensor nodes and used
an audio recognition algorithm to collect cow ruminating
sounds. He [18] developed rumination monitoring equipment
that integrated acoustic sensors to collect ruminating sound
signals of the dairy cows. The linear prediction spectrum
coefficients were used to analyze the ruminating sound sig-
nals in the frequency domain, and the recognition algorithm
was imported into the device to verify the accuracy of the
algorithm. Vandermeulen et al. [19] and Carpentier et al. [20]
extracted the audio features using the audio processing algo-
rithms to identify cow coughing, and the experiment veri-
fied that respiratory diseases could be identified in the early
stages.

In the above-mentioned studies, there were few compre-
hensive analyses of the cow behaviors with the information
fusion, and it is difficult to obtain the overall condition of
the dairy cows only through rumination behavior or activity
monitoring. The objectives of this study are (1) to identify
cow activities by collecting the signals of the cow feeding,
ruminating, running, resting (standing, lying), head-shaking,
drinking, and walking behaviors with the geomagnetic and
acceleration sensors; (2) to explore the best model for the
cow behavior classification by introducing a classification
model and inputting behavioral data. For the classification
of the cow’s behavior, both K-nearest neighbor (KNN) and
Random Forest (RF) models were employed; and (3) to verify
the effectiveness of theKNN-RFmodel, the recognition accu-
racy of the dairy cow behaviors by the KNN, RF, Gradient
Boosting Decision Tree (GBDT), Support Vector Machine
(SVM), and Learning Vector Quantization (LVQ) models
were compared.

II. DATA ACQUISITION AND PROCESSING
A. TEST DEVICE, TEST SITE, AND COW CONDITIONS
To obtain the data of the cow’s behaviors such as feed-
ing, ruminating (standing, lying), running, resting (stand-
ing, lying), head-shaking, drinking, and walking without
disturbance, a collar data acquisition system was designed
(FIGURE 1). Due to the complexity of the dairy farming
environment, the volume of the data acquisition device should
be reduced as far as possible to ensure that the dairy cows
will not feel uncomfortable whenwearing the data acquisition
device. Therefore, the three-axis accelerometer MMA8451Q
(±8 m/s2) (Xiqi Technology Co., Ltd, Shenzhen, China) and
the three-axis geomagnetic sensor HMC5883L (±8 Gauss)
(Shanghai Bingyin Electronics Co., Ltd, Shanghai, China),
were selected as the main components of the data acquisition
system. The signals were converted by the four-channel logic
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FIGURE 1. The detect devices for cow behaviour.

level converter TXS0104EPWR and input into a single-chip
microcomputer system STM32 1471. The data were collected
at a sampling rate of 12.5 Hz and stored on an SD card
with.DAT format. The data acquisition device was fixed in a
waterproof sealed box. A counterweight was added to tightly
attach the data acquisition device to the cow’s neck. The coun-
terweight was selected from different weight specifications
and was hung below the cow’s neck with a tie. The optimal
counterweight worn by the cow was finally determined to be
500 g to ensure a stable position during movement [18].

After the data acquisition device was bound and tightly
attached to the cow’s neck with a tie, the three-axis indicator’s
directions of the geomagnetic and acceleration sensors would
change: when the cow was resting standing and looking
upward, the X-axis pointed to the cow’s head along the cer-
vical vertebrae; the Y-axis was perpendicular to the cervical
vertebrae and pointed upward (toward the cow’s back). The
plane formed by theX-axis and theY-axis (XOY)was parallel
to the longitudinal symmetry plane of the cow’s body, and the
Z-axis was perpendicular to the XOY plane and pointed out
of the cow’s body. The indicator directions after the change
are shown in FIGURE 1.

The behaviors data were collected at the Jinlan Dairy
Cow Breeding Company in Tai’an City. The company has
2,000 high-yield Holstein cows. The collection timewas from
November 1st to December 30th, 2019, a total of 60 days.
During collecting data, three cows were randomly selected
from the cow house to wear the detect devices, and the
data were collected continuously 24 hours a day for three
consecutive days. After three days, the cows were replaced
with another three cows for data collection. To verify the
algorithm, during the process of the collected data, mean-
while, three assistants recorded the videos of the cows’ activ-
ities from a distance from 8:00 to 12:00 and from 13:00 to
17:00 every day (milking began at 17:30). The cows were
not disturbed during the experiments, and the total time for
recording the videos was eight hours every day. The video
recording of the cows’ behavior was synchronous with the
start of the data acquisition device.

B. TEST DATA PROCESSING
1) DAIRY COW BEHAVIOR CLASSIFICATION
By observing and analyzing the videos together with an
experienced staff working in the cow farm, the data of cows’
seven main daily behaviors were recognized in this study.

The classification and description of the cow’s seven main
behaviors are shown in TABLE 1.

Ten cows were selected for the video analysis from
60 cows, and the behaviors’ features were recorded. The
relationship between the chewing numbers and the ruminat-
ing time for rumination is shown in TABLE 2. The shortest
single chewing period during the cow rumination was about
0.8 s, and the longest was about 0.9 s. Assuming that the
number of the cow chewing movements during rumination is
a, the period of the cow chewing during rumination is t , and
the period of one chewing movement during rumination is t1,
then a = t/t1. To reduce the counting error of the rumination
times(occurring number of ruminations), the single chewing
period during the cow rumination was taken as t1 = 0.84 s
(TABLE 2). The behavioral data were randomly divided into
a training set and a test set at a ratio of 8:2. The database con-
tained seven sample categories: the cow feeding, ruminating,
running, walking, resting (standing and lying), drinking, and
head-shaking.

2) DATA NORMALIZATION
Since the dataset was collected from only one farm, to pro-
vide a reliable basis for replicating the results of this study,
the dataset was converted through standardization. All the
data were normalized to the range of [0, 1]. Denoting the new
data value after normalization asw′, the raw value of the fused
data as w, the minimum value in the data as wmin, and the
maximum value as wmax , then

w′ =
w− wmin

wmax − wmin
(1)

3) DATA PREPROCESSING
Let a = (ax , ay, az), where ax , ay, az represents respectively
the normalized acceleration components of the three-axis
accelerometer in three directions, and d = (dx , dy, dz), where
dx , dy, dz represents respectively the normalized geomagnetic
components of the three-axis geomagnetic sensor in three
directions. Because the collected cow behavior data in the
X , Y , and Z axes are different, the sensor orientation is
a necessary condition for determining the behaviors. Also,
to increase the indicators for determining the behaviors and
to better distinguish each behavior, the vectorial sum data of
acceleration data and geomagnetic data θ = (θx , θy, θz) was
adopted to represent the cows’ behaviors in this study. The
formula for calculating VeAG is:

VeSAG =
√
a2x + a2y + a2z + d2x + d2y + d2z (2)

In the formula, VeSAGx =
√
a2x + d2x , VeSAGy =√

a2y + d2y , and VeSAGz =
√
a2z + d2z .

III. THE RECOGNITION MODEL
A. THE KNN ALGORITHM [21]
The basic principle of the KNN algorithm is to select K train-
ing sample points closest to the test point and output the sam-
ple label with the largest number of K sample points, i.e., the
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TABLE 1. Description of seven main behaviors of dairy cows [4], [6], [7], [24], [25], [30].

TABLE 2. Relationship between rumination times and time in dairy cows.

majority voting principle, thereby obtaining the category of
the test point. There were nine eigenvalues in the dataset of
this study, so each sample could be expressed by a nine-
dimensional row vector: X = (X1,X2,X3, . . . . . . ,X9). The
contents represented by each variable of X1–X9 are shown in
TABLE 3.

To implement the KNN algorithm, it is necessary to cal-
culate the distance from each sample point to the test point,
choose the K nearest samples, obtain the category label of
each sample in the K samples, find the label with the largest
number in the K samples, i.e., the majority voting principle,
and return the label and obtain the final test sample category
results.

The steps of the algorithm are as follows:

1) Input: the training dataset, the test dataset.

TABLE 3. The contents represented by the vectors.

2) The distances between the test data and each train-
ing data were calculated. The methods to calculate
the KNN search distance include Euclidean distance,
Manhattan distance, and Mahalanobis distance. The
Euclidean distance used in this paper is as follows:
suppose calculation points A = (X1,X2,X3 · · ·X9) and
B = (Y1,Y2,Y3 · · · Y9), then the Euclidean distance of
AB is:

DistanceAB

=

√(
(X1 − Y1)2 + (X2 − Y2)2 + . . .+ (X9 − Y9)2

)
(3)

3) The distances are sorted in increasing order.
4) K points with the smallest distances are chosen.
5) The occurrence frequency of the category where the

first K points were located is determined.
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6) The category with the highest occurrence frequency in
the first K points is returned as the predicted classifica-
tion of the test data, and the predicted result is used as
the softmax layer of the KNN model.

7) Output: classification results.
The advantages of the KNN algorithm are as follows:
1) The KNN algorithm is intuitive, simple, and easy to

realize.
2) The classification is determined by selecting K neigh-

boring values and is less affected by noise [21].
3) New data can be added directly without additional

training.
4) Multi-classification is supported with high accuracy,

and non-linear regression problems can also be solved.
5) The KNN algorithm directly uses data for classifica-

tion, thus reducing the impact of improper selection
of category features on the classification results and
greatly reducing errors.

B. THE RF ALGORITHM [22], [23]
RF is an ensemble learning method whose base predictors
are decision trees. The final ensemble prediction result is
produced by voting for the prediction values of each decision
tree. In the forest, each decision tree is independent, and each
decision node learns and classifies data independently, which
is highly efficient. Among all current algorithms, RF has
excellent accuracy. The RF algorithm works as follows:

1) k features (columns) are randomly selected from the
dataset (table) with a total of m features (where k is
less than or equal to m. In this study, the total number
of features is 9, therefore,m = 9). Then, a decision tree
is built according to the k features.

2) After repeating n times, the k features are randomly
combined to build n decision trees (or different random
samples of data, called bootstrapping samples).

3) Random variables are passed onto each decision tree
to predict the results. All predicted results targets)
are stored, and n results are obtained from n decision
trees(In this study, when the number of decision trees
n = 12, the fusion model has the highest accuracy).

4) The prediction target with the highest number of votes
is taken as the final prediction of the RF algorithm [23]
and is used as the softmax layer of the RF model.

C. THE KNN-RF WEIGHTED FUSION MODEL
The KNN algorithm and the RF algorithm were combined
and fused for classification and recognition. The fusion steps
of the KNN-RF model are as follows:

L = ζ(knnlabel=rflabel)knnlabel + ζ(KNNlabel 6=RFlabel)
× [
(
a∗knnscore + b∗rfscore

)
] (4)

Formula (4) defines the pre-process of the entire model,
where ζ is an indicator function, the value of which is 1 when
the condition is satisfied and 0 when the condition is not satis-
fied, guiding the network to perform a binary judgment. The

terms knnscore and rfscore are the final layers of the network
output by the KNN and RF models, respectively, and they
are one-dimensional vectors. knnscore ∈ Rc and rfscore ∈ Rc,
where c is the number of labels for the dataset. The index
corresponding to the largest value in the vectors is selected
as the output label of the input that satisfies the following
relationship:

knnlabel = Argmax (knnscore) and rflabel=Argmax (rfscore)

(5)

The combined model fuses the probability layers that were
output by the KNN and RF models, and the fusion process is
similar to the ensemble learning process and can be divided
into two parts:
1) If knnlabel = rflabel , i.e., the output result of the KNN

model was equal to that of the RF model, there was
no need to fuse the probability layer of RF, and the
result was directly output. The classification result of
the KNN model is used as the final output.

2) If knnlabel 6= rflabel , i.e., the output result of the KNN
model was not equal to that of the RF model, the prob-
ability layers of the two models were fused. The fusion
process is as follows:

(
a∗knnscore + b∗rfscore

)
, where a

and b are trainable hyperparameters for dynamically
adjusting the weights of the KNN and RFmodels in the
fusion model, respectively. The index corresponding to
the largest value in the final fusion probability layer is
the final output label.

IV. RESULTS
A. BEHAVIOR ANALYSIS
In order to compare the data collected by the different sensors
with the captured videos, each signal of the 7-type of the
behaviors of the cow was respectively selected from the data
according to the one-to-one correspondence between the sen-
sor signal and video signal. After that, the acceleration and
the geomagnetic sensor data were combined to determine
which judgment method was appropriate for improving the
recognition accuracy.
1) As shown in FIGURE 2A, the vectorial sum data

VeSAG changed periodically during the cows were
eating. The curve segment displayed in the rectangle
named a in FIGURE 2A (hereafter referred briefly to as
FIGURE 2A-a) indicates that the cow was bowing its
head for eating forage, and the curve segment displayed
in the rectangle named b in FIGURE 2A(hereafter
referred briefly to as FIGURE 2A-b) indicates that the
cow was raising its head and swallowing the forage.

2) As shown in FIGURE 2C and FIGURE 2D, when
the cows were running or walking, the curves of
the vectorial sum data fluctuated dramatically, which
indicates a clear difference from other activities. The
curves of the accelerometer data changed periodi-
cally, but the curves of the geomagnetic sensor data
changed non-periodically because when the cow was
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FIGURE 2. Acceleration and geomagnetic data of multi behaviors of dairy cows.

running, the height of its neck above the ground would
change irregularly. The number of running and walking
steps could be counted according to the acceleration
data.

3) As shown in FIGURE 2B, FIGURE 2E, and
FIGURE 2G, when the cow was ruminating, drinking,
or standing, the fluctuations of the curves of the data
were more moderate than that for describing other
behaviors. The curve segment displayed in the rectan-
gle named c in FIGURE 2B(hereafter referred briefly to
as FIGURE 2B-c) is the data of the cow’s head-shaking
during the rumination process. The curve segments
displayed in the rectangle named e in FIGURE 2G
(hereafter referred briefly to as FIGURE 2G-e) indicate
that the cow raises its head 3 times during the drinking
process.

4) As shown in FIGURE 2F, when the cow was shak-
ing its head, the curves of the sensors data generated
were similar to those of feeding, but with a higher
peak. The curve segments displayed in the rectangle
named d in FIGURE 2F (hereafter referred briefly to
as FIGURE 2F-d) indicate that the cow shakes its head
twice.

The curves of cow’s head-shaking and feeding both
changed periodically, and the values of the VeSAG were rela-
tively close, therefore, the vectorial sum of acceleration data
was added to further distinguish between these behaviors.
The formula for calculating the vectorial sum of acceleration

VeSA is as follows:

VeSA =
√
a2x + a2y + a2z (6)

The difference between running and walking could be
analyzed according to the curve of the vectorial sum of
acceleration data. As shown in FIGURE 2C and FIGURE 3a,
the collected data value was the largest when the cow was
running. Therefore, the normalized acceleration data of the
cow running had the highest conversion value, equal to 1.
The X -axis acceleration value of the walking behavior was
up to approximately 0.8 (FIGURE 2D). The values of VeSA
of most steps when the cow was running were greater than
0.4, while those of walking were less than 0.4 as shown
in FIGURE 3a and FIGURE 3b. After the KNN-RF model
recognized that the data segment was a cow running behavior,
a threshold could be set. When the vectorial sum acceleration
data values of the running were greater than 0.4, they were
recorded as the beginning of the first step; when the values
were less than 0.4, they were the end of the first step; when
they were again greater than 0.4, they were recorded as the
beginning of the second step, and this continued until the
vectorial sum acceleration data were no longer greater than
0.4, signifying that the running behavior had ended. The
walking behavior threshold was set to 0.25, and the step
counting method was the same as that for running. When the
cow was eating, the motion mode was to chew with the head
down, swallow with the head up, and then continue to chew
with the head down, so the Y -axis data were the most regular,
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FIGURE 3. Acceleration and geomagnetic data of cow behavior: (a) VeSA
data of one step of cow running behavior; (b) VeSA data of two steps of
cow walking behavior; (c) Y-axis geomagnetic data of cow lying and
standing.

as shown in FIGURE 2A-a and FIGURE 2A-b. FIGURE 3c
shows the geomagnetic Y -axis data when the cows were lying
and standing. They were resting, so the behavior could be
classified directly by setting a threshold according to the
geomagnetic data.

TABLE 4. The relationship between the parameters of the fusion model
and the recognition rate.

When the magnetic sensor is close to the object with
magnetism, the signal of the geomagnetic sensor changes,
so the specific water supply device with certain magnetism
can be used to detect the drinking behavior of dairy cows.
In addition, the drinking trough is generally located on a
corner or side of the cow sports field. However, the cow could
ruminate, lying, and standing in most areas of the cowshed
and the sports field, as shown in FIGURE2B and FIGURE3c.
Thus, the geomagnetic data of these three behaviors were not
the same as the drinking behavior.

B. EXPERIMENTS WITH DIFFERENT PARAMETERS OF
WEIGHTED FUSION MODEL
The KNN-RF model has four hyperparameters, the Neigh-
bors (the KNN model), the Estimators (the RF model), and
the fusion model weights a and b (dynamically adjusting the
weights of the KNN and the RF models).

To obtain the relationship between each hyperparame-
ter and the accuracy of the model recognition, the control
variable method was adopted for experiments to obtain the
optimal hyperparameters. According to the results lisited in
TABLE 4, it is known that the relationship between the value
of the Neighbors and the model’s recognition accuracy was
positive if the value of the Neighborswas less than 5; contrar-
ily, if the value of the Neighbors was greater than 5, the rela-
tionship between the value of the Neighbors and the model’s
recognition accuracy was negative. Therefore, when the value
of the Neighbors was equal to 5, the model’s recognition
accuracy was the highest at 98.27%. Then, setting Neighbors
equal to 5, the value of the Estimators was adjusted; when
the value of the Estimators was less than 12, it had a positive
correlation with the model’s recognition accuracy and vice
versa. Therefore, when the hyperparameters Neighbors was
equal to 5 and the Estimators was equal to 12, the KNN-RF
model had the highest recognition rate. Similarly, when awas
equal to 0.6 and b was equal to 0.4, the KNN-RF model had
the highest recognition rate.
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FIGURE 4. The recognition rate of the fusion model: (a) recognition rates
of the fusion model with 15 days; (b) recognition rates for dairy cow
behaviors of the KNN-RF fusion model.

The data were collected for 15 consecutive days and
verified once per day. The average recognition accuracy is
shown in FIGURE 4a. The highest recognition accuracy was
98.51%, and the lowest was 98.32%. Among these values,
the KNN-RF model had the highest recognition accuracy
of 99.34% for the cow feeding behavior and the lowest recog-
nition accuracy of 89.11% for the head-shaking behavior as
shown in FIGURE 4b.

The KNN-RF model combining two classical machine
learning models has the following advantages:

1) Due to that the time of each activity of the cow is not
the same, so the amount of data of each behavior is
also different. The KNN model has a low prediction
accuracy for rare categories when the samples in the
dataset are unbalanced. The base predictors of the RF
mode are decision trees, and the final ensemble pre-
diction result is obtained by voting on the predicted
values of each decision tree. In the forest, each decision
tree is independent, and each decision node learns and
classifies independently. Therefore, the RF method can

TABLE 5. The relationship between model parameters and recognition
rate.

overcome the shortcomings of the KNN model and
improve the overall prediction accuracy.

2) It was found that the acceleration sensor and geomag-
netic sensor will produce noise signal when they collect
the behavior data of dairy cows. Over fitting will occur
when RF model is used to process noisy data sets.
Therefore, in order to avoid the over-fitting during
analyzing the noise dataset with the RF model, a model
combined the RF model with the KNN model was
used in this research, which could effectively remove
outliers.

C. ACCURACY ANALYSIS OF THE COW’S HEAD-SHAKING
BEHAVIOR
By validating, it is known that all models used in this research
had the lowest recognition accuracy for the head-shaking
behavior. For recognizing the cow’s head-shaking behav-
ior, the KNN-RF fusion model had the highest recognition
accuracy at 89.11%, followed by the KNN model with a
recognition accuracy of 85.14%. With the analysis of the
results from all models misrecognising cow head-shaking
behavior, it could be found that the head-shaking behavior
was recognized as the ruminating behavior in the highest
proportion. Among them, the recognition error rate of the
KNN-RF fusion model was 100%; the recognition error rate
of the SVM model was 76.19%.

D. COMPARISON TESTS
To evaluate the performance of the KNN-RF model, the rec-
ognized test results of the RF, SVM, GBDT, KNN, and LVQ
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TABLE 6. Statistics of test results’ confusion matrices for the six model algorithms.

were compared with each other. The relationship between
the model’s parameters and the model’s average recognition
accuracy is shown in TABLE 5.

Representation of the confusion matrix for each model
is shown in Table 6. In the confusion matrix, the diag-
onal elements are correctly recognized samples, and non-
diagonal elements are misclassified samples. The recognition
results of the test set were counted, and the confusion matrix
obtained under each algorithm is shown in Table 6. The best
results of all the models were compared. The statistics of the

recognition accuracy of the cows’ seven behaviors by each
model are shown in FIGURE 5.

Through the analysis of the above test results, it can be
concluded that:

1) Compared with the recognition rate of other behav-
ior of dairy cows, the recognition rate of head-
shaking was the lowest. When a cow shakes its head,
the head may be shaken from side to side or rotational
with different speeds and directions. So, the accu-
racy of head-shaking behavior recognition of the
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FIGURE 5. Statistics of models’ recognition rates for the cow behaviors.

classification model in this paper is lower than that of
other behaviors.

2) There are two important parameters in the training
of the SVM model: the kernel function coefficient
Gamma of the Radial Basis Function (RBF) and the
penalty factor C . When Gamma was equal to 35 and
C was equal to 10, the SVM model had the highest
recognition rate of 92.39%.

3) The KNN-RF fusion model had the highest accuracy
of 98.51% for all cow behaviors, while the average
recognition accuracy of feeding, ruminant, running,
standing, shaking-head, drinking, and walking was
99.34%, 96.97%, 92.45%, 98.15%, 89.11%, 98.08%,
97.04%, respectively. TheKNN-RFmodel had an iden-
tification rate of 89.11%, which was 3.97% higher than
that of the RF model. The KNN-RF model improved
the recognition performance of cow feeding behav-
ior most obviously, and the recognition accuracy was
99.34%. The KNN model, which had the second-
highest accuracy of the feeding behavior recognition,
was 95.07%. TheKNN-RFmodel had a 4.27% increase
in recognition accuracy compared to the KNN model.

V. DISCUSSION
The behavior of a dairy cow is the comprehensive embod-
iment of its physiological activity states. Monitoring dairy
cow behavior could provide insight into an animal’s wellness
status; however, traditional observational techniques may
influence results, being time and labor-intensive, and may not
provide the necessary level of diagnostic accuracy. To over-
come the shortages of the traditional methods for detecting
the individual behavior of the dairy cow, the acceleration
sensors and the geomagnetic sensors were used to collect
simultaneously accelerated data and geomagnetic data during
cow activities, then the different classifiers based on the deep-
learning model were used to monitor the multiple behaviors.

FIGURE 6. The head-shaking patterns of a cow: (a) the ‘‘turn-back’’
head-shaking style; (b) the ‘‘rotary’’ head-shaking style.

In recent years, the acceleration sensor has been used for
identifying animal behavior due to its relevance and potential
applications [24], [27], [29], [31]–[40]. However, as far as
the authors’ knowledge, using the geomagnetic sensor for
classifying the multiple behaviors of the dairy cowthis is the
first. The use of a neck-mounted accelerometer for moni-
toring ingestive-related cow behaviors based on a KNN-RF
fusion model was investigated in this research.

For the individual identification of the dairy cows,
TABLE 7 illustrates the results obtained by our work and
those of other works. In our work, acceleration/geomagnetic
data and KNN-RF recognition model were used, a global
accuracy of 98.51% was achieved for recongnizing behav-
iors of the dairy cows, it was higher by 0.51% than that
reported by Robert et al. [24], by 13.51% than that reported
by González et al. [25], by 8.51% than that reported by
Alvarenga et al. [27], by 6.51% than that reported by
Andriamasinoro et al. [28], by 18.51% than that reported
by Wang et al. [31], by 13.51% than that reported by
Foldager et al. [38], by 10.75% than that reported by
Guo [11]. The author thought that the reasons for the high
accuracy of the cow behavior recognition are as follows:
(1) The acceleration data and magnetic data of cow behavior
were used; (2) The multidimensional features of the col-
lected data were extracted and inputed into the recognition
algorithm; (3) According to the advantages of KNN and RF
algorithm, this two algorithms were combined for behavior
recognition; (4) The parameters of KNN and RF algorithm
were optimized to improve the performance of the algorithm
on cow behavior data.

In this study, the recognition rate of cow head shaking
is the lowest, so the behavior of head-shaking of dairy
cow was analyzed. After comparing the data with the video
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TABLE 7. Comparison of individual identification performance between our method and existing research works.

one-to-one correspondence, it was found that the manner that
the cows shook their heads could be divided into two types,
one is ‘‘turn-back’’ style and the other is ‘‘rotary’’ style,
as shown in Figure 6. The different types of the cow shaking
their heads resulted in the lowest recognition rate of themodel
andmost of themweremistaken for ruminating behavior. The
specific reasons are as follows:

1) When a cow shakes its head, if it shakes in a the
manner of ‘‘turn-back’’ style as shown in FIGURE 6a,
i.e., the cow shakes its mouth toward its tail (the cow’s
head rotates along the Y-axis), the data from the accel-
eration and geomagnetic sensors differ greatly from
those of other behaviors, making the motion easier to
distinguish.

2) When a cow shakes head in a ‘‘rotary’’ style (the
head of the cow rotates along the X-axis) as shown
in FIGURE 6b. The orientation of the cow’s mouth

is unchanged because the direction indicated by the
X-axis of the sensor is the same as the orientation
of the cow’s mouth. So the data of acceleration and
geomagnetic sensor of the cow in the X-axis will have
the smallest change, and the data of acceleration and
geomagnetic sensor of the cow in the Y-axis and the
Z-axis will have the largest changes. The pattern is sim-
ilar to the sensor X-axis data of rumination behavior.
Therefore, the head shaking behavior is most likely to
be mistaken for rumination when the cows shake their
heads in a ‘‘rotary’’ style.

Detection of the dairy multi-behaviors such as walking,
standing, or lying, with accelerometers or IMU [8], [26],
placed on the neck [25], [26], [30], legs [41], halter [30],
or ears [30] is accurate to between 29% and 99% using
machine learning [35]. In this research, it was found that only
a sensor on one part of the dairy would result in misleading
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(or at least incomplete) data. So in the future, the IMU, the
UWB, and the geomagnetic sensors would be installed in the
different parts of the cows to detect their multi-behaviors.
It was also found that the geomagnetic sensors fixed in dif-
ferent parts of the cow, such as the halter, the back, and the
tail, would detect the different behavioral characteristics of
the cows.

VI. CONCLUSION
1) The results in this research demonstrated that the

low-cost, non-commercial, lab-constructed accelera-
tion/geomagnetic collar sensors could be used to accu-
rately monitor cow multi behavior parameters and
that the model predictions align with expected cow
behavior.

2) The six algorithms used in this research could recog-
nize the muti-behaviors of the dairy cows with slightly
different accuracy. It was found that the recognition
results of the KNN-RF fusion model could accurately
recognize the behaviors of the individual dairy cows.
The KNN-RF fusion model had the most obvious
improvement in the recognition of the dairy cow feed-
ing behavior, with a recognition accuracy of 99.34%,
followed by the KNN model with the feeding behav-
ior recognition accuracy of 95.07%. Compared with
the KNN model, the KNN-RF model had a 4.27%
improvement in recognition accuracy.
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