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ABSTRACT This study presents an automatic method for estimating antenatal amniotic fluid (AF) volume
from two-dimensional ultrasound (US) images, which is an important indicator of fetal well-being. This
automatic estimation of AF volume (AFV) requires automated segmentation of the AF pocket, which is a
challenging task due to its amorphous features and US artifacts, such as reverberation, shadowing, particle
noise, and signal dropout. Recently, AF-net, a deep-learningmethod, has been shown to successfully perform
AF pocket segmentation. However, we observed that AF-net is prone to misjudging AF pockets containing
severe reverberation artifacts. The proposed method addresses this problem by developing a dual path
network, which consists of AF-net as the primary path and an auxiliary network as the secondary path.
The auxiliary network is designed to focus on the local area that is likely to be contaminated with the
reverberation artifacts. It infers this local region and generates a feature map of the artifacts, incorporating
it as prior information into a deep neural network, denoted as RVB-net, for segmenting the reverberation-
artifact-contaminated AF region. Finally, the segmentation output from the auxiliary network complements
the AF-net. Experimental results show that the proposed dual path network effectively reduces misjudgment
of the AF pocket caused by severe reverberation artifacts. The proposed dual path network achieved an
average Dice similarity coefficient (DSC) of 0.8599 ± 0.1074 (mean ± standard deviation) for AF pocket
segmentation on the entire evaluation set.

INDEX TERMS Ultrasound image, amniotic fluid, reverberation artifacts, image segmentation, deep
learning.

I. INTRODUCTION
Amniotic fluid (AF), the protecting liquid contained in the
amniotic cavity, is an essential component for fetal devel-
opment and maturation during pregnancy [1]. The AF vol-
ume (AFV) is an important indicator for reflecting pregnancy
progress and fetal development [1]–[3]. Therefore, its assess-
ment is indispensable during an antenatal ultrasound (US) [4],
and AFV is commonly estimated by measuring the AF index
(AFI) [5].

Manual AFI measurement is not only time-consuming,
but also prone to erroneous measurements, as it is highly
operator-dependent. Incorrectly measured AFI can con-
tribute to an over- or under-diagnosis of fetal status and
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inappropriate treatment. Therefore, the fully automatic seg-
mentation of the AF pocket has been in substantial demand.
Unfortunately, this task is highly challenging, unlike other
ultrasound-based automatic fetal biometric measurements
[6]–[9]. The difficulty arises due to amorphous features
(i.e., an unspecified variety of shapes and sizes) of the AF
pocket and various factors, such as reverberation, the AF
mimicking region, floating matter, and incomplete or miss-
ing boundary, which lead to limited accuracy of AF pocket
segmentation [3], [10].

Recently, a deep learning-based method called AF-net [3]
has been shown to successfully deal with these problems and
reach the level of clinical application. Although AF-net gen-
erally exhibits remarkable performance, it sometimes mis-
judges some areas of the AF pocket, where there are severe
reverberation artifacts, as shown in Fig. 1.
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FIGURE 1. Examples of underestimated AF pocket segmentation from
AF-net caused by severe reverberation artifacts. (a) Input US images,
(b) Ground truths of AF pocket (orange contour) and reverberation
artifacts (cyan dashed contour). AF is normally visualized as a dark region
with an unspecified variety of shapes and sizes. (c) AF-net segmentation
results (green region).

These severe reverberation artifacts occur when the US
beam encounters strong reflectors of the fat-muscle interfaces
in the abdominal wall and the transducer-skin interface that
are approximately orthogonal to the beam propagation direc-
tion. Fig. 2 shows the mechanism of reverberation artifacts in
US imaging. Hence, the severe reverberation artifacts in the
AF pocket usually have an image pattern of multiple parallel
lines at uniform intervals that are typically perpendicular to
the direction of US propagation [11]–[14]. This may lead
to the misjudgment of the AF region contaminated with the
reverberation artifacts as a non-fluid region.

To deal with the severe reverberation artifacts induced
misjudgment issue, we proposed a dual path network, whose
primary path is AF-net, and the secondary path is an auxiliary
segmentation network. See Fig. 3. The auxiliary network is
specialized to reduce misjudgment by AF-net. Specifically,
it can be regarded as a two-step deep learning approach
for segmenting the reverberation artifacts contaminated AF
region. The first step infers a local area, where the reverber-
ation artifacts are likely to occur by using the physical corre-
lation among the US, reverberation artifacts, and abdominal
wall. In the second step, a feature map of the reverberation
artifacts in this local area is first generated and then incorpo-
rated into RVB-net, which is developed to segment the severe
reverberation artifacts contaminated AF region. This feature
map provides supplementary information of the reverberation
artifacts into the network. Finally, the segmentation result
from the auxiliary network complements the AF-net.

The efficacy of the proposed method has been veri-
fied experimentally using a dataset of 2380 clinical 2D
US images from 1190 pregnant women. This method per-
forms well on US images affected by severe reverberation
artifacts. The auxiliary network, complementary to AF-net,
effectively reduces misjudgment of AF pocket caused by
the strong reverberation artifacts. Quantitatively, the pro-
posed method yielded an average Dice similarity coeffi-
cient (DSC) of 0.8599± 0.1074 (mean± standard deviation)
for AF pocket segmentation, for the entire evaluation set.

FIGURE 2. Mechanism of reverberation artifacts in US imaging.
Reverberation artifacts appear as parallel curves at equal interval (i.e.,
gray dashed curves annotated by rev1 to rev3) and are produced by the
multi-reflection of US beam between two near-field interfaces (black
curves).

In addition, an average DSC of 0.9042 ± 0.0361 was
obtained, for the US images whose AF pockets were con-
taminated with severe reverberation artifacts in the evaluation
set, i.e., a subset of the evaluation set. For the AF pocket
segmentation, the proposed network outperformed other pop-
ular deep learning-based segmentation networks, which have
shown remarkable overall performance on various medical
and natural image segmentation works.

II. METHODS
Let I represent an US image and I(x, y) denote its gray-scale
intensity at the pixel position (x, y). The goal is to find an
AF pocket segmentation function f : I 7→ 1D, where 1D
is the indicator function (binary image) of a segmented AF
pocket area D. This segmentation function f is to be learned
by a labeled training data {(I (j),1D(j) ) : j = 1, · · · ,N }. To an
approximation, f can be learned by

f = argmin
f ∈NN

1
N

N∑
j=1

L(f (I (j)),1D(j) ), (1)

whereNN is a set of neural networks for segmentation, L is a
loss function for the neural network, and argmin denotes the
argument of a minimum.

The proposed deep learning method is a dual path architec-
ture with AF-net as the primary path and an auxiliary seman-
tic segmentation network as the secondary path. The overall
process is depicted in Fig. 3. The primary network segments
an AF pocket by examining the entire image structure, while
the secondary network focuses on a local area, where the
primary network may misjudge. The secondary network is
designed to reduce the misjudgment of the AF-net. To be
precise, the secondary network is specialized in recognizing
AF regions that are contaminated with severe reverberation
artifacts as follows: first, the secondary path segments an
abdominal wall via U-net, determines a local area where the
reverberation artifacts are likely to occur, and then generates
a derivative feature map of the determined local area. The
RVB-net segments a reverberation-artifact-contaminated AF
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FIGURE 3. Overall structure of the proposed dual path network for accurate AF pocket segmentation. Although AF-net (primary path) alone
provides high performance of AF pocket segmentation, we use the secondary path for further improvement. The secondary network is designed to
focus on the area that is likely to be contaminated with reverberation artifacts, where the primary path is prone to misjudgment when identifying
AF pocket.

FIGURE 4. Architecture of AF-net for AF pocket segmentation from US
image.

region by using the feature map and US image I as an input.
A final output is obtained by taking union of the primary and
secondary path results, post-processing (morphological open-
ing and closing), and rescaling. The details of each process
would be described in the following subsections.

A. PRIMARY PATH: AF-NET
The primary path is AF-net, which is the optimal combi-
nation of three techniques; atrous convolution [15], [16],
a multi-scale side-input layer, and a side-output layer [17].
The architecture of AF-net is shown in Fig. 4. In AF-net,
the segmentation network f ∗ is learned by

f ∗ = argmin
1
N

N∑
j=1

4∑
k=1

L cross(fsk (I
(j)),1D(j) ), (2)

where L cross(fsk (I),1D) is the cross entropy loss function
given by

L cross(fsk (I),1D) = −
∑

(x,y)∈�

[
1D(x, y) log fsk (I)(x, y)

+(1− 1D(x, y)) log(1− fsk (I)(x, y))
]
.

(3)

Here, � is the area of the domain of input image I , and
fsk (I) is the k-th side output of AF-net. As shown in Fig. 4,
the four side-outputs (i.e., fsk (I), k = 1, . . . , 4) are produced

from early layers in the decoding path. For example, the side
output fs1 (I) is computed as follows:

fs1 (I) = σ (Ave-unpool(h
(17), 8)~Ws1 ), (4)

where σ is the sigmoid function, Ave-unpool(h(17), 8) is the
bilinear upsampling of a factor eight to the feature map
h(17), ~ is standard convolution, and Ws1 is a set of 1 × 1
filters. These side-outputs help train intermediate layers by
backpropagating the side-output loss to early layers in the
decoding path [3].

In the encoding path, the first feature map h(1) is produced
by h(1) = ReLU (I ~4 W (1)), where ~4 stands for atrous
convolution with rate 4, W (1) is a set of 3 × 3 filters, and
ReLU (x) = max{x, 0} is the rectified linear unit. Similarly,
h(2) = ReLU (h(1) ~4 W (2)). Atrous convolution plays a
key role in handling the confusing factors (i.e., reverberation
artifacts, AF mimicking region, floating matter, and missing
or incomplete boundary) by enlarging the receptive field size
of the network. For h(3), we use the side input η1(I) =
Ave-pool(I, 2), which is the average-pooling image of I by
a factor of two. More precisely, h(3) is obtained by concate-
nation of h(2) and ReLU (η1(I)~4 W (3)). Similarly, h(6) and
h(9) are produced by using η2(I) and η3(I) that are the average
pooling of I by a factor of four and eight, respectively.
This multi-scale side-input layer achieves multiple levels of
receptive field size in the encoding path of AF-net, therefore it
helps deal with unpredictable shapes and large size variations
of AF pockets.

The combination of these three techniques produces syn-
ergistic effect, which effectively deals with various factors
and amorphous features of the AF pocket. For a detailed
explanation of AF-net, refer to [3].

B. SECONDARY PATH: AUXILIARY NETWORK TO REDUCE
MISJUDGMENT OF AF-NET
The secondary path is an auxiliary network that serves to cor-
rect reverberation artifact-induced misjudgment of AF-net.
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FIGURE 5. The attention area �rvb (inside the yellow contour) that is
likely to be contaminated by reverberation artifacts.

FIGURE 6. Schematic diagram of the secondary path f ∗∗ consisting of
f ∗∗1 : I 7→ 1�rvb and f ∗∗2 : (I,1�rvb ) 7→ 1

�D
rvb

. The first network f ∗∗1 infers

�rvb. The second network f ∗∗2 generates derivative feature map of
inferred area �rvb and then segments �D

rvb by using derivative feature as
prior information of reverberation artifacts.

It focuses on the region of interest, denoted by �rvb, that
is likely to be contaminated by reverberation artifacts in
image I . Fig. 5 shows the region of�rvb. The secondary path
f ∗∗ comprises two steps: the first step is to learn function
f ∗∗1 : I 7→ 1�rvb for determining �rvb from I . The second
step is to learn f ∗∗2 : (I,1�rvb ) 7→ 1�Drvb

for segmenting �D
rvb,

where �D
rvb is the reverberation artifacts contaminated area

inside D. Fig. 6 shows the overall structure of the secondary
path.

1) FIRST STEP: DETERMINING �rvb

The key concept behind the determination of �rvb is to use
the physical correlation among the US, reverberation artifacts
and abdominal wall. The reverberation artifacts usually occur
beneath the abdominal wall when the US beam meets the
fat-muscle interfaces in the abdominal wall, and it is also
observed that the thickness of these artifacts is almost equal
to the thickness of the abdominal wall. Let �abw denote the
abdominal wall occupying the area between the skin and a
thick fascial layer named the peritoneum-fascia layer [18].
Then, �rvb is inferred as the reflection area of �abw on
the fascial layer along the US beam propagation direction,
as illustrated in Fig. 7.
The first step f ∗∗1 is to segment �abw, which is used to

infer �rvb, as illustrated in Fig. 6. U-net [19] is adopted to

FIGURE 7. Inference of the attention area �rvb by using the physical
correlation among US, reverberation artifacts and abdominal wall. �abw
and �rvb are inside the green and yellow contours, respectively. The
magenta, white and blue arrows point to the fascia, reverberation
artifacts in AF pocket and the peritoneum-fascia layer, respectively.

TABLE 1. Architecture of U-net for segmenting �abw.

learn the abdominal wall segmentation function f ∗∗1,abw : I 7→
1�abw . The network, described in Table 1, allows to achieve an
accurate segmentation of the abdominal wall. This is because
abdominal wall has a distinct morphological feature. We use
a labeled training data {(I (j),1

�
(j)
abw

) | j = 1, · · · ,N } to learn
f ∗∗1,abw by

f ∗∗1,abw = argmin
1
N

N∑
j=1

L cross(f ∗∗1,abw(I
(j)),1

�
(j)
abw

), (5)

where L cross is the cross entropy loss described in Eq. (3).

2) SECOND STEP: SEGMENTATION OF �D
rvb

To allow the network to pay more attention to the distinct
pattern of the severe reverberation artifacts in the AF pocket,
the second step first generates a derivative feature map ∂r(I�
1�rvb), which is the derivative of I � 1�rvb along US beam
propagation direction r. Here,� denotes the Hadamard prod-
uct. This generation is motivated by the observation that the
reverberation artifacts are most intense when US beam meets
the fat-muscle interfaces in an orthogonal direction (Fig. 6).

The feature map ∂r(I � 1�rvb), as prior information of
reverberation artifacts in the inferred region �rvb, is then
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FIGURE 8. Architecture of RVB-net for �D
rvb segmentation: the input is (I, ∂r(I � 1�rvb )), and the output f ∗∗s1

is a probability map of
�D
rvb on the last layer. The generated feature map ∂r(I � 1�rvb ) is incorporated into the network as side inputs, which introduce

multi-scale features of reverberation artifacts. The AG makes the network focus on the local area. These two modules boost the
segmentation performance of �D

rvb.

incorporated into a semantic segmentation network called
the RVB-net to segment �D

rvb. This is to learn a func-
tion f ∗∗2,rvb : I rvb 7→ 1�Drvb

, where I rvb := (I, ∂r(I �
1�rvb )) indicates the input. RVB-net uses labeled training
data {(I (j)rvb,1�D(j)rvb

) | j=1, 2, · · · ,N } to learn f ∗∗2,rvb, which is

achieved by

f ∗∗2,rvb = argmin
1
N

N∑
j=1

4∑
k=1

Lcross(f ∗∗sk (I
(j)
rvb),1�D(j)rvb

), (6)

where L cross is the cross entropy loss described in Eq. (3),
and f ∗∗sk is the k-th (k=1, 2, 3, 4) side output.
The RVB-net, depicted in Fig. 8, is a deeply supervised

network, equipped with two important modules: a side-input
layer and an attention gate (AG).

a: REVERBERATION-ENRICHED SIDE INPUT
The side input of RVB-net is a pyramid of multi-scale deriva-
tive feature maps, which are used as supplementary informa-
tion input into the network consecutively. As shown in Fig. 8,
the i-th side input (i = 1, 2, 3) is given by

ηi(∂r(I � 1�rvb )) = Ave-pool(ηi-1(∂r(I � 1�rvb )), 2), (7)

where η0(∂r(I � 1�rvb) = ∂r(I � 1�rvb). Each side input
ηi(∂r(I � 1�rvb)) generates a feature mapF i through a 1× 1
standard convolution, given by

F i = ReLU (ηi(∂r(I � 1�rvb))~WF i ), i ∈ {1, 2, 3}, (8)

whereWF i is a set of 1× 1 filters. Then,F i is concatenated
to the encoding path, as shown in Fig. 8. Our side input
module has the following advantages:
• The use of {ηi(∂r(I � 1�rvb))}

3
i=1 allows the network

to focus more on the local region �rvb and facilitates
the network to learn the features of the reverberation
artifacts.

• For the image whose AF pocket is contaminated with
the reverberation artifacts, the multi-scale feature map
{ηi(∂r(I � 1�rvb ))}

3
i=1 allows the network to learn

multi-scale contextual features of the reverberation arti-
facts, and thus it helps improve the accuracy of segment-
ing �D

rvb.

b: ATTENTION GATE
Our proposed attention gate is designed to guide the network
to focus on the target region �D

rvb. It is performed before the
skip connection to suppress irrelevant regions and highlight
the features around the target region.
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Let xl = {xli}
n
i=1 denote the low-level features in the encod-

ing path, where each xli ∈ RFx is a pixel-wise feature vector of
length Fx . The global features, denoted as gl+1, are features
at a coarser scale in the decoding path. AG yields attention
coefficient αl = {αli }

n
i=1, where α

l
i ∈ [0, 1], that prunes

xl to outputOxl = {αlix
l
i}
n
i=1. The attention coefficient αli

prunes xli by the element-wise product and preserves feature
activations only relevant to �D

rvb segmentation. Specifically,
a side probability map of �D

rvb, denoted as f ∗∗sl+1 , is first
generated from gl+1:

f ∗∗sl+1 = σ (Ave-unpool(g
l+1, 2l)~W s), (9)

where W s ∈ RFg×1 is a set of 1 × 1 filters, and l = 1, 2.
Each side probability map f ∗∗sl+1 is supervised by minimizing
the loss defined in Eq. (6). Here, for notational convenience,
we denote f ∗∗sl+1 by sl+1. Then, sl+1 is used to scale xl by
{sl+1i xli}

n
i=1. Afterwards, {s

l+1
i xli}

n
i=1 and g

l+1 are used jointly
to produce a sub-attention coefficient ᾱ as:

qlatt,i = ψ
T (ReLU (WT

x (s
l+1
i xli)+W

T
g g

l+1
i + bg))+ bψ ,

ᾱl = σ (qlatt (x
l, gl+1;2att )), (10)

where 2att = [W x ∈ RFx×Fx ,Wg ∈ RFg×Fx ,ψ ∈

RFx×1, bg ∈ RFx , bψ ∈ R] is a parameter set consisting of
1 × 1 filters and bias terms. Hence, the attention coefficient
αl is formulated as

αl = ᾱl � sl+1. (11)

In {sl+1i xli}
n
i=1, the irrelevant features in the background

are gradually filtered out by the saliency probability map
sl+1. Using this scaled feature instead of xl to generate the
attention coefficient, the model activations can focus on the
target region in �rvb and the experimental results show that
the AG improves the segmentation performance.

C. COMPLEMENTATION AND POST-PROCESSING
The segmented �D

rvb from the secondary path complements
the AF segmentation from the primary path. The comple-
mented result f (I) is represented as

f (I)(x, y) =

{
1 if f ∗(I)(x, y) = 1 or f ∗∗(I)(x, y) = 1
0 otherwise,

(12)

where f ∗∗(I) is resized to the same size of f ∗(I) before
complementation. Then, post-processing is performed to
fine-tune the complementation result, including morphologi-
cal operation [20], [21] and rescaling. Specifically, the open-
ing is used to reduce the small false positive errors, while
closing is to fill small holes. Here, a 10×10 square structuring
element is utilized. Finally, the segmentation map is rescaled
into the original 600 × 1000 size. An illustration of this
procedure is shown in Fig. 9.

III. EXPERIMENTS AND RESULTS
A. DATASET
For training and evaluation, a dataset of total 2380 US
images of AF pocket from 1190 pregnant women who

FIGURE 9. The illustration of complementation and post-processing. The
complemented result f (I) may contain a few small holes (indicated by
orange arrows) or false positive errors (indicated by yellow arrows).
Hence, morphological opening and closing (denoted as (a)) are
performed to fine tune it. Finally, the result is rescaled to original image
size, denoted as (b).

TABLE 2. Dataset summary. In the experimental section, ‘‘w/’’, ‘‘w/o’’, and
‘‘RVB’’ denote an abbreviation for with, without and reverberation
artifacts, respectively. (a) Data splitting for training and evaluation of the
proposed method. (b) Training data of the primary and secondary paths,
respectively.

underwent antenatal scanning at the Maternal-Fetal Division,
Department of Obstetrics and Gynecology, Yonsei Univer-
sity College of Medicine, Seoul, Korea were used (IRB no.:
1-2019-0052). Images were acquired by expert sonographers
with W10 and WS80A US machines (SAMSUNG Medi-
son, Seoul, Korea) using a 2-6 MHz transabdominal trans-
ducer CA1-7A. The gestation is between 20 + 0 and 36 +
6 weeks of pregnant women who are over 19 years old and
are Korean. The pregnant women with abnormally reduced
amniotic fluid, such as anhydramnios/oligohydramnios due
to abnormal urine, and premature preterm rupture of mem-
brane are excluded. Various conditions of pregnant women
that may affect the quality of US images have been consid-
ered, including the subcutaneous fat distance, the position and
size of AF pocket, and fat distribution.

Among 2380 US images, only 90 images (3.8% of the
total) have reverberation artifacts in AF pocket. Hence, while
training the secondary path, a data imbalance problem arises.
To balance the data distribution, we choose 360 images
(60 images w/ RVB and 300 images w/o RVB) as the train-
ing data of the secondary path. To train the primary path,
2200 images (60 images w/ RVB and 2140 images w/o RVB)
were used. The remaining 180 images (30 images w/ RVB
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FIGURE 10. Examples of complementary results of dual path network. From Case 1 to Case 4, the AF pocket is
contaminated with a strong reverberation artifacts (indicated by a white arrow).

and 150 images w/o RVB) were used for evaluation. The
details for the same can be found in the Table 2. For a fair
comparison, other popular segmentation networks (i.e., U-
net, Attention U-net, Deeplabv3+, and SegNet) were trained
by 2200 images and evaluated by the same 180 images. All
ground truths are delineated by two sonographers and then
verified by experts to ensure the quality of the delineations.

B. DATA PREPROCESSING
Our preprocessing involves cropping, resizing, normaliza-
tion, and augmentation techniques. The original 600× 1000
images were first cropped into images of 600 × 600 pixels,
which aims to remove the unnecessary two sides of the image
and make training efficient. The bilinear interpolation was
then used to resize images to 512×512, and the image intensi-
ties were normalized to [0,1], whichwere used as inputs of the
primary path. To make the secondary path computationally
efficient, the images were resized to 256 × 256 pixels by
using bilinear interpolation. To build a robust reverberation

artifacts segmentation model, data augmentation techniques
were adopted, including random brightness settings, contrast,
and horizontal flipping. The data augmentation technique
was adopted in the training process of each neural network.
The brightness of the image was first adjusted by adding a
randomly picked float number in the interval (-0.125,0.125)
to all pixels of the images. The image contrasts were then
adjusted with a contrast factor that was randomly picked
within (0.5,1.5) [22]. The images were then randomly flipped
in a horizontal manner. In addition, these augmentation tech-
niques were performed with a probability of 0.5 (i.e., there is
a 0.5 chance of each augmentation).

C. IMPLEMENTATION DETAILS
The proposed dual path network is implemented with Python
3.7.1 and Tensorflow r1.13 [23], [24]. During training, Adam
stochastic optimization is employed to optimize each net-
work with batch normalization, a mini-batch of four images,
and an initial learning rate of 10−4 with a ‘‘poly’’ learning
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TABLE 3. Segmentation evaluation of dual path network on evaluation data. (a) Comparison of AF pocket segmentation between AF-net and dual path
network (‘‘n.s.’’ stands for not statistically significant), (b) abdominal wall segmentation for all evaluation data, (c) segmentation result of reverberation
artifacts contaminated AF region from RVB-net.

FIGURE 11. Ablation study of RVB-net by comparing segmentation performance of reverberation artifacts contaminated AF region between different
models. (a)-(d) show the boxplots of DSC, sensitivity, precision and specificity for the three models: Baseline + Side input (in green), Baseline + AG (in
pink) and RVB-net (in blue). (e) The segmentation results of the above-mentioned three models (‘‘n.s.’’ stands for not statistically significant).

rate policy [25]. We also applied a five-fold cross-validation
method for hyperparameter tuning and validation of each
neural network. In addition, all networks are initialized with
a random normal initializer with a mean zero and a standard
deviation of 0.001, and all the experiments are performed
using a CPU (Intel CoreTM i7-6850K, 3.60GHz), 128 GB
DDR4 RAM, and a four GPU (NVIDIAGTX-1080ti, 11 GB)
system running Ubuntu 16.04.4 LTS.

D. EVALUATION METRICS
To evaluate the segmentation performance of different
methods, several metrics are employed; DSC, sensitivity,
precision, specificity, Hausdorff distance (HD), average sym-
metric surface distance (ASSD), and root mean squared
distance (RMSD) [26], [27]. The Wilcoxon signed-rank
test [28] with 5% significance level is applied to compare

statistically significant differences between segmentation
results.

The DSC, sensitivity, precision, and specificity are
commonly-used region-basedmetrics to evaluate the segmen-
tation performance, defined as:

DSC =
2|� GT∩� s|
|� GT|+|� s|

, Sensitivity =
|� GT ∩� s|
|� GT|

,

(13)

Precision =
|� GT∩� s|
|O s|

, Specificity =
|(� GT∪� s)c|
|(� GT)

c|
,

(14)

where� s represents the segmented region,� GT denotes the
ground truth, and (·)c is the complementary set.

Three distance-based metrics, HD, ASSD, and RMSD,
are used to measure the boundary mismatches of AF

108230 VOLUME 9, 2021



S. Sun et al.: Complementary Network for Accurate AF Segmentation

TABLE 4. Performance evaluation and comparison of AF segmentation between the proposed dual path network and other state-of-the-art semantic
segmentation methods on (a) the data w/ RVB, (b) the data w/o RVB and (c) all evaluation data in (a) and (b). (‘‘n.s.’’ stands for not statistically significant).

segmentation and the ground truth. They are all quantified
in millimeters. HD is the maximum of two directed boundary
Hausdorff distances in both directions, defined as:

HD(� s, � GT)

= max
{
max
p∈∂� s

d(p, ∂� GT), max
p′∈∂� GT

d(p′, ∂� s)
}
, (15)

where d(p, ∂� GT) is the distance between p and ∂� GT.
ASSD and RMSD are defined as:

ASSD(� s, � GT)

=
1

|∂� GT| + |∂� s|

×

( ∑
p∈∂� s

d(p, ∂� GT)+
∑

p′∈∂� GT

d(p′, ∂� s)
)
,

(16)

RMSD(� s, � GT)

=

√
1

|∂� GT| + |∂� s|

×

√√√√ ∑
p∈∂� s

d2(p, ∂� GT)+
∑

p′∈∂� GT

d2(p′, ∂� s).

(17)

E. PERFORMANCE OF PROPOSED DUAL PATH NETWORK
FOR AF SEGMENTATION
The AF pocket segmentation result of the dual path
network, as shown in Fig. 10 and Table 3, indicated
that the complementary network effectively corrected the
reverberation-artifact-induced misjudgment of the AF region

and provided more accurate segmentation of the AF pocket
than AF-net.

As illustrated in Table 3 (a), the dual path network achieved
more promising segmentation of AF pocket. Specifically,
the dual path network obtained significantly better perfor-
mance than AF-net on most evaluation metrics, except pre-
cision, for the image whose AF pocket is contaminated with
the reverberation artifacts. Meanwhile, it yields almost no
false positive errors for the image whose AF pocket is not
contaminated with the reverberation artifacts.

The improvement of the dual path network is attributed to
its secondary path, as shown in Table 3 (b) and (c). The accu-
rate abdominal wall segmentation, as shown in Table 3 (b),
guaranteed a satisfying generation of the derivative feature
map. RVB-net achieved a promising segmentation of the
reverberation artifacts, as shown in Table 3 (c). Specifically,
the high precision and specificity suggested that the network
did not yield fatal positive errors, while the sensitivity demon-
strated that strong reverberation artifacts are correctly recog-
nized and can compensate for AF-net, as shown in Fig. 10.

F. ABLATION STUDY OF RVB-NET
To evaluate the performance of the two modules of RVB-
net, i.e., the reverberation-enriched side input and AG,
by segmenting the reverberation-artifact-contaminated AF
region, in this section, we performed ablation experiments
on RVB-net and analyzed the effect of each module. These
two modules were gradually removed from RVB-net, and
the following three models were considered: (1) RVB-net,
which involves three components; the baseline, which is
the deeply supervised architecture, reverberation-enriched
side input, and AG, (2) the baseline incorporated with
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FIGURE 12. Segmentation examples of reverberation artifacts contaminated AF region for ablation study
of RVB-net. (a) Input image, (b) ground truth of reverberation artifacts contamianted AF region inside the
blue dotted contour. (c)-(e) show the segmentation results from RVB-net, Baseline + Side input, Baseline +
AG, respectively.

Input image Ground truth U-net Attention U-net Deeplabv3+ SegNet AF-net Proposed

Case 1

Case 2

Case 3

Case 4

FIGURE 13. Results of AF segmentation obtained by the state-of-the-art segmentation methods and the proposed dual path network. From Case 1 to
Case 3, the AF pocket is contaminated with severe reverberation artifacts. In Case 4, there is no reverberation artifacts in AF pocket. The ground truths of
AF pocket and reverberation artifacts contaminated AF region are in the orange and cyan contours, respectively.

reverberation-enriched side input (denoted as ‘‘Baseline +
Side input’’), and (3) the baseline with AG module
(denoted as ‘‘Baseline + AG’’). The comparison of the
segmentation performance between these models is shown
in Fig. 11 and Fig. 12.

As shown in Fig. 11, integrating either the reverberation-
enriched side input or AG into the baseline considerably
improved the sensitivity while maintaining the precision.
Hence, an improved DSC was achieved in segmenting the
reverberation artifacts in the AF pocket. This indicates that
our reverberation-enriched side input is an effective approach
to incorporate the reverberation artifacts features into the

network, and the network learned more reverberation fea-
tures by using AG to guide the network to focus on the
reverberation artifacts in AF pocket.When these twomodules
are both used, a further improved segmentation accuracy
demonstrates that RVB-net takes advantage of both modules
simultaneously. The segmentation results in Fig. 12 show that
the Baseline + Sideinput, and the Baseline + AG models
do not achieve satisfying �D

rvb segmentation. Specifically,
these models often fail to recognize reverberation artifacts in
the AF pocket, for Case 1 to Case 2. In contrast, RVB-net
provided desirable segmentation results without misjudging
incorrect regions.
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G. COMPARISON OF AF SEGMENTATION BETWEEN
PROPOSED DUAL PATH NETWORK AND OTHER DEEP
LEARNING-BASED SEGMENTATION NETWORKS
To show the advantages of proposed dual path network
for accurate segmentation of AF pocket, especially for the
imagewhoseAF pockets are contaminatedwith reverberation
artifacts, the proposed network was compared with several
state-of-the-art deep learning-based segmentation methods
including U-net, SegNet [29], Deeplabv3+ [25], Attention
U-net [30] and AF-net.

As indicated in Table 4, the proposed dual path net-
work outperformed other deep learning methods in AF
segmentation, on the most evaluation metrics. The results
in Table 4 (a) show that the dual path network had signifi-
cantly better DSC, sensitivity, ASSD, and RMSD than other
methods when segmenting the AF pocket contaminated with
severe reverberation artifacts. Specifically, U-net achieved
the highest precision but the lowest sensitivity. Although
SegNet obtained a high sensitivity, the precision is not
satisfying.

The qualitative comparisons between these methods are
shown in Fig. 13. The first three cases (Case 1, 2, and
3) showed the advantages of our proposed method in deal-
ing with severe reverberation artifacts in AF pocket. The
proposed method captured the AF region that is contami-
nated with severe reverberation artifacts. On the other hand,
the U-net faced difficulty in recognizing the severe reverbera-
tion artifacts in AF pocket, and SegNet misrecognized the AF
region and resulted in some false positive errors. Compared
to U-net, Attention U-net, Deeplabv3+, and AF-net showed
slightly better performance, but they were still affected by
reverberation artifacts.

The results in Table 4 (b) and the Case 4 in Figure 13
demonstrated that the dual path network and AF-net had
remarkably better performance in segmenting the AF pockets
not contaminated with the reverberation artifacts, compared
with other methods. The evaluation of AF segmentation
accuracy on all the whole evaluation data, as summarized
in Table 4 (c), illustrates that the dual path network fur-
ther improve the AF segmentation accuracy of AF-net and
is superior to other state-of-the-art semantic segmentation
networks.

IV. DISCUSSION AND CONCLUSION
This paper proposed a dual path network that was specif-
ically designed to resolve misjudgments caused by severe
reverberation artifacts when segmenting AF pockets in US
images. As shown in Fig. 1, the AF area contaminated with
severe reverberation artifacts can be erroneously judged as
a non-AF region. Although the image characteristics (e.g.,
pattern, intensity, and shape) of severe reverberation artifacts
are similar to those of maternal tissue layers (fat-muscle
interfaces) in abdominal wall but considerably different from
that of AF region, they can be recognized by appropriately
utilizing themechanism of reverberation artifacts in US imag-
ing, which is the core idea of the proposed method.

The primary contribution of the proposed method is the
development of the auxiliary network that effectively comple-
ments the AF-net by focusing on the distinct features of rever-
beration artifacts within the AF area. Unlike other multi-scale
input layers that are generated from the input image
[31], [32], the RVB-net uses the reverberation-enriched side
input module to focus on features of reverberation artifacts in
the local area. The AG further helps the network focus on the
target area and subsequently improves the segmentation per-
formance. This network, which was specifically designed for
handling reverberation artifacts is significantly different from
other deep learning-based techniques, such as [33]–[35].

Abnormal amniotic fluid amount is an important clinical
cue to screen for fetal structural or genetic abnormalities or to
decide on imminent delivery or intervention in cases includ-
ing but not limited to intrauterine fetal growth restriction,
monochorionic twin complication, or premature rupture of
the membranes [36]–[38]. As the vertical distance between
the anterior and posterior uterine walls represents the amni-
otic fluid pocket, a clear delineation of the inner contour of the
anterior wall is important for the correct depth measurement
[39], [40]. However, the anterior reverberation artifacts can
be mistaken for anterior uterine wall or may obscure the
amniotic fluid situated anteriorly, thus causing inappropriate
caliper placement [40]. Such reverberation artifacts caused
by highly reflective fascia, fat, and peritoneum layers in the
abdominal wall abutting the enlarged uterus underneath, are
frequently seen in maternal obesity and advanced gestational
age during which amniotic fluid measurement is performed.
The proposed method can assist the operator with uterine
contour delineation in the presence of reverberation artifacts
thus reducing the amniotic fluid measurement variability.

In the proposed method, the complementation process
was performed by just taking union of the primary and
secondary path result. Thus, the final segmentation output
can be affected by errors in the secondary path. We plan
to develop a new strategy of complementation that would
involve the refinement between primary and secondary path
results in our future work. In addition, a well-trained net-
work by images obtained in a specific imaging setting may
not work well for images obtained in other imaging set-
tings due to different characteristic of the noise distribution.
Therefore, we also plan to concern the noise disturbance in
US images to improve out-of-distribution robustness for US
images obtained in other imaging setting.
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