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ABSTRACT Knowledge of the truck traffic volumes on state and interstate highways is critical for highway
authorities and federal organizations. Increased urbanization, population growth, and economic development
have led to an increased demand for freight travel. Several planning applications demand reliable and
accurate truck traffic prediction. A review of the available literature indicated that limited research had been
performed on the development and utilization of a universal automatic framework for truck traffic volume
prediction. As a result, there is a gap to incorporate inclusive predictors, a broad dataset, a comprehensive
feature selection approach, and a robust cross-validation method that utilizes both linear and non-linear
algorithms. The present study uses a hyperparameter optimization framework to select the appropriate
feature selection method and modeling approach among a comprehensive list of available state of the art
approaches. Distinct from models based on individual case studies, the proposed framework allows for
greater customization and minimized MAPE error. The developed framework automates much of the traffic
count forecasting process, and the resulting method is less labor-intensive and may be utilized without the
need for experienced data analysts. Florida’s interstate highways historical traffic data were used to test
the feasibility of the proposed framework. The results of the Florida Case Study revealed the superiority of
non-linear models in the generalization and prediction of traffic volumes over linear models. The random
forest algorithm results on the test dataset in this study demonstrate this model’s ability to predict truck
traffic with 86% accuracy. Spatial variables were the most significant variable group, followed by road
characteristics.

INDEX TERMS Data-driven modeling, truck traffic, traffic volume, prediction model, regression analysis,
forecasting, machine learning.

I. INTRODUCTION
The extent of truck road travel in the U.S. has substantially
increased due to various disruptive effects. These include the
impact of technology and social and demographic changes,
urbanization and globalization, environmental and energy
trends, economic and workforce changes, and political and
fiscal trends. Despite other transportation modes, trucks
remain the principal mode of freight transportation, and
about 69% of the total national tonnage is transported by
truck. A growing economy and the evolution of time-sensitive
freight services have significantly increased the number of
trucks on the nation’s highways. According to the Texas
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A&MTransportation Institute [1], truck trips can be expected
to increase from 557,000 daily trips in 2014 to over one
million daily trips by 2040. These higher truck volumes will
have a substantial impact on the level of congestion and
air quality in many regions. Therefore, the rapid growth in
truck traffic has become a crucial issue for traffic managers,
decision-makers, and road users.

The differences in size and operation between trucks and
cars means that trucks could potentially harm the surround-
ing traffic, leading to an increase in crash severity, driver
frustration, and vehicular emissions. These factors result in
a greater need for accurate truck traffic prediction, which can
be crucial in the design and management of road pavement
and bridges, reconditioning and reconstruction of highway
pavement, planning for truck movements, environmental
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impact analysis, and investment policies. The growing impor-
tance of truck trips in both engineering and planning has cre-
ated a need for truck volume estimation. Various prediction
methods have been generated using data typically available
for planning applications. Metropolitan Planning Organiza-
tions (MPOs), transportation planners, decision-makers, and
researchers have strived to address the issue of forecasting
truck traffic to estimate future highway needs.

Analysis of the current literature detailing truck traffic
volume prediction has been limited to a few algorithms,
methodologies, and a selective subset of variables in each
publication. As a result, there is a gap for utilizing a uni-
versal automated framework. The framework for this study
is tested through a comprehensive dataset, inclusive of
Florida highway traffic data from 2001 to 2017. Fifty-nine
independent variables were used as inclusive predictors,
with the use of both liner and non-liner algorithms (5 and
4 algorithms, respectively) trained and tested utilizing a
robust cross-validation method. The most appropriate selec-
tionmethod andmodeling approach to reduceMeanAbsolute
Percentage Error (MAPE), error were automatically selected
using a hyperparameter optimization framework, also known
as a grid search. There is an apparent demand in the literature
for the development of a universal automated framework.
Previous attempts to select an optimal method of truck vol-
ume forecasting have not been comprehensive in multiple
areas of analysis, including the methods of feature selection,
the algorithms used, and additional aspects of the truck vol-
ume forecasting pipeline such as the number of predictors.
Furthermore, optimization attempts tailored toward a single
case study are less advantageous than a universal automated
framework that can become customized based on specific
parameters.

The proposed framework addresses the constraints of pre-
vious modeling attempts in truck traffic estimation and can
be readily used to aid decision makers and contractors in
the planning stages of project development. Additionally,
the results presented in this study confirm the high degree
of prediction accuracy of this model. Others can utilize this
framework through the methodology outlined in this study.
While the dataset discussed is optimized for the State of
Florida, new users may incorporate their local projections for
the efficient modeling of truck traffic prediction. The devel-
opment of a more generalized, universal automated frame-
work that can be applied to multiple scenarios provides a
substantial benefit and offers customization on a case-by-case
basis.

II. LITERATURE REVIEW
Traffic volume prediction has gained growing attention due
to the accelerated advancement and implementation of intelli-
gent transport systems (ITS).With the widespread use of traf-
fic sensors and recently developed traffic sensor technologies,
there is a copious amount of traffic data available, bringing
the transportation sector into the age of big data. Moreover,

a growth in the field of connected, automated, shared, and
electric (CASE) vehicles plays prominent roles in the number
of trips by trucks [56], [57], and [58]. As a result, transporta-
tion management is currently experiencing a transformation
in the attempt to employ more data-driven methods. The
current practices in truck trip activity estimation and freight
modeling, fall short in meeting today’s need. The level of data
complexitymakes it essential to reevaluate the traffic volumes
forecast dilemma based on deep-structured non-linear models
with a considerable amount of traffic data. Several techniques
have been developed to estimate freight movements, and can
be broadly classified under two categories, commodity-based
and vehicle-based approaches.

Generally, the traffic flow forecast can be classified into
three classes, short-term forecasting, medium-term forecast-
ing, and long-term forecasting. The one with the period from
five to thirty minutes is usually noted as the short-term fore-
cast, that from thirty minutes to a few hours is the medium-
term forecast, and that a day or longer is the long-term
prediction. Traffic volume forecasting that is a type of long-
term prediction can be obtained through forecasting methods
such as econometric regressions, travel-demand modeling,
and neural network modeling [2].

Short- and mid-term prediction models: Since the 1980s,
scholars have started to investigate short- andmid-term traffic
flow prediction, which is believed to be useful for real-time
traffic control [3]. The neural network (NN) algorithm has
been frequently applied in civil engineering projects [59]
and more specifically for traffic flow prediction from most
beginning research to today due to their strength in han-
dling non-linearity and universal approximability of unknown
functions that exist in traffic behavior. Zheng et al. [4]
mixed NNs and Bayesian inference to predict future traf-
fic flow. Besides the NN methods, there are many other
prediction approaches such as the Kalman filter [5], time
series models [6], [7], the support vector regression (SVR)
[8], the k-nearest neighbor [9], the hybrid models [10], [11]
and the gradient boosting tree regression [12]. The compre-
hensive information on existing models can be obtained in
Vlahogianni et al. [13] and Lippi et al. [14].
Different states have developed their own models for fore-

casting freight movements, most of which are commodity-
based. In 2000, the Indiana state authorities built a database of
commodity flows within the state, employing the Commodity
Flow Survey from 1997 to forecast the freight movement for
the entire state.

There are two widely used approaches in estimating a
regional level freight trip generation; the first approach is
the vehicle-based model, where the number of each type of
vehicle is generated via a conducting mode split for classifi-
cation along with trip generation. The second approach is the
commodity-based model, in which average payload factors
are estimated to convert the tons or value of commodity
into the number of trucks. These models were generated to
forecast intra-urban area movements of trucks and commodi-
ties by mode, and the additional movements generated by
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the state, regional, and national movements of freight and
commodities into urban areas.

A typical vehicle-based method produces truck trip
estimates using land-use and socio-economic data [15].
Based on the object for which a model is used, models
are categorized into several subgroups. These subgroups
can be listed as; Traffic Count-Based Models, GIS-based
Models, Self-Calibrating Gravity Models, Partial Matrix
Techniques [16], Heuristic Models [17], Facility Forecasting
Techniques [18], and others. The traditional four-step model
has been of the most common technique, which is performed
as a combination of the techniques mentioned above based
on the needs and preferences of the state agencies. It is
being utilized to predict the number of internal and external
trips made inside an area by type, time of day, zonal
Origin-Destination pair, mode of travel employed to make the
trip, the routes took, or others.

A. MATHEMATICAL VEHICLE-BASED TRUCK
TRAFFIC PREDICTION MODELS
Mathematical models are used to forecast truck traffic over
particular network links and nodes [19]. These models are
generally large in size and complexity, make various assump-
tions, and need adaptations of robust linear and non-linear
programming algorithms to simplify the calculations [20].
Over the last decades, many mathematical traffic volume
prediction models have been developed to support traffic
management and enhance transportation efficiency. The
development of a traffic counts model can be perceived
as a temporal and spatial method. With the spread of ITS
detectors, real-time traffic data became available. Traffic flow
prediction based on traffic counts along with capacity and
environmental factors are being used to forecast short- and
mid-term traffic patterns [21]–[23]. Furthermore, long-term
traffic forecasting via Average Daily Traffic (ADT), Monthly
Average Daily Traffic (MADT), and Average Annual Daily
Traffic (AADT) predictions of corridors or segments for
both each type of vehicles represent another approach
where historical averaged traffic counts have been used
with exploratory variable groups [24]–[26]. These forecast
methods can be categorized into three classes, including
naïve, parametric, and non-parametric methods. Following is
a brief review of each method.

1) PARAMETRIC MODELS
The structure of parametric models is predetermined, and
the parameters of the model must be determined by utilizing
data. The intrinsic knowledge of traffic processes in traf-
fic simulation models can be captured in these structures.
Overall, a lower quantity of data is required compared to
non-parametric models. The traffic simulation models utilize
the origin-destination (OD) traffic matrix considering the
theory of network equilibrium. Traffic simulation models
consist of macroscopic, microscopic, and mesoscopic model-
ing. In macroscopic modeling, the global variables of a road-
way network are analyzed, including mean speeds, densities,

and traffic flows. In macroscopic models, also named as
kinematic wave models, trip generation rates and multiple
linear regression models are commonly used methodologies.
This approach was named as the LWR model and was first
introduced by Lighthill and Whitham [27]. In microscopic
modeling, the interactions between private vehicles are sim-
ulated based on the longitudinal (car-following) and lateral
(lane changing) behavior of vehicles in a network system.
Kometani and Sasaki [28] introduced the first car following
model derived by Newton’s equations. Lastly, in mesoscopic
modeling, there is a blend of macroscopic and microscopic
modeling [29].

2) NON-PARAMETRIC MODELS
The non-parametric title does not imply that these models
completely lack parameters. Instead, it signifies that the fea-
tures and number of the parameters are not fixed in the
beginning and are adjustable. In non-parametric models,
the form and selected parameters need to be determined
by investigating the data. Furthermore, no awareness of the
underlying methods is needed [30]. Usually, more data are
required for the analysis process of non-parametric modeling
compared to parametric models. The dynamic, complex, and
non-linear characteristic of the traffic flowmakes it a suitable
phenomenon for non-parametric methods. Polson et al. [31]
stated that transitions within the traffic-free flow, recov-
ery time, breakdown probability, and average travel time,
reflects a sharp non-linearity in the traffic flow which makes
its predictions more complicated. Polson et al. [31] and
Oswald et al. [32] claimed that the non-parametric models’
superior capability to capture temporal-spatial relationships
and non-linear patterns, make them more accurate for traffic
forecasting compared to the parametric models.
K-Nearest Neighbor (KNN) approach is among the most

well-known non-parametric modeling methods where the
k events of the historical database, which are most similar to
the current traffic situation, are used to forecast the desirable
data point. Based on their distance of the nearest events
to the current situation, the results are calculated using a
simple average or weighted averagemethod. Smith et al. [33],
Rice and Van Zwet [34], Bajwa [35] and You and Kim [36]
have indicated that KNN is a computationally fast technique
that can outperform the naïve method; however, no studies
have found it to be more accurate than more advanced
non-parametric methods. Locally weighted regression is
another non-parametric method that Nikovski et al. [37]
and Zhong [38] reported shows excellent results in terms of
forecasting accuracy and calculation time. Polson et al. [31]
stated that the Bayesian network method can help handle
large-system level transportation network problems.
Random Forest (RF), Decision Tree (DT), and Support

Vector Regressor (SVR) are among other non-parametric
models used for traffic flow prediction. DT allows for the cre-
ation of a highly interpretable model on the traffic data, which
can be used for finding common patterns shared between
different traffic data points [39], [40]. Liu and Wu [41]
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proposed using RF for traffic flow prediction due to its
robustness and practicality and showed the generalization
capabilities of this model. SVR has been leveraged for mod-
eling traffic data and has shown superior performance when
compared to linear models [42], [43].

Finally, Neural Networks (NNs) are the most extensively
utilized models in traffic prediction because they are capable
of modeling non-linear and dynamic processes proficiently.
Even if the underlying relationships in a dataset are not clear,
a neural network-based model is competent in generalizing
accurate forecasts due to its non-parametric and non-linear
characteristics [44]. However, neural networks were regarded
as a black box and difficult to fully understand since they
contain many nodes, elaborate structures, and non-linear
functions [14], and [45].

B. LEADING PREDICTORS FOR TRUCK
VOLUME PREDICTION
Al-Deek et al. [46] reported that the primary factors affect-
ing truck volume were found to be the amount and direc-
tion of cargo vessel freight and the weekday of operation.
Tsapakis et al. [26] developed 12 models based on regression
and Bayesian analysis using data taken from 67 continuous
data recorders to predict the AADT for heavy-duty trucks.
Roadway functional class, population density, and spatial
location had the highest importance factor in their devel-
oped daily truck traffic prediction models. Golias et al. [47]
presented a statistical approach using a stepwise linear
regression to create predictive models for estimating truck
volumes. Number of employees estimated sales volume, and
the number of establishments based on the standard industrial
classification for the region are considered to be good predic-
tors of truck volumes [47]. Lu et al. [48] developed a truck
volume prediction model; results revealed that both linear
and compound growth models fit the truck traffic growth
trends well. Growth rates estimated from less than six years
of data may have considerable variation, which can lead to
significant errors in pavement response prediction. Roadway
characteristics and socio-economic factors cannot be used to
predict truck traffic growth rates with high accuracy directly.
However, some factors are significantly associated with traf-
fic growth, which can assist pavement designers in selecting
appropriate defaults for traffic growth rates. These factors
include population density, population density growth rate,
land use, and highway functional classification [48].

C. THE CURRENT STATE OF PRACTICE AT FDOT
With the latest updates made in January 2020, the Florida
Statewide Model (FLSWM) [49] for travel demand forecast-
ing is a traditional four-step model with a freight demand
modeling component named FreightSIM. In the four-step
model developed using the Citilabs Cube Voyager and
Avenue software platform, trips are generated from the
2010 OD Survey in Florida at the census block level, and
traffic counts from 2001 to 2015 are used for validation and
calibration at the TAZ level. Trip distribution is performed by

gravity models combined with multinomial logit models for
destination choice. To forecast truck traffic, the analysis mod-
ules used in the FreightSIM model includes sound synthesis,
supplier firm selection, distribution channels, shipment size
and frequency, modes and transfers, and finally, freight trip
assignment that is integrated into the overall highway assign-
ment as truck traffic. Also, the input/output database from
the U.S. Bureau of Economics, port tonnage information,
employment data from County Business Patterns (CBP), and
freight flow from the freight analysis framework version 4
(FAF4) is utilized in the calibration and validation of the
FreightSIM model. FAF is a national framework developed
by the Bureau of Statistics and Federal Highway Adminis-
tration (FHWA) to provide a comprehensive understanding
of the overall picture of freight movements among the US
and forecast from 2020 through 2045 for both optimistic and
pessimistic growth scenarios. In the FDOT model, some of
the socioeconomic variables, and freight-related economic
variables, with the 2010 origin-destination (OD) survey of
Florida, were employed to predict future traffic counts.

The truck counts prediction model on state highways
developed in this studymay assist transportation planners and
decision-makers in inserting highly accurate traffic counts
into their four-step or activity-based models. In doing so,
they would be able to increase the robustness of predictions
and quantify more accurate truck traffic in order to assist
with near-, mid-, and long-term planning solutions. A review
of the literature demonstrates there has not been substantial
research thus far on the development of a universal auto-
mated framework for truck volumes prediction models. The
model presented in this study incorporates a broad dataset
(Florida highways between 2001 and 2017) and inclusive
predictors (59 independent variables) utilizing both the linear
(5 algorithms) and non-linear (4 algorithms) algorithms,
employing a robust cross-validation method. Furthermore,
the pipeline of this study incorporated a hyperparameter
optimization framework (or grid search) to identify the best
feature selection method, and the modeling approach in order
to decrease the MAPE error.

This study aimed to build a model to fill these identified
gaps to help contractors and planners enhance the truck count
estimation. The results of this study demonstrate the high
accuracy of the developed framework that could be easily
generalized and employed by other users. By following the
step-by-step methodology described in this research, and uti-
lizing data related to their local predictors and projects, users
can optimize this truck volumes prediction models accord-
ingly. The final model and leading factors may vary from the
ones selected for the tested predictors and dataset optimized
for the state of Florida in this study.

III. METHODOLOGY
The main goal of this study was to develop a framework to
generates a highly accurate long-term truck traffic prediction
model for U.S. highways using an extensive pool of inde-
pendent variables. This research utilized historical monthly
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average daily truck traffic (MADTT) data and employed
machine learning methods. This study aims to address the
following objectives:

• Evaluating the prediction accuracy of multiple machine
learning algorithms that consider multiple linear and
non-linear relationships between variables to forecast
the truck traffic volumes.

• Investigating the impact of the socio-economic, energy
market, U.S. economy, and construction market on the
truck traffic patterns.

• Examining the impact of road characteristics on the
truck traffic volumes.

• Assessing the impact of spatio-temporal predictors on
the MADTT.

In this study, variousmachine learningmodels were trained
on national highways to forecast their MADTT. The primary
data for this research were obtained from the Florida Depart-
ment of Transportation’s (FDOT) historical traffic database,
which contains the past 17 years (from 2001 to 2017) of traffic
data for the 259 sites. The database contains the historical
monthly average daily truck traffic (MADTT) for highways,
interstate, county, location, max speed, number of lanes,
K factor, D factor, and truck percentage information for each
site under this study.

Since the periodic pattern is crucial to the modeling proce-
dure, the data preparation is designed to include this pattern
implicitly in the inputs that are given to the model. This
inclusion ranges from including the time of the data sam-
pling, to many inputs which themselves change periodically.
Since the temporal level of dependent and independent
variables should be matched in the modeling, and the
highest-resolution of the accessible independent data were
the monthly level, authors were limited to use the monthly
level rather than other higher-resolution truck traffic data such
as weekly, daily or hourly level information. However, for the
periodic pattern of the traffic data, a study by Sun et al. [54]
employed a two-layer fast Fourier transform (FFT)-based
traffic prediction scenario in which the discrete wavelet
transform (DWT) with two different threshold values were
adopted to decompose the high-frequent-noise of the traffic
data.

The dataset utilized in this study contains 52,836 monthly
data points for six interstate highways of Florida, includ-
ing four primary and two auxiliary interstate highways.
Table 1 presents detailed information regarding the highways
and the number of their studied sites used in the project.
On average, the MADTT data of a site studied about every
5.75 miles of the road on the Florida highways.

Also, in this study, the authors used data from both
telemetered traffic monitoring sites (TTMS) and portable
traffic monitoring sites (PTMS). TTMS is continuous traffic
monitoring sites that send traffic data to the Transportation
Statistics (TranStat) office by wireless communications or
phone. PTMS are traffic monitoring sites that have loops
and axle sensors in the road with leads running back into a

TABLE 1. Interstate highways and sites under the study in this project.

cabinet located on the shoulder, to achieve higher accuracy.
As shown in FIGURE 1, 259 sites studied in this paper cover
the majority of the Florida interstates. 211 PTMS sites (green
colored sites) and 48 TTMS sites (red-colored sites) data were
collected from the FDOT’s database.

FIGURE 1. 259 sites included in this study on the Florida interstates map.

A. STATISTICAL ANALYSIS
The dataset utilized in this study contains 52836 trucks
monthly data points for six interstate highways of Florida,
including four primary and two auxiliary interstate highways.
Table 2 depicts the statistical information of the directional
monthly traffic flow for cars for all the dataset of this study
(The term ‘‘directional’’ refers to the 2 different datasets, one
is for the direction of south to north of the road, and the other
one is for the north to south direction.). Statistical analysis
was used to identify the range for most of the data. Means
and medians describe central tendency, and percentiles help
identify the range for most of the data.

B. PREDICTOR VARIABLES
This research utilized a pool of 59 candidate variables as
predictors, obtained from relevant resources and the previous
research, to develop the truck traffic model more precisely.
The pool of candidate variables selected in previous studies
mentioned in the literature review section, includes popula-
tion density, growth rate, land use, highway functional clas-
sification, spatial, jobs (number of employees, and income),
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TABLE 2. MADTT data statistical description.

crude oil price, and GDP. However, this project utilized seven
categories of independent variables (59 variables) including
construction market variables (5 variables, such as building
permits, and construction spending), energy market variables
(4 variables, such as crude oil price, and electricity price),
socioeconomics variables (11 variables, such as population,
and employees), U.S. economy variables (27 variables, such
as CPI, GDP, and DJI), road characteristics variables (4 vari-
ables, such as the number of lanes, and max speed), temporal
variables (3 variables), and spatial variables (4 variables, such
as county name, and interstate ID). The spatial variables
were added to the second developed model of this study.
FIGURE 13 in Appendix A shows the specific factors of each
type of predictor category.

This project collected the local and global data related
to continuous socioeconomic variables for Florida, such as
income, household size, licensed drivers, labor force, and
length of the paved road. Concerning the U.S. economy,
while Gross Domestic Products (GDP) mirrors the national
income and economic health of the U.S., the Consumer Price
Index (CPI) is broadly used to represent inflation at the
national level. Moreover, factors representing interest rates
at the national level are crucial macroeconomic indicators;
the prime loan rate and federal funds rate are two popularly
employed measures representing interest rates. Additionally,
the evaluation of stock market indices as leading indicators of
construction cost is another possible measure since they are
widely accessible.

Regarding the construction market, construction spending
is a measure of the value of new construction activities,
including non-residential projects. The employment level in
construction is a valuable measure to describe the U.S. and
FL labor force in the construction sector of the economy.
Ultimately, the number of new privately-owned housing units
with authorized construction (housing permits) provides use-
ful information about expected construction activity in the
near future. Regarding energy prices, this category of vari-
ables has been widely neglected as one of the possible lead-
ing indicators in truck traffic prediction models. ‘‘Crude oil
prices,’’ ‘‘gas prices,’’ ‘‘natural gas prices,’’ and ‘‘electricity
prices’’ were used as a measure for drawing energy price
levels. This study also considers road characteristics variables
to examine their impact on the highway truck traffic patterns.
Three variables were recognized as road characteristics vari-
ables, including ‘‘max speed,’’ ‘‘number of lanes,’’ and ‘‘toll
roads.’’

C. MODEL DEVELOPMENT
The pipeline for this work consists of data preprocessing,
feature selection, model creation, parameter optimization,
and evaluation using the Scikit-learn [50] library for machine
learning in Python [51] programming language. Throughout
the preprocessing phase, the data is standardized and divided
into training, test, and validation datasets. After, the training
and validation sets are fed to a feature selection module that
identified the necessary features within the data and elim-
inated other independent variables (predictors). FIGURE 2
presents the pipeline of this project. The central feature of
the workflow is the loop between feature selection, model-
ing, and hyperparameter optimization modules that would
automatically canvas the variations of features and modeling
methods. It delivers the best-performing model with the best
subset of features based on the input dataset.

As shown in the flowchart in Figure 3, feature selection is
applied to the normalized and partitioned data:

Xselected =
⋃n

j=0
XjS(Xj)

where S represents the function that would decide if a fea-
ture column is selected or not in a binary fashion. The
selected data is the model using linear and nonlinear mod-
eling. At inference time, the outcome for a given datapoint is
calculated as:

Yi = F(XiS(Xi))

where F represents the trained model.

D. DATA PREPROCESSING AND PARTITIONING
At the data preprocessing stage, all independent vari-
ables (predictors) were transformed into a number. Then,
the numeric data was standardized to normal distributions
with an average of 0 and a standard deviation of 1 to support
the regularizations of the models. Following standardization,
the prepared data were divided into training, test, and valida-
tion datasets. As the data under this research is time series,
exploring the integrity and temporal continuity of the data
was essential. As a result, randomly splitting the dataset
into different parts for validation would not be appropriate.
As shown in FIGURE 3, the evaluation method employed
in this study relied on the nested cross-validation expanding
window method. In this method, the training dataset has a
training subset, and a validation set in the inner loop (yellow
dashed box) starting with three years of serial data for each
dataset. The training set was increased by three years in each
split. The testing dataset consisted of the next three successive
years of the dataset after the validation dataset. For the inner
loop, each split went through a research pipeline presented in
FIGURE 2. Then, concerning the outer loop, after employing
the outcomes of each split, the error was averaged. This
method ensures that final model is robust and is not an overfit
model or a randomly accurate one.

These models were trained on the data and evaluated on
the test set. In order to find the optimum feature selection
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FIGURE 2. The pipeline of the study.

FIGURE 3. Nested cross-validation; expanding window.

tool, model, and parameters, a grid search was performed in
the parameter optimization stage based on the validation set.

E. PERFORMANCE MEASUREMENT SCALES
To examine the performance of the feature selections and
modeling approaches, three measures of error, including the
Mean Absolute Percentage Error (MAPE), R-Squared, and
Mean Absolute Error (MAE) were considered. In cases such
as this study investigating the truck volume dataset, the aim
was to produce the best possible forecast while understanding

the possible error in those estimates. The MAPE provides the
most suitable mean for evaluating the error in this research
and the models were evaluated using this metric on the test
set.

F. FEATURE SELECTION
Feature selection is the method of selecting the most suitable
predictors and dropping redundant variables from the pool
of possible predictors. Depending on the model’s structure,
feature selection can enhance a model’s precision. This tech-
nique can be carried out by observing the participation of
each candidate variable to the models’ accuracy, and then
reducing useless and repetitive variables while keeping the
most useful ones. In some cases, unnecessary features can
lower a model’s accuracy. For each parameter set, the cross-
validation method presented earlier served to train, validate,
and test the model. In this study, three approaches were
applied to determine the leading predictors affecting the
truck volume prediction models. First, valuable features were
determined via a model utilizing SelectFromModel function
from Scikit-learn [50]. Several modeling techniques capable
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of implicit feature selection, including Ridge Regression
(Ridge), Bayesian Ridge (BR) Regression, Random Forest
(RF), and Decision Tree (DT), were employed in this section.
The importance threshold considered for the selection param-
eter of this step changes between 0.25, 0.5, 0.75, 1, 1.25,
1.5, and 1.75. Secondly, the Recursive Feature Elimination
(RFE in Scikit Learn [50]) was carried. In this manner,
the least essential features were dropped gradually until the
most suitable features were discovered. The models which
were utilized to determine the importance of features are
the same as the former step (RFE-RF, RFE-Ridge, RFE-BR,
and RFE-DT). In the RFE step, the number of ultimately
selected features varies between 1, 3, 5, 10, 20, 30, 40, 50,
and 60. Thirdly, a scoring function was employed to find
the ‘‘K’’ best features in the dataset (SelectKBest in Scikit
Learn [50]). The scoring functions employed in this work
were ANOVA F-value (FCLASSIF) and Mutual Information
(MFCLASSIF). The number of ultimately selected features
of this step also fluctuates between 1, 3, 5, 10, 20, 30, 40,
50, and 60. These feature selection approaches were imple-
mented inside a grid search and eventually compared to find
the best set of parameters.

G. MODELING APPROACHES
Multiple machine learning algorithms were used in this
research, particularly those based on the non-linear rela-
tionships among variables to predict the MADTT. The
models (SelectFromModel function from Scikit-learn [50])
employed in this research were Decision Tree (DT), Random
Forest (RF), K-Nearest Neighbors (KNN), and Neural Net-
work (NN). Furthermore, linear regression models, includ-
ing Linear Regression (Linear), Stochastic Gradient Descent
(SGD) Regression, and Passive-Aggressive (PA) Regression,
Ridge Regression (Ridge), and Bayesian Ridge (BR), were
used as a benchmark to determine the level of improvement
of employing non-linear models. This selection of models
allowed us to compare models with various levels of lin-
earity or non-linearity, while having control over parametric
models. These machine learning methods were applied to
the data using the earlier discussed nested cross-validation
approach to split the data to train, validate, and test the model.
An expanding data window was used for training the model,
validating on the next three consecutive years after training
the dataset, and then testing it on three consecutive years of
data. For the RF andDT algorithms in this research, themodel
parameter (MP), which is the maximum depth of the trees,
varies between 5, 20, 50, 75, 100, and 200. Regarding the
K-Nearest Neighbors algorithm employed, the model param-
eter, Number of neighbors (K), changes between 1, 3, 5,
7, 10, and 16. Concerning the Neural Network models, the
MP, which represents the number of nodes employed in this
study, varies between 16, 64, and 256 In the linear algorithms,
for the Ridge Regression, the MP represents the regular-
ization strength (alpha) and varies between 0.1, 1, 10, 100,
10000 and 1e6. For Bayesian Ridge Regression, the model
parameter shows the shape and inverse scale parameters

of the prior gamma distribution (alpha_1 and alpha_2) and
varies between 0.1, 1, 10, 100, 10000 and1e6. Regarding the
Stochastic Gradient Descent Regression, the MP represents
the elastic net mixing parameter of L1 and L2 regularization
(L1 ratio), and fluctuates between 0, 0.15, 0.3, 0.5, 0.75 and 1.
Ultimately, for Passive Aggressive Regression, MP shows the
maximum step size (regularization C), and changes between
0.1, 1, 10, 100, 10000, and 1e6. Table 3 presents the various
models and the associated modeling parameters employed in
this study.

TABLE 3. Modeling parameters of the study.

As demonstrated in the feature selection and the modeling
approach sections, the developed hyper-parameter optimiza-
tion grid includes a wide range of values for the parame-
ters, from reasonably low values to reasonably high values,
so that it could be applied to various datasets with differing
characteristics.

IV. RESULTS AND DISCUSSION
A. MODEL WITHOUT SPATIAL VARIABLES
A comparison of the accuracy of various models on the test
dataset using the grid search is presented in FIGURE 4.
It is evident that non-linear models outperform the linear
models, including Linear Regression, Ridge Regression, BR,
SGD, and PA. Among non-linear models, RF, KNN, and DT
model perform better than NN model. The error presented in
FIGURE 5 is the average of the error of the four splits for
the mixed trucks (summation of both directions of the truck
traffic) of the dataset described in FIGURE 3. The MAPE
error (the performance measure used in this study) on test
dataset presents a reliable value of about 22.27%.

1) THE SELECTED MODEL OF THIS STUDY FOR
THE CURRENT TERM
As shown in FIGURE 4, empirically, RF, KNN, and DT
show the best results among the non-linear models. However,
theoretically, theKNNmodel is only capable of predicting the
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FIGURE 4. Comparison of different models’ best performance on the test
dataset for mixed trucks.

data from the training dataset, which results in biased results.
The KNN model finds the K nearest instances to the instance
in question and predicts the output by averaging the output
of those instances. Through these instances, the model can
be interpreted. However, the essential features are not high-
lighted.Moreover, the model does not learn from data and has
to search the data for each prediction. This disadvantage has
a silver lining as it makes updating the data and model easier.
Concerning DT, this model creates a decision tree based on
splitting features. At its leaves is the regression output. The
decision-making process and the results are interpretable.
However, it can overfit if many features are present since the
decision-making handles sparse data at the leaves. However,
RF implements many decision trees (500 trees) on the data.
It does so by randomly choosing groups of data to train on.
Since RF implements many decision trees, it becomes less
prone to overfitting while keeping the advantages of decision
trees. Thus, the RFmodel presents an appropriatemodel, both
empirically and theoretically, and was selected for current
term prediction in this study.

FIGURE 5 illustrates the result of the four best feature
selection approaches utilized in this study on the validation
data set. It was found that all four feature selection approaches
can provide appropriate modeling of the data, demonstrating
the success of the grid search process in finding suitable train-
ing parameters for each feature selection method. However,
RFE Ridge has the lowest MAPE on the validation dataset
among various feature selection approaches.

FIGURE 5. Comparison of the feature selection of RF models on
validation dataset for mixed trucks.

A comparison of the accuracy of the RF algorithm on the
four splits of the data is presented in FIGURE 6. It illustrates
that split 4 (mentioned in FIGURE 3), the split that covers
all the dataset has a lower MAPE error (18.24%) on the test
dataset, compared to other splits. TheMAPE error of split 4 of
the RF models on the validation dataset and the test dataset
does not differ considerably, which shows that the developed
model is robust.

FIGURE 6. RF model’s performance on test dataset for mixed trucks.

FIGURE 7 presents the comparison of ground truth and
prediction via plotting them against each other. The pre-
diction closely follows the ground truth, and the points are
located around the 45-degree line.

FIGURE 7. Comparison of ground truth and prediction via plotting them
against each other within the validation dataset using RF algorithm.

FIGURE 8 depicts the model optimization of the mixed
trucks on the 4th split on the validation dataset. The optimum
feature selection and modeling approach for this case was
found to be RFE Ridge and RF, respectively. For finding
the best selection parameter, the number of features that are
ultimately selected is changed between 10 to 40. The same
approach is taken for optimizing the RFmodel by alternating
the maximum depth of the trees from 5 to 200. The RFmodel,
with the depth of 75 trained on 30 selected features, has the
lowest MAPE of 18.44% on the validation dataset.

FIGURE 9 illustrates the feature categories importance
for mixed trucks. Socioeconomic variables, with 49% fea-
ture importance, ranked first among the seven categories of
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FIGURE 8. Model optimization for mixed trucks.

FIGURE 9. Feature importance categorical from best performing models
for trucks’ RF model.

this study. Road characteristics (43% feature importance) and
U.S. economy related variables (6% feature importance) were
ranked second and third in this study.

FIGURE 10 illustrates top six important features that were
performing better than other parameters for mixed trucks.
‘Number of Lanes’, which depicts the capacity of roadway,
has the most important influence on the truck prediction
model with a 31% importance. Moreover, ‘length of paved
roads centerline miles’ ranked second with a 27% impor-
tance. Concerning socioeconomic variables, features such as
number of ‘licensed drivers’ and ‘population’ are essential
variables for truck prediction model.

FIGURE 10. Top six important features of the best performing models for
mixed trucks.

2) SELECTED MODEL FOR LONG-TERM PREDICTIONS
It is important to note that, the RF model is only capable
of interpolating and using the dataset values, which makes
the algorithm a suitable option for current and current- term,
short-term and mid-term modeling. Concerning the better
generalization capabilities of NN, they give an edge to NN
models to be used for future projections (long-term studies).
The NN algorithm is capable of extrapolating and generating
prediction values by changing the hidden layer size to predict
the mid- and long-term MADTT. This model is trained by
finding the bias and weights of artificial neural network
through stochastic gradient descent. It possesses a layer of
nodes, each of which has a non-linear activation function.
FIGURE 11 shows the four splits results of cross-validation
utilized in this study for the NN algorithm; demonstrates
that split 3 has a lower MAPE error (with 80% prediction
accuracy) and performs better compared with other splits.

FIGURE 11. Best model for mid- and long-term planning: NN.

The model optimization of mixed trucks on the 3rd split
on the validation dataset for the NN models show that the DT
feature selection approach with importance threshold of 0.75.
The NN model algorithm with 256 nodes with a hidden layer
has the lowest MAPE of 20.41% on the validation dataset.
Moreover, the MAPE error on the test dataset is 24.06%
which is reasonable.

B. FORECAST OF DIRECTIONAL TRUCK TRAFFIC
VOLUME – CASE STUDIES
In this section, the developed directional NN models (with
spatial variables) were deployed to forecast the directional
truck volumes for 2018 to 2050. The pool of 59 independent
variables in this study contained seven categories includ-
ing the energy market variables, construction market vari-
ables, U.S. economy variables, and socioeconomics variables
(excluding population, licensed drivers, length paved road
line miles, and centerline miles), where NN was used to
predict the future values.

A variety of univariate modeling techniques were used to
predict the future values of the independent variables to feed
the model as an input. Two general types of univariate mod-
eling were used to predict the time-series predictors of this
study, namely Auto Regressive Moving Average (ARMA)
and Smoothing. The ARMA is the most common classifi-
cation of models used in forecasting univariate time series.
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This type of model is represented as an ARMA (p,q), where
p is the AR order, and q is the MA order. The order of the AR
andMAwas chosen via an autocorrelation correlogram func-
tion (ACF) and a partial autocorrelation correlogram function
(PACF). On the other hand, the Smoothing method includes
simple, exponential, double exponential smoothing methods,
and Holt-Winters (Linear, Seasonal additive, multiplicative
additive). A pool of x independent variables of this study
contained seven categories. Including the energy market vari-
ables, constructionmarket variables, U.S. economy variables,
and seven variables of socioeconomics variables (excluding
population, licensed drivers, length paved road line miles
and centerline miles) which ARMA and Smoothing meth-
ods were employed to predict the future values. Regarding
two other socioeconomic variables, (population and licensed
drivers) the results of the Rayer et al. [52] were utilized.
Furthermore, about the last two socioeconomic variables,
the length of paved roads of Florida Highways (length of
the paved roads lane miles and length of the paved roads
centerline miles) were considered to be fixed during the
future years. Ultimately, the road characteristics variables
and spatial variables were considered fixed throughout the
projection period. Finally, one site from interstate highways
I75 and I4, was selected to show the results for the projection
period 2018 to 2050 using the truck directional NN model
(with spatial variables) and projected predictors.

1) CASE STUDY #1: I4, ORANGE COUNTY, SITE ID: 753051
FIGURE 12 depicts the total, North/Eastbound and
South/Westbound historical, and projected truck traffic
employing the directional NN model (with spatial variables)
developed by this research. The historical traffic data covers
2001 (beginning month 1) to 2017 (ending month 204)
monthly average daily truck traffic (MADTT) of passenger
vehicles. The projected values are MADTT between 2018
(beginning month 205) to 2050 (ending month 600).

FIGURE 12. The truck traffic projections of case study #1.

C. DISCUSSION
Precise prediction of traffic flow is a crucial component of
the Intelligent Transportation System (ITS) [53]. This study
generated and optimized a framework containing feature

selection (three-step approach) to assist the training of the
traffic flow prediction models with high accuracy. With its’
high prediction accuracy, the proposed methodology presents
a promising potential complementary tool to be utilized in the
calibration and validation of the existing truck volume predic-
tion models. In contrast to the study by Lu et al. [48] that have
shown that both linear and compound growth models were fit
the truck traffic growth trends well, this study has shown that
linear models are not able to predict the MADTT accurately.
Additionally, this study confirms the results of studies by
Polson et al. [31], Oswald et al. [32], Rilett and Park [44], and
Liu andWu [41] that claimed that the non-parametric models’
superior capability to capture temporal-spatial relationships
and non-linear patterns make them more accurate for truck
traffic forecasting compared to the parametric models.

By analyzing the results on the test and validation dataset,
it can be concluded that non-linear models outperform linear
models. This can be viewed in the notable gap within the
performances of linear models on the truck dataset versus
that of the non-linear models. Overall, four models, including
DT, RF, NN, and KNN, were evaluated. The generalization
capabilities of RF give it an edge for current and near-term
MADTT projections. The RF algorithm results on the test
dataset of the study demonstrate the ability of the model
to predict the MADTT with 82% accuracy. However, by
adding the spatial related variables (county, interstate, site
id, and Euclidean geometry of each site), the accuracy of
the model improved to 86%, illustrating the importance of
considering the location-related features for the truck traffic
prediction models. Regarding the important features of the
RF model (with spatial variables), the ‘‘spatial variables’’
category ranked first with a 48% importance, and second,
‘‘road characteristics,’’ with a 26% importance. Both have a
significant role in the truck counts prediction model. Further-
more, the NN developed model (with spatial variables) for
the long-term predictions shows the capability of the model
to predict the MADTT with an 80% accuracy.

V. CONCLUSION
A literature review indicated that the majority of truck-traffic
modeling studies encompass one or two linear or nonlinear
algorithms. In these studies, onemodel’s success over another
was inconsistent and varied depending on the specific case
study being discussed, and the results could not be directly
utilized outside of the prospective case study being reviewed.
These findings suggest that truck traffic forecasting is depen-
dent on the interplay between local and global variables that
may be either linear or non-linear based on multiple factors
such as location, project type, and the level of analysis. This
complication can be overcome by using a universal frame-
work for truck volume forecasting that is more generalized to
optimize the process and the final outcome based on specific
input data characteristics. To that end, the analysis performed
in this study was all-inclusive of the reviewed methods for
feature selection and modeling approach. It utilized a broad
dataset of the variables discussed to confirm that new users
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could efficiently utilize the framework generated. By follow-
ing the proposed method, regardless of the location, type,
or scope of the project involved, users can input their data to
identify the critical truck volume forecasting factors related to
their project in a much more automated way than previously
explored. This provides advantages over existing models that
utilize assumptions and methodologies specific to a certain
case study. Also, the proposed framework increases the num-
ber of predictors involved to allow for more accurate forecast-
ing; and automating the methodology reduces the time and
expertise required to forecast the complexities of the truck
traffic network.

In this study, a data-driven methodology was employed
to identify the top features and modeling approach. This
allowed for the inclusion of all available linear and non-linear
models, the independent variables and parameters involved
in feature selection and modeling approach selection. The
resulting framework generated is more comprehensive and
can be appropriately utilized by new users. By following
this framework, a user may identify the feature selection
methods, algorithms, and set of features most suitable to
their unique project and dataset automatically. This assertion
is possible because the framework developed in this model
incorporates not only the approaches previously highlighted
in the literature but also contains improvements and enhance-
ments to create a more complex model based on the number
of the employed features and the feature selection methods
employed in an automated fashion. The framework of this
study was then validated using the historic data gathered
from 259 traffic sites, spanning the course of 17 years. The
results of this Florida dataset analysis demonstrate how this
model can be successfully applied. The selection features
and models used were chosen through a data-driven method
in order to prevent bias, and the results indicate which fea-
tures may be classified as high importance in the process of
truck volume prediction based on this dataset. The framework
in this study then is not only more comprehensive than a
stand-alone case study-based approach, but it can be used for
more accurate generalization. The generated framework not
only incorporates all the approaches executed in the reviewed
literature but also goes beyond them in terms of the variations
of features and modeling methods.

This framework can help planners in obtaining truck vol-
ume on state roadways to quantify truck traffic in order to
assist with long-term planning solutions, such as roadway
expansions (by calculating the level of service to find the crit-
ical links which need investments for expansion of the road
(adding lanes or constructing new roads [53]) or an additional
bridge, plan development for pavement designs, prediction
and planning for future truck trips, environmental impact
analysis and the examination of highway investment policies.
Transportation planners would be able to plan for the critical
links on the U.S. highways currently facing overcapacity
issues and investigate the optimized solutions for enhanc-
ing the traffic network considering the existing investment
gap. The results could also be used to attract private sector

partnerships to foster economic development and improve
safety and mobility by developing a suitable request for pro-
posals and decent incentives accurately and on time. As a
result, the quality of life of citizens could be increased
by avoiding traffic congestion, enhancing air quality, and
decreasing the number of crashes.

The limitations of this study include the sample size (this
study utilized 259 sites and 17 years of historical truck traffic
data), data type (this study employed monthly level histor-
ical truck traffic data – it would be better to use weekly,
daily, or even hourly data), examining several other essential
variables in developing the automated, connected, trucks’
scenarios, and finally including the environmental and energy
trends related variables as predictors to study the traffic with
even better accuracy. For future work, aside from the limita-
tionsmentioned above, scholars should investigate automated
and connected trucks, platooning, and, more importantly,
the importance of considering the managed lanes for trucks
on the truck traffic counts on the highways. Finally, the clas-
sification on trucks (medium-sized vs. heavy-duty vehicles)
and loaded and unloaded vehicle information from weight in
motion (WIM) data could also be added to the model.

APPENDIX A
INDEPENDENT VARIABLES (PREDICTORS)
See FIGURE 13.

APPENDIX B
MODEL WITH SPATIAL VARIABLES
It is essential to consider the impact of spatial variables
related to the location of the input data of each site. To test
the importance of the spatial variables on the developed
truck traffic prediction model, this study added four spa-
tial variables into the prediction model’s predictors pool.
Table 4 depicts the spatial variables considered in this paper
among the previous candidate variables.

By comparing the different models’ best performance on
the test set and the average error of the four splits, non-linear
models outperform linear models. However, the MAPE error
of the model with spatial candidate variables (added to the
previous dataset: all 59 predictors) shows a better perfor-
mance compared to the model of section A in the manuscript
(without spatial variables; 55 predictors). The comparison of
these models confirms a 4% improvement in the accuracy of
theMADTT by adding the spatial variables shown in Table 5.

A. THE SELECTED MODEL (WITH SPATIAL VARIABLES)
OF THIS STUDY FOR THE CURRENT TERM
FIGURE 14 illustrates the optimum feature selection and
modeling approach for this case were found to be Bayesian
Ridge and RF, respectively. For finding the best selection
parameter, the number of features that are ultimately selected
was changed between the importance threshold of 0.25 and
1.75. The same approach was taken for optimizing the RF
model by alternating the maximum depth of the trees from
5 to 200. The RF model, with a depth of 100 trained on
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FIGURE 13. The predictors employed in the primary model of this study.

TABLE 4. Spatial candidate independent variables.

selected features with an importance score higher than 1.5,
had the lowest MAPE of 12.06% on the validation dataset.

FIGURE 15 depicts the categorical feature importance
derived from the best performing models for mixed trucks.
Spatial variables’ category had the most significant impact
on the truck traffic model with a value of 48%. Road
characteristics, with the value of 26%, had the second rank.

TABLE 5. Comparison of the developed RF models on test dataset.

FIGURE 14. Model optimization for mixed trucks (with spatial variables).

FIGURE 15. Categorical feature importance derived from the best
performing models for trucks (for the model with spatial variables).

FIGURE 16 depicts the top six important features that are
performing better than other parameters for the mixed trucks
of the model with spatial variables. The ‘‘site’’ or ‘‘co-site’’,
which depicts the ID of the studied location, had the most

FIGURE 16. Feature importance derived from the best performing models
for mixed trucks (for the model with spatial variables).
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important influence on the truck prediction model. Moreover,
the ‘‘number of lanes’’ shows the second important feature
with a 26% importance.

Additionally, this study developed separate models for
each direction (North/Eastbound and South/Westbound)
of the truck traffic flow. The model optimization of the
North/Eastbound of truck traffic on the 4th split on the vali-
dation dataset for the RF models depicted that the ‘RFERF’
feature selection approach, with 30 chosen features and the
RF model algorithm with 75 trees, has the lowest MAPE
of 12.50% on the validation dataset. On the other hand, the
model optimization of the South/Westbound of the truck
traffic on the 4th split on the validation dataset for the RF
models showed that the ‘RFE Bayesian Ridge’ feature selec-
tion approach, with 20 selected features and the RF model
algorithm with 50 trees, had the lowest MAPE of 11.96% on
the validation dataset.

B. SELECTED MODEL (WITH SPATIAL VARIABLES) FOR
LONG-TERM TRUCK TRAFFIC PROJECTIONS
A comparison of the generated NNmodels for the framework
of this study, shown in Table 6, confirms a 4% improvement in
the accuracy of the MADTT by adding the spatial variables.

TABLE 6. Comparison of the NN developed models on test dataset.

A comparison of the accuracy of the NNmodel with spatial
variables on the four splits of the cross-validation is shown in
FIGURE 17. It is apparent that split 4 outperforms the other
splits of the data. Split 4 has a MAPE error of 20.03% on the
test dataset.

FIGURE 17. NN model’s (with spatial variables) performance on test
dataset for total trucks.

The model optimization of the North/Eastbound of the
truck traffic of (with spatial variables) on the 4th split on the
validation dataset for the NN models showed that the RFERF

feature selection approach, with 10 selected features and the
NN model algorithm with 64 nodes in the hidden layer, has
the lowest MAPE of 17.77% on the validation dataset. On the
other hand, the model optimization of the South/Westbound
of the truck traffic (with spatial variables) on the 4th split on
the validation dataset for the NN models showed that the RF
feature selection approach with importance threshold of 0. 5.
The NN model algorithm with 256 nodes in the hidden layer
had the lowest MAPE of 17.46% on the validation dataset.

APPENDIX C
CASE STUDY #2: I75, MARION COUNTY, SITE ID: 360437
See FIGURES 18–20.

FIGURE 18. The N/E truck traffic projections of case study #2.

FIGURE 19. The S/W truck traffic projections of case study #2.

FIGURE 20. The mixed truck traffic projections of case study #2.
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