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ABSTRACT The feasibility of artificial intelligence (AI) as a predictive model for thorough efficacy analysis
on environmental pollution applied on mangrove forests are discussed. Mangrove forests are among the most
productive and biological diverse ecosystems on the planet. However, due to environmental pollution and
climate change, mangrove forests are in serious decline. Despite crucial issues pertaining mangrove forests,
the law enforcement on the ecosystem is still dubious due to the lack of evidence and data that could provide
accurate analysis and prediction. The main highlight of this review elaborates on pollutant markers in soil,
water, and air, by correlating these three aspects to the sustainability of mangrove ecosystem. The research
gap identified from this review suggests the application of an integrated environmental prediction system for
practical environmental insights. A predictive model for environmental decision-making could be developed
by integrating meteorological, climatological, hydrological, atmospheric, and heavy metal concentration
to understand the interaction between each factor for an efficient solution of pollutant reduction scheme
involving mangrove ecosystems.

INDEX TERMS Mangrove estuarine, pollutant interaction, environmental quality modeling, integrated
environmental decision system.

I. INTRODUCTION
The adoption of artificial intelligence (AI) to study the occur-
rence of pollution in mangrove forests should be given an
increase in demand and attention. Present application of arti-
ficial intelligence in monitoring water quality, and heavy
metal pollution exists but have yet to be associated with
mangrove forests.

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino .

Mangrove forests exist between the intertidal zone of sea
and land, they are the most vital and productive ecosystem
for the coastal community, supplying ecological functions to
numerous flora and fauna such as niche bacteria, macroalgae,
fungus, zooplankton, prawns, shrimps, crabs, mollusks and
insects [1]. Mangrove forests are important carbon sinks
which could mitigate climate change as they can store carbon
dioxide (CO2) approximately 2.5 times more than the amount
of CO2 produced by humans annually [2]–[4]. Other than
this capability, mangrove forests significantly contribute to
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the rural livelihood especially that involve aquaculture and
fisheries, timber, fuel, or shelter to wildlife. The mangrove
ecosystem covers a total of approximately 152,000 square
kilometers of the world’s surface, and 42% of mangrove
forests are largely found in Asia [5], [6]. The economic value
of mangroves per hectare per year is approximately in the
range of USD2000 to USD9000 [7].

Despite their ability to thrive in harsh conditions, mangrove
forests suffered deleterious effects from climate change,
notably rising sea levels and environmental pollution. The
global loss of mangroves is greatly driven by anthropogenic
threats [8] and direct conversion of mangrove forests for
export to support economic development [3], [6], [9], [10]
which includes large-scale agriculture and aquaculture devel-
opment for commodities such as rice, shrimp, oil palm culti-
vation, local exploitation and human settlement [11]. Extreme
weather events, rising sea levels due to climate change, pol-
lution and environmental degradation also largely contribute
to the loss of mangrove forests. Several mangrove species
were declared as endangered or critically endangered [12].
Trend analyses by FAO [7] has shown a drastic decline of
mangrove area by 20% from 18.8million hectares to 15.2mil-
lion hectares, with an annual average change of 0.7% from
1980 to 2005. The degradation of mangrove forests caused
a total CO2 emission rate of 14 million Mg CO2 capped
at annual emission rate of 0.5 Mg CO2. The impact of this
scenario is worsen when only 6.9% ofmangroves in the world
is recognized as a protected area network [5].

The mangrove ecosystem consists of a few major com-
ponents including the soil quality, the forest, marine and
hydrology system. Pollution of soil and water degradation
could directly affect the productivity of mangrove forests.
In this manuscript, we present the possibility of using AI to
study the integration of contaminant parameters found in air,
water, and soil to aid the pollution monitoring of mangrove
forests.

The objectives of this paper are as follow (i) to review
on the impact of air contaminants, water quality parameters
and heavy metal components (ii) to discuss existing envi-
ronmental prediction tools used for heavy metal study and
water quality analysis that can aid as a holistic pollution
assessment for mangrove ecosystem (iii) to identify gaps on
how predictive nature of AI can solve environmental related
challenges impacted on mangrove ecosystem.

The dire effects of water and heavy metal pollution on the
mangrove ecosystem are hardly irreversible [13]–[16]. Sev-
eral reviews covered the topic of environmental pollution sim-
ulation over the past few years to evaluate past researches and
future concepts for pollution modelling. Thorough reviews
of water quality modelling from 2000-2020 are provided by
Tung and Yaseen [17], while the feasibility of machine learn-
ing models for heavy metal prediction from 2019-2020 is
further reviewed by Yaseen [18]. In addition, a number of
air, water, and solid waste pollution modellings have been
reviewed and summarized focusing on AI applications for
both single and hybrid methods [19].

Although AI based predictive models can provide enor-
mous capability and flexibility in forecasting complex envi-
ronmental problems, we consider that the predictive models
covered in this study are only targeting individual solution
in addressing either water, or heavy metal pollution issues
that do not concern the wellbeing of mangroves. Moreover,
there is no integrated solution that considers the relation of
air, water, and heavy metals contaminant on the mangrove
ecosystem. Thus, focusmust be given to study possible degra-
dation factors due to pollution of the highly declining man-
grove ecosystem. The direction of this study aims to bridge
the gap of understanding relevant parameters required for
predicting environmental pollution associated with mangrove
ecosystem using the intelligent approach of AI.

The paper is structured as follows: in section two,
the degradation of mangroves caused by environmental pollu-
tion are elaborated based on published literature; section three
introduces the correlation between environmental pollutants
from water, air and soil pollution that could cause imbal-
ance in the mangrove ecosystem; section four discusses the
existing use of artificial intelligence for pollution monitoring
of mangrove forests that are lacking in studies; section five
provides guiding opinions to the development of integrated
environmental decision system in mangrove forest; while
section six concludes the review.

II. MANGROVE FOREST DEGRADATION DUE TO
ENVIRONMENTAL POLLUTION
Environmental pollution is defined as the disturbance of
human activities to the physical and chemical cycle of living
and non-living organisms with harmful perturbation effects.
The impacts of pollution provoke the ecological system
wildly and to humans as well.

Although mangrove forests are high in economical values
than other ecosystems [20], mangrove forests suffer from
accumulated marine litter pollution [21] and still perceived
as the most convenient dumping sites. Some mangrove estu-
aries are suppressed by the impact of leachate and overflow
garbage from the nearby illegal landfills [22]. In addition,
oil spills [23], and chemical waste are also affecting the
mangroves and other coastal marine habitats. The man-
grove ecosystem is increasingly threatened by anthropogenic
human activities such as land use conversion for agricul-
ture and aquaculture, deforestation, greenhouse gas emission,
waste dumping and overpopulation. This problem worsens
with the increasing of industrial, plantation and mining activ-
ities carried out along estuary rivers. These activities not only
affect the mangrove ecosystem but also alter soil quality by
releasing harmful contaminants such as organic compounds,
oils and heavy metals which eventually leach into the aquifer
and thus affecting the water quality [24], [25]. Stressors such
as land, water and air pollution are straining the ecosystem as
these resources are the necessities for all living things. The
disturbances of water, soil and air pollution defined for the
mangrove ecosystem are evident.
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TABLE 1. Heavy metals in µg/g or ppm in the collected samples of mangrove sediments.

A. IMPACT OF HEAVY METAL POLLUTION
IN MANGROVE SEDIMENTS
The mangrove ecosystems is known as a natural wastewa-
ter treatment due to its high capability in retaining heavy
metals such as Chromium (Cr), Copper (Cu), Zinc (Zn),
Manganese (Mn) and Cadmium (Cd). Heavy metals are
metallic elements that are relatively denser as compared to
water. Improper discharge of heavy metals into the environ-
ment is often through the sewage runoff of manufacturing fac-
tories in metallurgy, paints, electroplating, papers, pigments
etc [26]. Metal elements are high in solubility hence they
are hazardous to the aquatic ecosystem as they are easily
consumed and absorbed by living organisms [27].

In the mangrove ecosystem, the accumulation of heavy
metals in the roots poses deleterious effects on the leaf num-
ber, stem basal diameter, biomass production and is also
toxic to soil microbial communities. The interactive effects
of trace metals even decrease the photosynthetic rate, and
create osmotic stress toxicity to the mangrove seedlings [28].
Moreover, studies covered by Sobhanardakani, et al. [29]
have discovered the presence of heavy metals in the gills,
internal organs and tissues of fishes in polluted environment.
The concentration of trace elements in marine biota such as
crabs, puffer fish and seaweeds are higher than the World
Health Organization (WHO) recommended standards and the
exposure of metals has moderate hazard risks to human con-
sumption [30]–[32]. Occurrence of radionuclides along with
heavy metals in mangrove sediment also poses radiological
hazards [33]. The combination of trace metals has a 21%
probability of being toxic, with raising concerns of adverse
biological effects due to Cd pollution [34], [35].

Heavy metals are reported as the highest main anthro-
pogenic toxic elements present in mangrove ecosystems in
Asia, ascending from the growth of urban and industrial
development around coastal areas [13]. This condition is

accelerated with the lack of natural elimination processes
for heavy metals. As such, the accumulation of heavy metal
within the ecosystem creates ecological disturbance that
causes risks to human health, and the aquatic biota, stressing
the need for bioremediation of heavy metals [36].

Major heavy metal pollutants found in the mangrove
ecosystem are Cadmium (Cd), Chromium (Cr), Copper (Cu),
Zinc (Zn), Lead (Pb), Nickel (Ni), Manganese (Mn), Mercury
(Hg), Arsenic (As), Cobalt (Co) and Iron (Fe) [34], [35],
[37]–[44]. The pollution sources of trace metals are due
to anthropogenic inputs such as metal processing, domestic
sewage, agricultural and industrial activities [34], [37], [39],
[43], [45]. The collection of data that studies heavy metal
concentration in mangrove estuaries is shown in Table 1.
Severe contamination of heavy metals that occurred in these
study areas is likely due to rapid socioeconomic develop-
ment, especially the disposal of industrial waste and domestic
sewage. Presence of trace metals in the roots of the mangrove,
although in small amounts could trigger toxic effects to the
plant tissues and root epidermis [35], [38].

Among all heavy metals, Cu, Zn, Pb are the main heavy
metals with high variations in each area studied, giving high-
est contamination levels in China. Despite having a small cov-
erage area of mangroves about 0.04% of the total mangrove
coverage in the world [46], heavy metal pollution in China
is very serious owing to the discharge of industrial sewage
waste and high industrialization development activities in the
country.

Deforestation activities carried out since the late-1980s for
land conversion industrial areas and shrimp ponds increased
the rate of erosion of mangroves, which may have con-
tributed to the high sedimentation rate and the influx of heavy
metals [44]. The contamination of heavy metal is apparent
and serious across the Asian region, heavy metal pollu-
tion not only causes mangrove degradation, the detrimental
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impacts on adjacent coastal systems and human mankind
is also irreversible. Bioaccumulation of heavy metals such
as Pb, Zn, Cd and Cr are toxic to the ecological system as
these metals can only get accumulated with time and not
degraded naturally [47]. Hence, it is necessary to monitor the
changes of heavy metal dissipation as a means of mangrove
conservation.

B. IMPACT OF WATER AND MARINE POLLUTION TO
MANGROVE ECOSYSTEM
This section reviews the negligence on water pollution man-
agement which contribute to the destruction of mangrove
forests. Water pollution especially oil pollution and herbicide
exposure negatively affect mangrove ecosystem and other
living organisms.

Discharges of wastewater and storm runoff can also cause
problems to economic activities such as shrimp farming and
fish cage culture Schaffelke, et al. [48] summarized 16 inci-
dents that impact the quality of mangroves in the Great Bar-
rier Reef region in Australia where 50% of damage is related
to water quality contamination due to oil spills, deposition of
sediments, and herbicide exposure, 31% of which are direct
damage due to planned and permitted activities, giving it a
total of 81% of mangrove impact are from the aftermath of
human activities.

1) OIL SPILL POLLUTION
There is historical evidence of oil spill pollution on mangrove
forests. The severe dieback of Rhizophera Stylosa and Avi-
cennia Marina in Australia has shown that full recovery takes
approximately 36 years or more [49]. The sub-lethal impacts
of oil spill incidents could cause reduction of forest canopies
and partial loss of habitat. Oils spills tend to coat breathing
surfaces of mangrove roots, seedlings, stems, surrounding
sediments and fauna [23]. A massive oil spill could smother
the leaves and aerial root system of mangroves leading to
death of mangroves within weeks. Lighter oil spills do not
cause mortality, however it leads to initial defoliation [50].

2) HERBICIDE POLLUTION
Another source of water contamination is herbicide deposi-
tion from surface runoff. Photosystem II inhibiting herbicides
are atrazine, diuron and ametryn that are commonly used
for general weed control of commercial and industrial areas.
Herbicides are strong in photosynthetic inhibition properties,
causing chlorosis and wilting of leaves [51]. The presence of
herbicides reduces canopy condition and declines the growth
of seedlings. Herbicide poisoning is associated with the cause
of severe dieback of 30 km2 of mangroves at Mackay region,
Australia in 2000. Further consequences from the dieback
involve deteriorated water quality, increase in sediment and
nutrients deposition and the dispersal of toxins [52].

3) SALINITY INTRUSION
Climate change causes the rising of sea levels giving impact
on the increase of water salinity, posing a threat to the survival

and growth of mangrove forests. Such phenomena is evident
in the Sundarbans, Bangladesh, where an increasing salinity
trend was observed over a period of 27 years [53]. Increas-
ing concentration of salinity has significant effects on man-
grove seedlings, it delays root initiation and deters the rate
of seedling establishment [54]. Seedlings at higher salinity
failed to establish and died due to low survival rate [55].
For older mangrove trees, different species have different
salinity tolerance limit, characteristics such as smaller height
and grith of main stem, shallower roots are observed for
mangroves at high saline zones [56]. Moreover, del Refugio
Cabañas-Mendoza, et al. [57] studied the influence of salt
concentration concluded that the increment in salinity inflicts
changes in pH and the translocation of lead uptake to the
mangrove leaves. This will then increase the heavy metal
contamination risk.

4) OVERLOADING OF NUTRIENT
In South Australia, six years after the establishment of the
sewage outfall, 250 ha of the mangrove species Avicen-
nia marina have died since 1956. This is associated with
excessive nutrients caused by algae bloom as an indirect
human related cause [58]. Overloading of nutrients content
in nitrogen, phosphorus, and silicate triggers the growth of
algae. The long-term eutrophic condition in the Sundarban
estuary showed declining of species and diversity resulted
from abiotic stress [59]. Eutrophication disturbs the balance
of the water ecosystem, as it introduces instability to the man-
grove forests by lowering the mangrove resilience. Nutrient
enrichment of coastal areas stimulates the growth of shoots
yet increases the mangrove’s vulnerability to water stressors
such as high salinity and low humidity [60].

In another part of Asia, the discharge of sewage waste
and in Navi Mumbai, India has impacted the water qual-
ity of mangroves in Uran [16], resulting in high levels of
Orthophosphate (O-PO4), Nitrate–nitrogen (NO3–N), and
silicates acting as an anthropogenic stress to the mangrove
ecosystem. Almost similar pattern can be seen in the Merbok
River, Malaysia where there is a significant declined in fish
catches due to anthropogenic stress from large amount of
ammonia and nitrate concentration in the estuary [61]. The
high level of sediment and nutrient loadings might pose fur-
ther threats in the future coastal and estuarine fisheries.

5) SEDIMENTATION RATE
Sedimentation is the sinking process of suspended particles
by gravity. The rate of sedimentation has a negative correla-
tion on mangrove density. According to Halim et al. [62], the
higher the sedimentation rate, the lower themangrove density.
Mangroves roots are capable to retain sediment and slow
down the rate of water flow hence accumulate deposition and
sedimentation. Sediments are the source of nutrients to the
mangrove ecology. Based on Okello et al. [63], mangroves
at partial burial showed leaf emergence due to influx of
nutrients, nevertheless, large sedimentation events may still
result in negative tree development if nutrient thresholds are
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not maintained. There are 26 cases of mangrove mortality
in 1999 caused by root smothering due to excess input sedi-
mentation [64]. Althoughmangroves flourish under sedimen-
tary shorelines, an aerial root burial of 10 cm could cause
significant death of mangrove species.

Other than that, majority of heavy metals from industrial
discharge are deposited as sediment, the accumulation of
sediment that contains heavy metal could further increase
metal toxicity in water. These sediments release heavy metals
in aqueous state leading to heavy metal pollution of water
sources [65].

In short, it is apparent that the water pollution disrupts the
hydrology of the river and sea causing mangroves and sur-
rounding plants to die as well as marine fauna to be suffocated
due to stagnant, anoxic, and toxic polluted water. The main
driver to water pollution as elaborated in this study is due
to industrial and residential sewage waste runoff. Due to the
catastrophes reported worldwide, controlling and monitoring
water pollution is needed either in upstream or downstream
ecosystems.

C. INTERACTION OF AIR POLLUTANTS
ON TREE PHYSIOLOGY
Albeit direct impacts of air pollution to the health of man-
grove ecosystem are lightly reported, the indirect impact of
air pollution due to factors such as transportation, industrial
and domestic activities could deter the water and soil quality
existing nearby the trees. Themost common air pollution phe-
nomenon that could significantly influence water and soil are
soil acidification and the increase of ozone concentration. The
former scenario can affect the overall mangrove ecosystem
through water and soil quality temperament resulting from
acid rain that has higher concentration of Carbon Dioxide
(CO2), Sulphur Dioxide (SO2) and Nitrogen Dioxide (NOx)
than the allowable standard. Meanwhile, the later intensifi-
cation of ozone concentration could deter the soil quality of
mangrove forests from the chemical reaction by NOx and
Volatile Organic Compound (VOC) under daily meteorolog-
ical conditions.

In addition, there are increasing reported cases on
the impact of the air pollution associated with tree
health [66]–[70]. Findings from Takahashi et al. [71] con-
cluded that acid deposition due to air pollution is a possible
stressor for tree health in the changing climate. The effects
of air pollution and climate change to forests as described by
de Vries et al. [72] affects the soil processes, tree health and
change in biodiversity.

1) ACID DEPOSITION
In China, acid deposition is suspected as the main driver to
the decline of the sub-alpine Faber’s fir (Abies fabir) forest in
Mt. Emei and forests at the Jiuzhaigou ValleyWorld Heritage
site [68]. According to [68], [69], high levels of sulphur
and nitrogen depositions from industrial and agricultural air
pollutants and acid rain during the wet season are thought to
be the primary cause of forest damage in Jiuzhaigou Valley,

leading to tree dieback, tufa degradation and increased algal
production. Soils in tropical areas have a high adsorption
capability of SO2−

4 hence there poses a major risk of soil
acidification by nitrogen deposition specifically in East Asia
as reviewed by Duan et al. [66].

The industrialization and urbanization over the past few
decades is one of the main reasons to the acidification of river
waters due to cumulative acid loading from the atmosphere
to the soil [73]. The water pH trend study conducted by
Qiao et al. [74] at river basins in China concluded that the
increasing water pH trends from 2004 to 2014 are possibly
caused by the reaction of water with SO2 and NOx com-
pounds from acid rain and anthropogenic pollutions. The
change in pH may affect the association and distribution of
Cu organic matter with the mangrove sedimentary [75].

A preliminary research performed by R. M., et al. [76]
simulated acid rain on coastal zone tree species that included
white mangrove, red mangrove and button mangrove com-
monly found in Mexico. The authors suggested that low
pH exposure will lead to stress development in mangrove
trees. Increased exposure of mangroves to acid significantly
increases sulphur content increase, while chlorophyl a/b ratio
decreases. Nutrient levels were also highly sensitive to low
pH values. The publication suggested that the mangrove tree
species could act as bioindicators for atmospheric pollution.

2) OZONE POLLUTION
Moreover, extremely high concentrations of O3 in the atmo-
sphere as a result of climate change is likely to exacerbate
effects on tree physiology [71]. Forest decline symptoms is
observed in China and Japan at urban, mountain and subbo-
real forests [77], [78]. The phytotoxic air pollutant, O3 has
adverse effects to the tree vitality by impeding plant growth,
reduce leaf biomass productivity, lower photosynthesis rates,
and accelerate the process of tree deterioration [79], [80].

Griselda et al. [81] studied the effects of high ozone con-
centration on three mangrove species of which the research
found visible damage on mangrove leaves that is caused by
photo-oxidation. The mangrove species studied are sensitive
to ozone exposure levels, showing a decrease in carotenoids.

As of now, the serious risks of ozone pollution are highly
distinct in China [82]–[86] which not only reduce crop and
yield productivity, but also threatens the health of human
wellbeing and accounts for economic loss in food and wood
production.

3) HAZE EVENTS
Although severe tree decline due to haze events have not
extensively reported, there are evident impacts of haze in
Southeast Asia that may imply the inhibition of plant physi-
ology, for instance Yoneda and Nishimura [87] reported the
tree growth deceleration in the West Sumatra is prolonged
by the Indonesian haze event by 23% that occurred in 1997.
Effects of air pollution and forest fires causes a sunlight
shielding effect due to particulate matter (PM), hence a reduc-
tion of stomatal conductance therefore directly impacts the
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photosynthesis rate of plants [88], [89]. Philip [90] compared
the photosynthesis rate and stomatal responsiveness of urban
trees in Malaysia during non-haze periods with haze episodes
and concluded the rates of photosynthesis and photosyn-
thetic photon flux density declined between 20%–50% and
40%–75% respectively. Other than that, toxic metals such as
Cr, Pb, As and Antimony (Sb) that are present in particulate
matters may contaminate the plant tissues [91].

4) DROUGHT EVENTS
Drought events and extreme heat waves are the impacts of
climatic global warming resulting in the drying of vegeta-
tion, agriculture, and water resources [92], [93]. An occur-
rence of extreme drought event between late 2015 and early
2016 recorded a severe massive dieback of mangroves along
Australia’s shoreline [94]. During that time, there was an
unusually lengthy period of severe drought conditions, unusu-
ally high temperatures and a receding of sea levels were
observed. Furthermore, drought change brought about a clear
reduction trend of mangrove canopy of the Persian Gulf and
Oman Sea [95]. This was associated with the onset of sudden
decrease of precipitation rate and rainfall.

The effects of climate change on mangrove ecosystems
as analysed by Mafi-Gholami et al. [96] concluded that the
changes in rainfall pattern from drought could lead to a
rapid decline of mangrove establishment and growth. The
conclusion was made from over 32-year observation period
where adverse effects on the biomass production potential
of mangroves are remarked. Reduction of rainfall makes
the coastal quality less favourable due to changes in soil
salinity and nutrients. Further impacts of drought bring about
the deterioration of water supply, intrusion of saline water
and increased pollution of waters from undiluted pollutant
discharges. Sediment metal contaminants (Cu and Pb) were
found to present higher levels when riverine flow was slow
during drought periods [97].

Presently, the number of potential environmental distress
due to climate change and air quality affecting the tree
growth, forest ecosystem and agricultural vegetations are
evident. If the concerns are not addressed, the environment
could be in significant risks under large scale containment
especially on mangrove forest since its growth is associated
with water and soil qualities. As of now, the severe effects
of air pollution towards the growth of mangrove forests have
yet to be reported. Nevertheless, as impacts of air pollution
on tree physiology are apparent in other parts of the world,
the effects of ambient air pollution on mangrove forests can-
not be disregarded.

III. CORRELATION OF AIR, WATER AND HEAVY METAL
POLLUTANTS IN MANGROVE ECOSYSTEM
Reviews on the impacts of each pollution (i.e., water, air,
and heavy metal) to the mangrove ecosystems have been
presented in Section 2. Even though the effects of air pollution
towards the growth of mangroves do not show clear signs of
deterioration, air pollutants could significantly deter the soil

and water quality of the ecosystem through acid deposition.
This is due to acidifying compounds in the air particles that
could leach into the hydrological cycle, increasing the acidity
of the water or soil, the interaction effects are not always
visible on water. According to Driscoll et al. [98], rivers or
lakes may seem clean, yet they might be polluted due to
acid precipitation that is caused by rain, snow and particulate
matter. Water quality may also indirectly be contaminated by
nutrients and heavy metals that leach from soils. Although
acidification might be short term that varies with seasonal
and stream flow, the sudden acid shock could be toxic to
the aquatic biology, moreover, long term exposure of acid
deposition could also alter the pH levels of water bodies.

The correlation between these pollutant markers in air,
water and soil are not well defined. Existing research focused
on individual impact of these pollutions on mangrove ecosys-
tem. Therefore, we propose to analyze the correlation of air
pollution to the water and soil quality along with their effects
on mangrove ecosystem as shown in Fig. 1. Fig. 1 depicts
the relation and impacts of each pollutant that exists in the
mangrove habitat. Harmful air pollutants are released from
industrial emission, burning of fossil fuels, vehicle pollution,
and agricultural activities. Toxic air pollutants such as O3,
PM, SO2, NOx have adverse effects to the ecosystem. This
will eventually expose the plants to high ozone concentration
levels and will contribute to potential risks in tree degradation
and slower forest growth. This unideal condition will hinder
the maturity of the mangrove and will affect mangrove reha-
bilitation efforts.

On the other hand, particulate matter that floats in air
particles would act as a physical barrier for optimal photo-
synthesis, as the particle matter clogs the stomata openings
and shields the leaves from receivingmaximum sunlight. This
is evident in the research conducted by Takahashi et al. [71]
where they concluded that the tree and forest deterioration
is due to SO2 and NOx. Even though ecosystems thrive in
optimal levels of nitrogen, excess nitrogen (N) results in
biodiversity loss and increased stress on tree vitality. As illus-
trated in Fig. 1, acid rain is formed when SO2 and NOx reacts
with water and oxygen in air particles to form sulfuric and
nitric acid. These acids are then carried to the ground when
rain falls, resulting in an increase of soil and water acidic as
well as elevated N deposition levels.

Furthermore, the mangrove environment is saturated with
metals that are accumulated from sewage waste from indus-
trial and agricultural runoff, boating activities, domestic
garbage dumps leachate, leaching from domestic garbage
dumps and mining activities [99]. Acid precipitation that
occurs might further alter the soil chemistry [100] which in
turns affect the physiology growth of plants. The relation of
the increase in soil acidity increases the mobility of heavy
metals in soil do exists. Higher concentrations of Al com-
pound are observed in water sheds containing higher level
of strong acids, suggesting the evident relationship of metal
mobility with soil acidity. Research on mining areas in China
carried out by Li et al. [101] defined that soil organic matter
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FIGURE 1. Correlation of environmental pollution in air, water, and soil to the mangrove ecosystem.

and pH are significant contributors to the heavy metal content
found in soil Liao et al. [102] ranked Zn, Cd and Cu as metals
of most sensitivity towards acid deposition. Moreover, soil
with higher acidity also has lower ability to retain essential
plant nutrients such as calcium, magnesium, and potassium.
From a study carried out by [103] in tropical forests, long
term elevated N deposition in the plant ecosystem accelerates
soil acidification and depletes the available Ca and Mg ions
exchange in soil content.

In addition, nitrogen compounds might be accumulated in
soils from rainfall even though the amount might be insignif-
icant [104]. Nitrogenous atmospheric compounds are mostly
attributed to air pollution, while rainwater contains mostly
dissolved inorganic nitrogen. Cape et al. [105] reported that
24-40% of total dissolved nitrogen in rain and snow in the
UK are made up of the organic nitrogen from air pollution.
The amount of nitrogen from rainfall that flows into the
soil and water bodies is dependent on location and seasonal
influence, [106] highlighted that location that has impacts
of excessive fertilizer use as well as air and water pollution
poses higher chance of nitrogen compound accumulation as
summarized in Fig. 1 [104]. Case study on the flow of fertil-
izer into rivers should be made around mangrove forests to
further understand this potential risk. Other harmful sources
that causes high N and phosphorus (P) levels which might
lead to eutrophication are from agricultural activities due to
the use of inorganic fertilizers [107].

Ecosystem with over saturated amount of nutrients espe-
cially nitrogen and phosphorus would trigger the growth of
algae resulting in algae bloom. The eutrophication process

then further deters the water quality due to toxic algal, lead-
ing to anoxic or hypoxic conditions in rivers or estuaries
that deprives the dissolved oxygen levels [108]. The impair-
ment of the coastal marine ecosystem due to eutrophication
threatens the fish community, causing die-offs of plants,
creating a dead zone environment which is unable to sup-
port most organisms [109]. The toxicity of ammonia due to
untreated human sewage discharge poses potential ecological
impacts on aquatic species and ecosystem, particularly at high
pH [110] Reef et al. [111] reviewed that despite the potential
of mangroves as natural treatment systems for purification,
the negative consequences of eutrophication could stunt the
mortality rate of mangroves.

Substantially, particulate matter contamination and the
spike of ozone concentration could weaken the mangrove
trees by slowing down photosynthesis. Temperature change
and rainfall patterns could alter the salinity content of water
bodies, and therefore retain more heavy metal sediments.
Moreover, water quality in mangrove ecosystem is also
affected by human activities from agricultural, industrial, and
residential development, causing further imbalance to the
ecosystem. All these factors decrease the ability of mangrove
forests to function effectively.

As a conclusion, despite the possible harm and interrelation
of each pollutant factors towards plants or mangrove forests,
there are no correlation studies that compile the interaction
between environmental quality, specifically towards the most
important mangrove ecosystem. We hope that this review
gains insight for readers to explore on the pollution issue
surrounding mangrove forests for an improved conservation.
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We urge the correlation of the pollutant markers suggested
in this study to be explored particularly in mangrove forests,
as the ecological system is one of the few ecosystems that
exists intertidal and heavily dependent on estuarine quality
in terms of water and soil factors. The next subtopic shall
discuss on an integrated solution based on artificial intelli-
gence to uncover complex behavior between each pollutant
markers.

IV. EVIRONMENTAL POLLUTION SIMULATION USING
ARTIFICIAL INTELLIGENCE
Over the years, environmental quality management has
urged the development of various models for predicting and
monitoring of resources. Mathematically expressed mod-
els including process-based (mechanistic) models and data-
based (statistical) models are proven capable of encapsulating
water quality drivers [112]. An example of simulation model
is the Delwaq-Bloom-Switch eutrophication model which
defines nutrient cycling, algae modelling, and oxygen-related
processes [113].

The limitations of mathematical models are the complexity
to represent every physical, chemical, and biological pro-
cesses of terrestrial and aquatic ecosystem. This brings about
uncertainty and complex developing process as mathematical
models tend to oversimplify data analysis. In addition, highly
detailed mathematical models are costly, and time consuming
to develop and apply [112].

The application of AI techniques operates on a knowledge
base which enables separation of data for prototyping and
model re-usability, its advantage in handling numerous spa-
tial data can be used for effective diagnosis, optimization,
planning and management of the mangrove forests. While the
advancement in the AI provides the edge of early prediction,
this section presents the capability of AI in environmental
pollution prediction by evaluating existing works on heavy
metal and water quality prediction.

This section of review (i) provides supplementary infor-
mation of research works based on AI models, and the
advancement of their applications in water quality and heavy
metal modelling; (ii) highlights the relevance of different
input variables in different targeted area, give suggestions for
data collection, discuss model advantages and performance
comparison; (iii) lastly, give emphasis on the lack of studies
in predicting pollution at mangrove ecosystem. Nevertheless,
in-depth description of each AI models, the mathematical
theory and architecture given in this review have not been
detailed. The review has cited appropriate literatures for read-
ers to further their knowledge.

A. HEAVY METAL SIMULATION
Heavy metal modelling using AI architecture such as neu-
ral network, fuzzy logic, regression and hybrid models
have been extensively established to apprehend the irregu-
lar patterns of heavy metal simulation in soil sediment and
water bodies [18]. The field on predicting the heavy metal

concentrations is yet to be ventured extensively particularly
in mangrove sites. Recent studies compiled and reviewed are
heavy metal samplings in water bodies originating from acid
main drainage in Table 2 and heavy metal soil modelling
in Table 3.

Publications reviewed in this section aims (i) to under-
stand characteristics of heavy metal with other parameters
in existing water bodies and soil; (ii) to decipher the trends
of earlier simulation models and the later development of
hybrid models that are well suited for the prediction of heavy
metals.

1) HEAVY METAL INPUT-OUTPUT CONSIDERATION
The common input parameters listed for heavy metal con-
centration prediction in water bodies are power of hydro-
gen (pH), sulphate (SO−24 ), Magnesium (Mg), electrical
conductivity (EC), total dissolved solids (TDS), total sus-
pended solids (TSS), nitrate (NO3), phosphate (PO4), dis-
solved oxygen (DO), chloride (Cl), turbidity (TUR), total
nitrogen (TN), ammonia nitrogen (NH3-N), nitrate nitrogen
(NO3-N), total phosphorus (TP), orthophosphate (PO4-P),
permanganate index (CODMn), water temperature (WT),
clay, organic carbon (OC), air temperature, rainfall, humid-
ity, flow rate, hydraulic gradient, lifetime, water level, and
abstraction.

Fig. 2a shows the percentage of common input parameters
used by researchers in heavy metal simulation. pH, SO4, Cl,
EC, TDS, TSS and water temperature are the non-metal vari-
ables preferred in heavy metal modelling studies, specifically
in water bodies.

pH or hydrogen ion concenitration is one of the most
important environmental aspects that influences the survival
and physiology of the aquatic ecosystem. The pH level is
dependent on the biological activities and acidity of the bot-
tom sediment. A high pH value could signify a high photo-
synthesis rate from dense phytoplankton blooms, whereas a
low pH< 4 could threaten the aquatic life. The ideal range for
biological productivity is pH 7.0-8.5 [126]. Heavy metal dis-
charged in water bodies from urbanization and industrializa-
tion activities could leach into the sediments from adsorption
and flocculation [127]. However, when the dynamic equilib-
rium of the water sediment interface is broken due to the
change in environmental conditions, the heavy metals in the
sediment will be transferred back into the overlaying water,
and therefore pollute the water quality. This process of trans-
ferring ormigration of heavymetals is known as ion exchange
where the main influencing factor is pH concentration [128].
Appel and Ma [129] concluded that pH affects the adsorp-
tion characteristics of heavy metals since the hydrolysis of
heavy metals and formation of ion pairs are controlled by
the solubility of hydroxides phosphates and carbonates. Low
pH is likely the main factor of the dissolution and leaching
of heavy metals into the aqueous system particularly at acid
mine drainages [114], [115], [117], [130].

Temperature is a major limiting factor to the solubility of
gases and the rate of metabolic activities and distribution of
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TABLE 2. Heavy metal simulation in water bodies.
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TABLE 2. (Continued.) Heavy metal simulation in water bodies.

aquatic organisms. The influence of temperature to heavy
metal concentration is established based on the temperature
changes and climate that are affected by rainfall. Rainfall
intensity and volume are important factors to the export of
TSS from agricultural areas into the watershed [131]. The
rainy environment could carry various pollutant from the
surface runoff into water bodies. Therefore, heavy metal con-
centration is highly related to the content of TDS and TDS.
Moreover, TDS and temperature also affect the depletion
level of DO in the water [132].

Electrical conductivity on the other hand could increase the
inorganic substance concentration according to the amount
of evaporation in the environment. Generally, sulphates and
chlorides are anions responsible for salinization, these anions
when react with available cation metals will increase the
salinity of the soil solution. Salinity is the contributing factor
to the ionic strength of a soil solution [133]. An increase
in ionic strength increases the mobility and concentration of
heavy metals released [134].

The use of pH, water temperature, TDS, TSS, EC,
SO4 and Cl as input parameters show close relation to
the distribution and concentration of heavy metals, future
work in heavy metal prediction should heavily consider
these input data for an accurate and reliable predictive
performance.

The output metal types illustrated in Fig. 2b represented
the number of publications that have used these output vari-
ables in their studies for heavy metal concentration analy-
sis. Among the 14 outputs studied, Pb and Zn are mainly
considered for simulation as lead and zinc are the common
contaminants found in water bodies and sediment. Toxicity

of Pb, Cd, and As are regarded as the major public concern
by the WHO.

2) TIME SCALE OF DATA
From the review of the above heavy metal simulation, fluc-
tuations of heavy metal concentrations vary according to
the season and region of study. Areas of high humidity and
rainfall rates tend to carry more TSS and TDS into the aque-
ous environment, hence showing higher correlativity to the
concentration of heavy metals. Seasonal samplings of heavy
metals should be encouraged to understand the climatological
factors on prediction output. In addition, smaller time incre-
ments are well suited for analyzing heavy metal parameters
as heavymetals are particularly sensitive to the slight changes
in climatic conditions. Larger sampling size could prevent the
overfitting models which are common in ANN.

3) PERFORMANCE METRICS
There are 10 performance metrics used in this namely mod-
ified index of agreement (md), mean absolute deviation
(MAD), NashSutcliffe efficiency (NSE), mean absolute per-
centage error (MAPE), mean absolute error (MAE), normal-
ized root mean square error (NRMSE), root mean square
error (RMSE), mean squared error (MSE), coefficient of
determination (R2) and correlation coefficient (R). The most
common performance metrics applied were R2 and RMSE.
Generally, higher value of R2 and lower value of RMSE
represent better fitness and smaller discrepancy of predicted
and actual values. The acceptable range of R2 is greater than
0.6 and an RMSE less than 10%.
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TABLE 3. Heavy metal modelling in soil sediment.

4) HEAVY METAL PREDICTION MODELS
Common heavy metal modelling techniques such as
ANN, SVM and ANFIS have proven their effectiveness
to simulate heavy metal concentration based on data
collected. Nevertheless, these techniques possess draw-
backs that prevent or limit the model from being widely
adapted. Subsequent improvements using ensemble and
hybrid methodology could overcome the limitations albeit
the drawback of complexity and large computational
time. Table 4 below summarizes these advantages and
disadvantages.

Artificial neural network (ANN) is frequently implemented
as a reliable predictive model for most of the studies. ANN
is made of at least an input and output layers that which
consist of neurons connected with weights, other than the
two input and output layers, several hidden layers could
exist depending on the number of parameters used for pre-
diction. Earlier studies in 2011 by Rooki et al. [114] at
acid mine drainage (AMD) utilized ANN to capture the
complex relationship of input data. The ANN techniques
have demonstrated high coefficient of determination and
lower error rate compared to multilayer regression (MLR)
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FIGURE 2. (a) Pie chart of number of researches applied against input parameters of heavy metal simulation of water
bodies. (b) Pie chart of number of researches against output metal type in heavy metal simulation.

and adaptive neural fuzzy interference system (ANFIS)
models. The ANFIS is a structure composed of a five
layered feed-forward network that adopts fuzzy logic and
neural network to map the input space to the output
space.

However, one of the most common disadvantages of
ANNs is the overfitting phenomenon during the training
phase. In large networks of less available data, the error
of training set is driven to small error values, yet when
new data is introduced, the network returns a large error.
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TABLE 4. Summary of heavy metal modelling techniques.
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TABLE 4. (Continued.) Summary of heavy metal modelling techniques.

Stopping criteria, Bayesian regularization methods, fixing
the number of epochs and dividing the datasets into train-
ing and testing sets are one of the few ways to avoid this
occurrence.

A continuation study of AMD heavy metal prediction
conducted by Aryafar et al. [115] found that support vector
machines (SVM) technique contributes to lesser processing
time and higher accuracy under the small number of samples.
SVM is a type of classification and regression technique that
is able to construct nonlinear decision functions to improve
generalization performance in pattern recognition.

The drawbacks of ANN compared to SVM are the sensitiv-
ities of input parameter. ANN is sensitive to noise and a small
10% relative error could lead to large changes. Moreover,
the weightage of each ANN models are initialized randomly
for every simulation, hence the output of ANN is not as
stable as SVM when applying the same input data [117].
Nevertheless, ANN techniques are still prominent in heavy
metal modelling. Hybrid techniques such as bio-geography
based optimization in Bayatzadeh Fard et al. [120] to regulate
the weight and biases in ANN.

Complexity in heavy metal modelling tends to per-
form better using hybrid methods such as Convolutional
Neural Networks (CNN) [125] and ensemble algorithms.
Bhagat, et al. [123] demonstrated the use of the XGBoost
model gives higher predictability with less declination.
Another popular element of hybridization is wavelet neu-
ral networks (WNN). WNN is a breakthrough in wavelet
analysis and research, the proposed network combines tra-
ditional methods of neural networks giving the advantage
of faster convergence speed and strong nonlinear approxi-
mation ability [125]. WNN can achieve convergence despite
the divergence effect of multiple inputs. In such, the activa-
tion function retains its sensitivity to predict extreme values
and display better adjustments [124]. Subsequently, wavelet
decomposition poses extraction properties of the input’s divi-
sion signals bringing positive effect for heavy metal content
prediction.

To conclude this section, other than pH, EC, TSS, SO4,
Cl and the input parameters mentioned above, the levels of
heavy metals are also highly reliant on the content of clay
and slit specifically in mangrove sediments [135]. Estimation
of heavy metals remains a challenge for researchers due to
adsorption of metal ions in fine clay, hence increasing the
complex behavior. Despite the complex behavior of heavy
metals, the estimation of heavy metals remains an ongoing
research to understand the pattern of contamination as the
effects of metal toxicity to the environment. The common

issues experienced by AI modelling of heavy metals are the
adequacy of the selected input data and the model topol-
ogy in which both are key factors to the efficiency of AI
models [136].

Global average values of heavy metals in water bodies
have critically exceeded the WHO and United States Envi-
ronmental Protection Agency (USEPA) guidelines, accord-
ing to the global heavy metal evaluation conducted by
(Kumar et al., 2019) from 1994 to 2019. Measuring and sam-
pling of heavy metal pollution level requires a largescale of
labor, cost and time, therefore modelling of prediction levels
offers an effective alternative to monitor the pollution level
for the sustainability of resources and for prevention of fur-
ther contamination. Artificial intelligence tools in predicting
the pattern of heavymetal pollution reviewed in this study can
be served as a baseline to explore the ecosystem that can be
affected from heavy metal contamination. Thus, the research
gap presented in this section suggested further heavy metal
prediction techniques should be applied in monitoring the
heavy metal contamination of mangrove forests that is at risk
for contamination and deterioration.

B. WATER QUALITY SIMULATION
The employment of artificial intelligence has long been
applied into water quality monitoring since 2000s as con-
cluded by Tung and Yaseen [17]. AI models are reliable
as they could overcome the problem of missing or unavail-
able data. The easy implementation of AI model also allows
cost-effectiveness and eases the decision-making process.
Table 5 below depicts several studies that performed water
quality related modelling and optimization understanding by
means of artificial intelligence for water quality index predic-
tion. Table 6 summarized several AI works on the simulation
of a single water quality parameter.

The review of publications in this section aims (i) to
provide a brief overview of common input parameters used
to describe water quality; (ii) to gain understanding of the
advancement of water quality modelling; (ii) to cite variation
of input used in effective water quality simulation through
potential synergistic interactions or nonlinear meteorological
attributes.

1) WATER QUALITY INPUT CONSIDERATION
There are about 33 water quality variables in terms
of physicochemical and biological parameters such as
pH, Water Temperature (WT), Conductivity (COND),
Salinity (SAL), Turbidity (TUR), Dissolved Oxygen (DO),
Biochemical Oxygen Demand (BOD), Chemical Oxygen

VOLUME 9, 2021 105545



W. Y. Wong et al.: Water, Soil and Air Pollutants’ Interaction on Mangrove Ecosystem and Corresponding AI Techniques

TABLE 5. Artificial intelligence in water quality index modelling.
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TABLE 5. (Continued.) Artificial intelligence in water quality index modelling.

Demand (COD), Ammoniacal Nitrogen (AN) or NH3-N,
Ammonium Nitrate (NH4), Total Suspended Solids (TSS),
Total Dissolved Solid (TDS), Total solid (TS), Nitrate (NO3),
Chloride (Cl), Phosphate (PO4 ), Sulphate (SO4 ), total phos-
phorous (TP), total hardness (TH), Alkalinity, Arsenic (As),
Mercury (Hg), Cadmium (Cd), Chromium (Cr), Lead (Pb),
Zinc (Zn), Calcium (Ca), Iron (Fe), Potassium (K), Mag-
nesium (Mg), Sodium (Na), Oil and Grease (OG), MBAS
(Methylene Blue Active Substance), Escherichia coli (E-coli)
and Fecal Coliform (FC) used for water quality index (WQI)
formulation.

From Fig. 3 below, it can be identified that DO, BOD,
pH and NO3 are regarded as the significant input param-
eters for accurate representation of WQ, further concluded
from [151]–[153] that the parameters with the highest sig-
nificance are dissolved oxygen and ammoniacal nitrogen.
Kamyab-Talesh et al. [140] identified NO3 as the most
important attribute for WQI with subsequent importance
in BOD and TDS. Nonetheless, the study in Bayatzadeh
Fard et al. [120] regarded fecal coliform the most significant
parameter for water quality classification, as the study has
proven that a great error might occur if FC is omitted.

The relative importance of each variable differs slightly for
every region since land use and socioeconomic development
of every river is not the same. For example, at Kinta River,
Perak [153] the major use of land near the river basin are
extensive mining, logging, urban development, oil palm and
rubber planting. Even though Gazzaz et al. [153] rated the
relative importance of water quality parameters in Perak as
DO > BOD > AN > pH > COD > turbidity in 2012,
Isiyaka et al. [154] further the study in 2018 to conclude
the significant parameters contributing to water pollution are
DO > AN > COD > BOD. This suggests that the increase
in AN significance is attributed to the rise of improper waste
management of industrial and agricultural activities carried
out near the basin.

The high number of dependent variables requires higher
computing power to process the large dataset. Several
researches have carried out input sensitivity for the determi-
nation of the relative importance of each parameter in the
specific area of study [151]–[159]. The analysis is conducted
through the leave in one out approach by excluding one
parameter to determine the percentage of contribution to the
calculation of water quality index [151], [152]. Sensitivity
analysis is one of the most essential steps for modelling
the characteristics of water quality index as different rivers
portrays different dependent input parameters.

For the prediction of dissolved oxygen, pH and water
temperature are regarded as the most reliable parame-
ters [143], [144], [160], [161]. The fluctuation of pH affects
the photosynthesis rate of aquatic life, higher photosynthesis
results in higher oxygen released. Moreover, solubility of
oxygen is affected by temperature, at warmer temperature,
levels of dissolved oxygen decreases; while other possible
influencing parameters to the solubility of dissolved oxygen
is salinity and pressure [162].

Hydrological and climatological data were used by
Kumar et al. [145] and Song and Zhang [150] to predict
nitrogen and turbidity values respectively. The model built
in both studies were effective and reliable, suggesting the
importance of environmental factors to predict water quality.
Furthermore, Iglesias et al. [149] improved the ANN model
behavior when a synergistic variable was included as input.
The interaction of two input parameters forms a synergy that
characterizes the joint action of two or more inputs, resulting
in a greater accuracy from the sum of these causes. Environ-
mental systems often react in nonlinearity, thus the outcome
from synergistic responses is an advancement to represent the
complicating factors in environmental modelling.

2) TIME SCALE OF DATA
According to the above reviews, monthly and daily sam-
pling are sufficient to produce a capable prediction system.
To improve robustness and efficacy of prediction models,
daily values of water quality parameters scaled on hourly
averages are more reliable. The variations of water quality are
highly volatile to the surrounding weather events, therefore,
to capture accurate patterns of water quality for prediction
modelling, smaller time step of data is recommended. Nev-
ertheless, due to the large amount of available water quality
instances, feature selection of input parameters has to be site
specific to prevent lengthy computation time.

3) PERFORMANCE METRICS
Dominating performance metrics in water quality modelling
are R2, RMSE and NSE among other performance indices
of accuracy, EV, ER, MSE, MAE, degree of agreement (d),
and relative error. RMSE is regarded as the most reliable
performance metric as it is able to display several deviations
whereas R2 is a good form of performance measurement for
predictive models that evaluates the model with respect to
the actual value. Moreover, the NSE indicator is sensitive to
extreme values and is coherent for datasets with large outliers.
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TABLE 6. Artificial intelligence in modelling water quality parameters.
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TABLE 6. (Continued.) Artificial intelligence in modelling water quality parameters.

4) WATER QUALITY MODELLING
The advancement of water quality modelling is able to sim-
ulate the concentration of water quality parameters using
history data or sampling data collected during the dura-
tion of study. Table 7 compiles the benefits and limita-
tions of the water quality models highlighted in this review
paper.

The conventional multiple linear regressions (MLR)
method is a multivariate statistical technique that models lin-
ear statistical relationship between explanatory and response
variables without considering causation. The model per-
formance is only restricted to independent variables that
are linear and continuous. Therefore, studies incorporated
ANN [137] models are capable to learn non-linear relation-
ships andmap the complex patterns in dataset. ANFISmodels
were also commonly applied to produce nonlinear time series
mapping [138].

Other than ANN and ANFISmodels, Kamyab-Talesh et al.
[140] proposed the stability of SVM model that results to
87% of total variability and lower bias. However, the training
process of SVM is rather laborious as all classes require
optimization. Li et al. [141] characterized the uncertainties

and randomness of support vector regression (SVR) mod-
els using firefly optimization algorithm (FFA) to tune
the internal parameters of the SVR kernel functions. The
hybrid SVR-FFA algorithm is well suited for semiarid river-
ine environments as it simplifies computation time and
effort. The use of gradient boosting machines (GBM) from
Bagherzadeh et al. [146] produced good generalization of
dataset patterns specifically for unseen datasets. The GBM
models are less sensitive to the number of input parameters,
hence providing better accuracy than ANN models, which
tend to be inaccurate when redundant features are included.

Advancement of water quality modelling is demonstrated
by Asadollah et al. [142] using ensemble learning model.
The study combined decision tree (DT) weak learners with
classic standalone SVR techniques to improve prediction per-
formance. The extra tree regression (ETR)method introduced
in this study optimizes the whole training dataset to nominate
the best features in the node splitting process. The feature
selection process makes the ETR less prone to overfitting.
The ensemble model proposed by Asadollah et al. [142]
shortens lengthy computation and provides accurate predic-
tion of water quality.
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FIGURE 3. Relation of input attributes, modelling techniques and performance metrics of water quality simulation reviewed in this
study.

Generally, hybrid soft computing techniques such as
WANN, WANFIS, WGEP [147] were proven to reduce the
errors of soft computing calculation. Hybrid models are
highly potential in speeding up water quality modelling pro-
cesses. Other methods such as the long short-term mem-
ory (LSTM) neural network is capable to solve long term
dependency and timing problems [150].

In this study, it is suggested that water quality simulation
shall not be limited in determining the water quality of rivers
but to also assess the surrounding habitat and ecosystem to
which the river supplies to such as the mangrove ecosys-
tem [163]. The study on marine water quality and estuary
health status has yet to be explored since complex environ-
mental variables are required for the accurate modelling of
the prediction system. Other than biological, hydrological,
meteorological, sedimental factors suggested from this study,
Tung and Yaseen [17] elaborated that in future research direc-
tions, additional variables such as seasonal run-off, industrial
influence and population change should also be taken into
consideration for a robust estimation of water quality anal-
ysis. More hydrological or climatological inputs should be
employed into the predictive models to attribute all aspects
of the environmental irregularities such as sediment load,
dead zones and irregular flow of the riverbed for suspended
sediment prediction [164].

In short, modelling of water quality variables is impor-
tant for identifying the pollution sources especially in man-
groves and estuarine zones to identify the marine pollution
trend [137]. The assurance of clean water quality is part and

parcel to the overall wellbeing of mangrove forests as well as
the marine ecosystem.

V. IMPLEMENTATION OF ARTIFICIAL INTELLIGENCE TO
MONITOR WATER AND SOIL POLLUTION OF THE
MANGROVE ECOSYSTEM
Despite worldwide efforts in conserving and promoting
ocean and marine sustainability, our coastal ecosystem espe-
cially mangrove forests are still suffering from anthropogenic
stress. For that reason, time to time monitoring and assess-
ment of mangrove estuary is significant to avoid deterioration
of this important ecosystem that sustains global biodiversity.

Concurrently, there is no predictive model formulated for
ecological patterns monitoring of air, water, and soil indexes.
Majority of researches carried out predictive analysis based
on a single pollution factor which have not included man-
grove forests. Studies that relate to the influence of physical,
biological, socioeconomic, and meteorological factors of the
mangrove estuaries are also quite limited. Prediction methods
solely based on the linear relationship of pollution factors to
the degradation of mangroves are not enough in predicting
the possibilities of future outbreaks, but rather a solution that
comprises the arbitrary relationship of each environmental
pollution aspects might be the key for long term monitoring.

Fig. 4 represents the conceptual framework of implement-
ing artificial intelligence in addressing correlation between
air, water, and soil attributes to the well-being of mangrove
ecosystem. The framework summarizes the architecture and
ideas projected from this review.
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TABLE 7. Summary of water quality modelling techniques.
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TABLE 7. (Continued.) Summary of water quality modelling techniques.

A. RELATED STUDIES TO DEVELOP A MANGROVE
ASSESSMENT INDEX OR FRAMEWORK
Several researches have abundantly performed the assess-
ment of mangrove health status [165] and trend loss of

mangrove forests [166], or to categorize the conservation
index of mangrove forests [167] Faridah-Hanum et al. [165]
classified the status of mangrove forests comprehensively in
an ecological-socioeconomic approach using biotic integrity,
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FIGURE 4. Proposed conceptual model and the implementation of the study of environmental pollution assessment of mangrove forests.

soil, marine, hydrology, and socio-economic factors. The
novelty of this study incorporated key indices of aquatic life
abundancy and fishery activities as a measure of mangrove
health. The mangrove quality index developed can be used
as a basis for future potential automated monitoring system
with the use of artificial intelligence or Internet of Things
(IoT) [168].

On the other hand, Turschwell et al. [166] captured
the multi-scale interactions of mangrove losses at different
impacts for different nations through landscape differences
and state changes by the application of an Bayesian hier-
archical model within a Drivers, Pressures, State changes,
Impact, and Response (DPSIR) framework. The Pressure–
State–Response framework is a useful tool to understand the
changes in environment caused by human activities [169].
The correlative relationships of the DPSIR variables defined
by Turschwell et al. [166] are weak and contains uncertainty
since complex political and socio-ecological perspectives are
involved. The gap in this study is the lack of predictors
for human related activities such as the likelihood of land
conversion for agriculture, aquaculture and plantation, or the
effects of pollution and ecosystem threats.

TheMangrove Conservation Status Index (MCSI) is a sim-
ple scoring system based on theDelphiMethod Survey, Rapid
Assessment Questionnaire, and the Remaining Vegetation
index to provide adequate information for policy makers to
classify the conservation status of mangroves. Nevertheless,
the use of this indicator lacks the assessment of change in
environmental quality and ecological indicators since the
index is mainly composed from expert’s and local opinions.

A holistic view of the knowledge modelling framework,
presented by Oprea [170] covers three aspects of environ-
mental domains such as water pollution analysis for river
resource management, prediction of ozone levels due to air
pollution and soil pollution analysis. The authors suggested a
solution based on an ontological approach, application of data
mining and Bayesian networks for data analysis. The concep-
tual model generates uniformity in rules from data sets and
decision tables, grouping the probabilistic and uncertainty
factors into distinct rules for decisionmaking. The knowledge
modelling framework could serve as a basis to apply AI into
the study of correlated environmental variables of mangrove
forests.

In general, publications on the health status and conser-
vation index of mangrove as cited in this paper could be
further improved by incorporating the quality of air, soil
and water. Our review paper has cited the proficiency of
AI in exploiting individual pollutant markers of soil, water
and air in the form of a predictive model feasible as an
integrated environmental decision system. The use of arti-
ficial intelligence as cited in Section 4 above is limited to
one aspect of environmental quality. Application of a sim-
ulation system on two or more environmental indicators is
unavailable at the time of the study as each model either
focuses on heavy metals, water quality or air. The inter-
action between these three factors linked to the mangrove
ecosystem have been insignificantly modelled using artifi-
cial intelligence. Due to complex and non-linear behavior,
the study on correlation between these three factors is still
limited.
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B. DATASET AVAILABILITY
Large scale mangrove conservation and research is under
rapid development in terms of big data, forthcoming and
global datasets of the state of the world’s mangrove will
soon to be wildly available [171]. Existing datasets of the
distribution of mangrove extent can be found from the USGS
Global Mangrove Forest Distribution, v1 2000 dataset [5],
Global Database of Continuous Mangrove Forest Cover for
the 21st Century (CGMFC-21) [46] and Global Mangrove
Watch (GMW) 2016 [172]. Furthermore, there mangrove
canopy height, basal area and biomass map dataset produced
by Simard et al. [173]. Other available datasets are the Global
Distribution of Modelled Mangrove Biomass provided by
Hutchison et al. [174], annual mangrove carbon stock assess-
ment from 2000 to 2012 [175], distribution of carbon den-
sity [176] and soil organic carbon (SOC) stocks [177].

Following air quality and marine water quality dataset
can be retrieved from governmental or local authorities. The
water quality parameters and the dataset can be made eas-
ily available through online platforms. Air quality dataset
of ozone, ionic concentration and particulate matter could
also be retrieved from similar application procedures. Sub-
sequent available meteorological and climatology data is
accessible from WorldClim [178] or the World Weather
Records (WWR) Clearinghouse. A novel initiative among
13 countries developed the Acid Deposition Monitoring Net-
work in East Asia (EANET) contains dataset that monitors
wet deposition, dry deposition, soil and vegetation, and inland
aquatic environment [179].

Nevertheless, soil quality dataset that includes the concen-
tration of heavymetals are not widely accessible thus, it could
be obtained from soil sampling analysis of targeted mangrove
area. In addition, the traditional procedures for heavy metal
sampling are time consuming and complicated to analyze as
the parameters require laboratory chemical analyses which is
expensive.

Field measurements and sampling of dataset in terms
of mangrove coverage, water quality or soil content con-
sumes time and effort, as not all areas are accessible for
collection of sampling. Therefore, several researches have
demonstrated the advancement of AI using remote sensing
and supervised machine learning techniques to classify the
mangrove extent or to estimate biomass and soil carbon
content Li et al. [180] improved the mangrove distribution
of the USGS 2000 dataset and included the detection of
submerged mangrove recognition index (SMRI) and nor-
malized difference vegetation index (NDVI). In addition,
Hsu et al. [181] used drones to enhance satellite imagery,
and correct the GMW dataset. Other than that, aboveground
biomass (AGB) could be accurately estimated using light
detection and ranging (LiDAR) techniques [182]. Hyper-
spectral imaging of high spectral resolution using visible
and infrared bands showed promising prospects of retriev-
ing soil metal concentration and surface water quality. Ran-
dom forest model is considered as a successful method to
estimate distribution trends of heavy metal in soil through

air-borne images [183]–[187] while ANNs used in generating
surface water quality from satellite imagery performed at
R2 > 0.80 [188].
All in all, with large amounts of dataset pooled into

environmental quality monitoring, the implementation of
artificial intelligence to make use of these dataset into an
integrated environmental decision-making system has been
scarce. Thus, as discussed in this review, the need for imple-
menting AI as the way forward to monitor the state of
heavy metal contamination, and water quality modelling of
the mangrove forests is highly recommended for long-term
sustainability of estuaries.

C. CONCEPTUAL MODEL
With the capability of AI in filling the gap for data limitations,
and predicting future environmental outbreaks, AI can be
served as an extensive model for enhancing policy making
and law enforcement driven for the rehabilitation and conser-
vation of themangrove ecosystems. The predictive model and
patterns of data related to mangrove threats of pollution can
be developed in accordance with national and international
environmental quality index. Publications related to air pol-
lution, water pollution and heavy metal contamination have
demonstrated the adoption of artificial intelligence could aid
in real-time forecasting of future events. The monitoring of
air pollution gained attention from researchers worldwide for
pollution prediction [189], [190], and understanding of health
impacts [191]. Yet the effects of air pollutants to the quality
of water or soil have yet to be investigated.

Monitoring variables suggested in this paper to construct
the linkage of environmental pollution effects on mangrove
forests for air pollutants are PM, O3, SO2, NOx, which relates
to pH levels in soil and water bodies, in response to heavy
metals, DO and AN concentration. The proposed context
model illustrated in Fig. 4 described the use of correlation
analysis in machine learning in order to study the relationship
between air, water, and soil quality. Occurrence of heavy
metal concentrations presented a good relationship with sus-
pended solids and turbidity for efficient prediction and long-
term monitoring [192].

Meteorological conditions such as monsoon and precipita-
tion rate are persistent factors for environmental change yet
little to no studies have incorporated such parameters into
the modelling of ecosystem quality for pollution prediction.
A relation of meteorological data was identified between the
prediction of heavy metals in water bodies or nitrogen and
turbidity concentration [116], [145], [150]. Moreover, mete-
orological and climatological variables were found to have a
profound impact on soil distribution, where air temperature
could complement the prediction of soil temperature [193].

Alongside with available input datasets of air, water and
soil indicators, the impacts of these input attributes are
mapped from meteorological data based on the monitoring
attributes which contains the biotic integrity, extent change,
and carbon content. Examples of forest structure attributes
that characterizes mangrove health are biomass, basal area,
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canopy height, frequency, density, dominance, importance
value which is formulated into the Complexity Index
(CI) [194], (1) as shown at the bottom of the page.

The CI value computed is a good measure to indicate
whether the forest is under stress, or for comparison between
two different data. The measure of these mangrove monitor-
ing attributes in coverage changes and biological variables of
mangrove trees shall be validated with expert opinions and
related studies of assessing mangrove health.

D. INTEGRATED ENVIRONMENTAL DECISION SYSTEM
Mother nature is a complex and dynamic system where vari-
ous interactions could lead to the same impact, thus increas-
ing the complexity to determine their global impact. This is
due to the consequences of each variable which cannot be eas-
ily represented, and the interrelationship of each component
is highly unpredictable. Integrated environmental knowledge
especially for environmental data science is the way out to
the complexity of environmental problems [89]. With the
capability of AI in providing patterns and predictive data that
can easily monitored and predicted, valuable environmental
knowledge for the decision-making process can be realized.
Early prediction using pattern analysis can provide the intel-
ligence in anticipating the occurrence of the event and thus
effective action can contain any environmental outbreaks to
the safest margin [90].

The integrated environmental decision system (IEDS)
acts as a mean for pollution simulation and control. The
implementation of the IEDS covers a holistic understand-
ing of environmental policies, biophysical, and socioeco-
nomic processes. An example of EDS is demonstrated by
Zhang et al. [195] for real-time water quality and pollutant
reduction simulation schemes. A handful of approaches to
integrate a decision system framework adapted for multiple
issues and uncertainties are Bayesian networks, in systems
dynamics, coupled component models, agent-based models
and knowledge-based models or expert systems [196].

In this study, the construction of mangrove integrated
environmental decision system is illustrated in Fig. 5 below.
The IEDSS is fed with input parameters related to obser-
vational meteorological data that contains wind speed, wind
direction, weather, rainfall, humidity, and precipitation rate;
atmospheric pollutant data of ozone, sulphate, nitrate concen-
tration and particulate matter; hydrological data of dissolved
oxygen, biological oxygen demand, pH, turbidity, ammoni-
acal nitrogen concentration, total dissolved solids etc.; and
heavymetal concentration identified for water bodies and soil
content.

Missing values of dataset can be overcome by applying
prediction models whereby other available input parame-
ters are used to predict the missing values. The model is

developed based on correlational studies between air-water-
soil attributes. Significant output indicators for favorable
growth of mangrove forests will be identified with fundamen-
tal researches and experts. The air-water-soil quality model
generates the measure of mangrove quality, if the threshold
values are not reached, the model simulates pollutant removal
processes to be applied into pollutant removal of heavy metal
or wastewater. Subsequent monitoring models of mangrove
change and future detection are then included at the end of the
study to forecast the likelihood of pollution or degradation.

Pollutant removal techniques have been extensively
applied for wastewater (WW) treatment and heavy
metal (HM) removal using methods such as adsorption,
solvent extraction, flocculation, coagulation, reduction, oxi-
dation and membrane filtration [197]. Pollutant removal
processes are expensive and laborious therefore, modeling
and optimization of pollutant removal processes were often
simulated using AI tools [198]–[200].

The framework implemented based on the emerging issues
identified from correlation analysis traces each potential envi-
ronmental factors could facilitate a better decision-making
process for a sustainable mangrove policy. Even though
the knowledge of ecological is limited, climate-conservation
actions should not be discouraged.We urge the rapid research
on such environmental decision or early warning systems that
could supply possible solutions to future scenarios. More-
over, by understanding environmental factors that acts as
drivers to the tipping point of the ecosystem, we could reduce
other local pressures of the system to cope with the global
stressors [201].

The objective of this review is to critically discuss the
fundamentals and advantages of AI tools as well as combined
approaches to facilitate the response of mangrove ecosystems
from environmental changes. The modelled outcomes due to
these pollution circumstances provide significant information
for the assessment of environmental impacts by environmen-
tal management authorities to perform influential resolutions.
Hence, the presence of mangrove quality models is important
to identify the pollution sources and to imply possible reduc-
tion efforts of the existing pollutants in the ecosystem.

E. STUDY LIMITATIONS AND FUTURE CHALLENGES
Prediction models discussed above that are constructed from
AI techniques have proven its high accuracy in monitor-
ing environmental pollution and changes. Although myriad
studies have reported on the efficacy of the AI models,
the struggle to outstretch the data unavailability of mangrove
forests are still present. These issues have hindered the com-
prehensive process to understand the complex correlation
between soil, water and air pollutions that impacts the man-
grove ecosystem. Lack of continuous data due to unforeseen

CI =
(#of species of mangroves) (#of stems) (basal area) (max height of mangroves)

100
(1)
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FIGURE 5. The framework design of the Integrated Mangrove Environmental Decision System, and schematic linkage of input and output
components.

climatic conditions or insufficient monitoring stations at
unreachable areas could be overcome with the automation
of AI expert system that replicates decisions based on the
limited information. The conventional environmental features
(i.e., pollutant markers) used to feed the AI architecture
can be improved by incorporating geographical information
system (GIS) and remote sensing images to improve spatial
modeling of the mangrove ecosystem. The projection of the
spatial patterns drawn can improve the predictive model in
terms of optimum number of layers, weight, bias values, data
allocation for training and testing and overcoming problems
of missing data.

With current solutions focusing on the containment of envi-
ronmental outbreaks, they are often resulted in high expen-
ditures and require massive workforce. This review suggests
an integrated environmental modelling solution constructed
based on soil, water, and air pollution factors to simulate and
predict the risks and distributions of the concentrations of
pollutants in the specificmangrove ecosystem. The integrated
decision system can be implemented beneficially to save cost
and labor for long term experiments andmonitoring, of which
can be simplified with a prediction model.

Challenges concerning the overall mangrove prediction
model include unpredictable meteorological conditions, syn-
ergy effects of various pollutants, such as soil acidity with
heavy metal, and the possibility of excessive nitrogen oxides
contamination in the air or overloading of nutrients from

sewage waste disposal. The outcome of this review sheds
some light into integrating environmental factors with arti-
ficial intelligence systems that could forecast the behavioral
pattern of pollutants for spatial understanding especially in
predicting the likelihood of consequential pollution. How-
ever, the limitation of AI is the inability to include human
activity factors that could cause the increment of pollutant
levels.Moreover, awareness efforts should be granted as a pri-
ority to garner attention from locals and authorities towards
an effective environmental management of anthropogenic
activities to stop extended adverse effects exerted on the
environment since prevention is better than cure.

Furthermore, the greatest challenge identified to realize
this mangrove prediction system is the difficulty in gather-
ing the air-water-soil quality data that are similar in time
frame. Moreover, the significance of each attribute by apply-
ing different weightage requires intensive modelling efforts
and expert opinions before developing an air-water-soil envi-
ronmental indicator, since the previous research gap for
correlation studies of the pollutant markers has yet to be
explored. Socioeconomic factors and human exploitation
of forest resources is another major complication to tackle
in order to obtain the most accurate predictive model for
preventing future outbreaks. Nevertheless, after highlighting
these challenges, step by step measures and implementa-
tion of an intelligent decision-making system would serve
as a useful tool for policy makers and authorities to well
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manage nature’s resources and prevent future environmental
outbreaks.

The wetland ecosystem is unique from other landforms
due to the adaptation of aquatic plants to hydric soil. Man-
groves are keystone species to climate change responses
and processes since the habitat supports a large ecolog-
ical community. Future research to obtain site-specific
information should start as key to effective conservation
efforts Ragavan et al. [202] summarized steps to a holistic
Ecosystem-Based Management (EBM) of mangrove forests
starting with the mapping of shifts in species distribution.
Impacts of climatic-driven change towards the physiology of
ecosystem should be studied before modelling forecast tools
to assess the adaptation capability of key species. Finally,
a response system for conservation is developed accordingly,
and site-specific information is integrated for adaptive strat-
egy planning in the multi-stressor environment.

Therefore, this paper has provided an overview of environ-
mental soil, water, and air pollution to understand the phys-
iology of mangroves with climatic factors. The feasibility of
artificial intelligence as the way forward to solve complex
environmental solutions are also reviewed. Significant fea-
tures such as soil, water and air pollutant markers could be
integrated into AI models to form mechanism that correlates
each attribute. Since different input and outputs are used in
different AI environmental model, future research studies
should include additional variables such as air quality, sea-
sonal runoff, precipitation, population change and industrial
influent and effluent to provide a good chance for healthy
mangrove ecosystem and to cope with emergency environ-
mental outbreaks and the restoration of ecological balance.

VI. CONCLUSION
The mangrove forests are unique and vital to the aquatic
wildlife and the livelihood it surrounds.Mangrove loss dimin-
ishes the water quality of estuaries, causes disruption in
biodiversity, annihilates the nursery habitats, and adversely
degrades the adjacent ecosystems. Key requirements for man-
grove sustainability are continuous monitoring of rehabili-
tation efforts, coastal protection, government structure and
as suggested in this paper, environmental decision system to
predict future outbreaks. AI is expected to serve as an inte-
grated environmental prediction model. The capability of AI
to make assumptions and identify patterns from large datasets
creates unprecedented possibilities to curb complex environ-
mental problems. It is important to maintain the well-being
of mangrove forests as the ecosystem plays a huge part in
global diversity. Through this review, we have presented the
following key points for future research direction:

The feasibility of analyzing correlation between pollutant
markers in soil, water, and air as an effort to conserve man-
grove ecosystem. Secondly, the complex interaction between
these pollutant markers could be solved by implementing
integrated and intelligent decision making in monitoring and
managing the mangrove ecosystem.

The review has thoroughly discussed the capability of AI in
predicting environmental data and act as environmental deci-
sion system especially those affected the mangrove ecosys-
tem. However, current solution focused on understanding and
proposing environmental decision-making system based on
the individual pollutant markers either in soil, water, or air.
The correlation between pollutant markers has not been well
studied and authors have provided the possibility of further
research that could be conducted to reduce possible degrada-
tion risks and future threats to the mangrove ecosystem.
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