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ABSTRACT Estimating relative camera pose is the key problem of visual odometry (VO). To achieve better
efficiency, sparse key-points are usually relied on for the estimation. Yet, feature extraction and matching
are still computationally demanding, hindering the overall VO from real-time processing. Exploiting the
superiorities of an FPGA in terms of high efficiency, low power consumption, and low cost, this paper
proposes a multiple master-slave FPGA architecture for an SIFT-based stereo VO. The master-slave design
enables high reconfiguration for the data throughputs among various modules. These modules include SIFT,
matching, pose estimation, and their corresponding controllers. In the SIFT module, hardware implemented
image pyramid is proposed, where scales are determined off-line via a minimization approach. Local linear
exhausted search (LES) matching is considered for both the stereo and the frame matching. In the pose esti-
mation module, a novel hardware design of deriving closest orthogonal matrix for 3D-3D correspondences
of relative pose estimation is proposed. Experimental results show that 33.2 fps can be achieved using KITTI
dataset without the need of a large number of hardware resources. The proposed reconfigurable design also
facilitates its expansions of adopting CCD cameras as well as developing SLAM and other applications.

INDEX TERMS Master-slave hardware architecture, visual odometry, FPGA, SIFT, Avalon bus.

I. INTRODUCTION
Characterized by low cost, low power consumption and rich
information, cameras are becoming the highly interested
sensors for many visual autonomous systems. In the wake
of increasing need for visual navigation, VO, which pro-
vides relative camera poses from two successive images,
is critical in any vision-based robotic systems. Because of
its efficiency and reliability, feature-based VO is one of
the preferable approaches among the research communities.
It estimates relative pose geometrically using extracted fea-
tures and their correspondences between frames. Features
such as FAST [1] or SURF [2] are widely used. However,
despite of their efficiency, the feature descriptions could be
unstable in scenarios where huge illumination changes or
rotation changes appeared in the environments, compared to
SIFT [3]. Yet SIFT features are encoded by 128 dimensions of
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descriptors, requiring heavy computational burden and thus
the applicability in real-time computer vision areas is limited.

In addition to feature extraction, feature matching is
another time consuming process. In the case of stereo VO, not
only features of the stereo images are needed to be matched
to determine disparities, features between sequential frames
are also required to be matched for relative pose estimation.
Dealing with correspondences of thousands of features in one
image to another would inevitably drags down the overall
efficiency, which posts an unfavorable condition for real-
life, real-time application. Although some approaches such
as KLT tracking [4] and FLANN [5] provide faster matching
computation, they sacrifice robustness to reduce computa-
tional cost. Furthermore, considering the efficiency of data
acquisitions from memories, [4] and [5] do not drastically
reduce the computational time if parallel computing design
is used.

Based on either 2D-2D, 2D-3D, or 3D-3D point corre-
spondences between the current and the previous frame,
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respective algorithms like essential matrix, PnP [6], and
ICP [6], are responsible for providing 6-DOF relative camera
poses. These approaches only require linear algebra compu-
tation such as singular value decomposition (SVD), and thus
the computational cost is relatively low. However, consid-
ering real-time processing, data delays from the aforemen-
tioned feature extraction and matching make a VO incapable
of meeting up such a requirement. As a result, there are
more and more approaches implementing a VO system on
parallel computing platforms. In fact, according to [7], using
either Digital Signal Processors (DSP), Field Programmable
Gate Arrays (FPGA) or Graphical Processing Unit (GPU)
or their heterogeneous approach on computer vision is a
desirable choice. A GPU+CPU heterogeneous design of a
VO [8] is an example, which yields better performances
than CPU-only approach. Nevertheless, extensive compar-
isons made in [7] that considers balances between efficiency,
data throughput, and power consumption, show that FPGA
provides outstanding advantages over DSP and GPU. This
is also supported by [10] that System-on-Chip (SoC) like
FPGA or Application-Specific Integrated Circuits (ASIC)
prototype implementation strategy demonstrates significant
benefits. More specifically, [9] compared the use of desktop
GPU, FPGA, multi-core DSP, single and multiple core CPU
in visual navigation including visual odometry. The results
show that FPGA obviously surpassed other computing plat-
forms. Therefore, leveraging FPGA for VO systems have
been emerging in the literatures [11].

In [12], a unified framework for feature-based localiza-
tion system called EUDOXUS was proposed based on an
FPGA. It involves a visual-inertial odometry (VIO) frontend
and a simultaneous localization and mapping (SLAM) back-
end. Such a large system requires large memory capacities,
and thus to fit the overall system on one FPGA chip, [12]
developed a holistic approach to optimize the on-chip mem-
ory and the logic usage. To demonstrate the flexibility
of [12], not only a Zynq FPGA was used for evaluations, but
high-end Vertex-7 FPGA was also employed. According to
its experiments summarized in [9], VIO frontend has around
4.8x speedup compared to CPU. Although a good perfor-
mance was given, [12] used multi-state constraint Kalman
filter (MSCKF) to estimates poses, which contributes infe-
rior performances compared to non-filtering family, as stated
in [13].

Another work [14] named Navion was proposed to provide
a fully integrated stereo non-filtering based VIO system on an
ASIC using lightweight Shi-Tomasi corners. It also incorpo-
rates a graph optimization backend to regularize both poses
and 3D features. To reduce on-chip memory size, images
were compressed and both structured and unstructured spar-
sity of features were exploited. As a result, a total of 4.1×
memory saving was achieved. Evaluating the system on a
dataset, [14] offers 20 fps while consuming only a little
power.

Similar to [14], a binocular VIO algorithm-hardware
co-design approach was proposed [10], aiming at trading off

algorithm performance and hardware resource. Shi-Tomasi
corners were extracted as features in the system, and ARM
software was introduced to obtain optimal parameters for the
algorithm prior to developing a fully integrated chip. This
minimizes the hardware resources. However, [14] and [10]
employed an inertial measurement unit (IMU) sensor that led
to higher development complexity than using only one or two
cameras. Without an IMU, hardware resources expenditure
can be further reduced.

Aside by full hardware implementation of a VO system
mentioned above, hardware-software (HW/SW) co-design is
another intriguing approach for accelerating VOs. One of
the main advantages of using such an architecture is that,
since some operations are not easily to be implemented in a
hardware, software can be prior to be involved in for perform-
ing those operations before full-hardware implementation is
achieved, which is demonstrated by [10]. Moreover, HW/SW
co-design characterizes high flexibility, meaning that poten-
tial applications being integrated to the HW/SW co-design
system can be easily carried off. Additionally, hardware mod-
ules that require less parallelism can be taken over by soft-
ware, reducing the overall hardware resources. This facilitates
the developments on low level FPGA where bounded hard-
ware resources are given. For example, in [15], a HW/SW
co-design architecture of a stereo VO was released for rover
navigation on Mars. It built five distinct VO pipelines using
different feature extractions andmatchingmethods, where the
most reliable pipeline used Harris corner detection and SIFT
descriptors based on its comprehensive evaluations. Features
are matched based on both the similarities and the image
locations, and camera motion was estimated using absolute
orientation. To account for the I/O scenarios and HW/SW
co-design, [15] developed a communication scheme between
programmable logic and processing system via Xillibus.
Because of the combination of hardware and software, [15]
does not depend on hardware resources. Nonetheless, its
speed is yet to be improved, which provides nearly 1 frame
per second (fps).

Using ground robots, [16] fused cameras, IMU, and wheel
odometry sensors to construct a HW/SW co-design VIO
system. Time-costly feature extraction and matching was
accelerated by an FPGA, while an ARM software was in
responsible for the floating point arithmetic computation
required in pose estimation. Sadly, the runtime is far from
satisfactory, and no intensive evaluations were provided to
validate the system performances. Particularly when only
200 features were used, the robustness of [16] is yet to be
proved.

Alike [10], [12], and [16] where an additional IMU is
employed, [17] also built a VIO system in a HW/SW co-
design manner using FAST features. However, unlike [10],
[12], and [16], the processing of the IMU as well as the
synchronization between the camera and the IMUwere taken
over by software, while the rest of the system was managed
by hardware. This downsized the development complexity.
Besides, it targeted the optimization of the VIO algorithm
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to reach ultra-low latency and power, where only 2.2 mW
energy was relied on for the system. Its experiments using a
dataset exhibited that the pose estimation accuracy was com-
parable to pure ARM-based implementation, while a speedup
of 10 times faster than an ARM was achieved. Nevertheless,
it fell into the same drawback appeared in [12] by using
extended Kalman filter (EKF) for providing pose outputs.

In all of these HW/SW co-design works, it shows promis-
ing benefits of adopting such a design for VO systems.
Albeit many advantages brought by a HW/SW co-design,
the difference of operational frequencies between software
and hardware sometimes lowers the overall performances and
scales up the development complexity. For instance, in [17],
its use of FPGA andARM respectively operate at 70MHz and
1.2 GHz. As a consequence, this paper builds on our previous
work [18] and carries out a multiple master-slave HW/SW
co-design stereo VO architecture using SIFT features on an
Altera FPGA board. Below is the summary of the contribu-
tions and findings of this paper:

A. ARCHITECTURE
A multiple master-slave HW/SW architecture is constructed.
SIFT feature extraction, matching, and pose estimation are
achieved by hardware, whereas an Altera’s Intel soft core
Nios II is only responsible for managing data transfer
between hardware modules and off-chip memories. Addi-
tional controller modules are designed to coordinate data read
from or written to the off-chip memories via Avalon Bus.

B. HARDWARE IMPLEMENTED PARALLEL IMAGE
PYRAMID
The FPGA-implemented SIFT used in this paper is borrowed
from the state-of-the-art method [19], and a hardware imple-
mented parallel image pyramid is proposed. To determine
proper scales for each level of the pyramid, a constrained
objective function is designed based on the differences of
Gaussian image intensities obtained by software and hard-
ware. Tominimize the objective function, a genetic evolution-
ary algorithm [20], a heuristic optimization method capable
of dealing with complex constrained problems via evolution-
ary computation including crossover, mutation, and selection,
is employed.

C. FEATURE MATCHING HARDWARE MODULE
Because of the Avalon Bus burst mode, the core of the match-
ingmodule proposed in [21] is extended to allow efficient and
reliable local linear exhaustive search matching. The stereo
and frame-to-frame matching are achieved based on both the
geometrical image locations and the SIFT descriptors.

D. POSE ESTIMATION HARDWARE MODULE
3D-3D iterative closest point (ICP) registration method [22],
[23] is used for pose estimation. To avoid large mem-
ory size required by SVD for deriving nearest orthogonal
matrix, this paper proposes a technique that incorporates
Denman-Beavers (DB) algorithm [29] as a matrix square root

solver and Taylor approximation to obtain fast and accurate
result.

E. HIGH SPEED AND LOW ESTIMATION ERROR
Using 640 × 480 VGA images cropped from images of the
KITTI stereo dataset [24], the proposed VO achieves 33.2 fps
without consuming lots of hardware resources, outperform-
ing the methods mentioned above. Furthermore, compared
to a desktop PC, the proposed system provides a speedup
of 4,955×. The average estimation errors in terms of relative
pose error (RPE) and absolute trajectory error (ATE) [25] are
0.66 and 1.084 meters, respectively.

F. FIRST PAPER PROPOSING MASTER-SLAVE FPGA
ARCHITECTURE ON VISUAL ODOMETRY
To the best of our knowledge, this is the first paper that
designs and applies multiple master-slave HW/SW co-design
FPGA architecture on a VO. The design not only reduces
heavy dependencies of hardware on the software computa-
tions appeared in the above-mentioned publications, but it
also shapes the system in flexible and reconfigurable man-
ners, allowing better integration to other potential navigation
applications such as SLAM.

The rest of this paper is organized as follows. Section II
gives the overview of the multiple master-slave architecture
for the VO algorithm. In Section III, the derivation of scales
for SIFT parallel image pyramid is described, while the SIFT
and its control module are presented in Section IV. The local
matching, pose estimation, and their corresponding control
modules are respectively shown in Section V and VI. Finally,
the experiments are provided in Section VII, and Section VIII
concludes this paper with discussions on the future works of
the proposed approach.

II. OVERVIEW OF THE PROPOSED FPGA ARCHITECTURE
Multiple master-slave HW/SW co-design FPGA architecture
for a VO proposed in this paper is shown in Figure. 1. The
hardware includes an on-chip Altera DE2i-150 core and off-
chip memories. The former consists of on-chip modules,
i.e., an SDRAM controller as well as SIFT Top, LES Top,
ICP Top modules and their corresponding controllers. The
latter, on the other hand, includes a Flash and two SDRAM
memories. Because the I/O ports are shared by both of the two
SDRAMs, these two memories are together controlled by the
Nios II soft core built on the chip.

Basically, the SIFT Top, LES Top, ICP Top modules are
coordinated by the Nios II processor via Avalon Bus. Data
are read from or written to the SDRAMs which are also
controlled by the Nios II. The read/write modes between
on-chip controller modules and the Nios II processor fol-
lows the rules of Avalon Bus in a master-slave manner. The
master-slave mechanism is depicted by the arrows between
the Avalon Bus and controller modules in Figure. 1, where
the direction of the arrows points from master to slave. Take
SIFT Controller as an example. When it reads image data
and parameters from the SDRAMs to the SIFT Top module
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FIGURE 1. The architecture of the proposed multiple master-slave
HW/SW co-design VO system.

via Avalon Bus and Nios II, Nios II is the master while the
SIFT Controller is the slave, respectively. Conversely, when
the SIFT Controller is required to store SIFT features back
to the SDRAMs, Nios II now becomes the slave while the
SIFT Controller is the master. By using such a structure,
the overall architecture is attached with high flexibility and
reconfigurability. In other words, as long as the master and
slave interfaces are specifically designed, any top module
shown in Figure. 1 can be easily replaced without adjusting
other modules. For instance, the SIFT Top module can be
replaced by FPGA-based FAST algorithm without the need
to reorganize the matching and pose estimation modules.
Moreover, as hardware modules are managed by the Nios II
processor, pipeline computation can be easily achieved.

Details of how the proposed system is carried out is
described as follows.

1) Prior to the beginning of the VO, a sequence of stereo
gray images is written to the Flash memory from the
host computer via Nios II host file system using a USB
cable.

2) Generally, when the VO starts, the first left image data
is written from the Flash memory to the SDRAMs.
Nios II processor (master) initializes and transfers
image data from the SDRAMs to the SIFT Con-
troller (slave) via Avalon Bus. Then, the SIFT Con-
troller passes the image data to the SIFTTopmodule for
extracting SIFT features. After it is finished, SIFT Con-
troller (master) writes feature locations and descriptors
from the SIFT Top module back to the SDRAMs via
Avalon Bus. This allows Nios II (slave) to receive the
storage addresses. Subsequently, the right image is fed
from the Flash to the SDRAMs, and repeats the SIFT
algorithm same as the above.

3) Until SIFT features are completely extracted from the
left and right images, Nios II (master) starts to pass fea-
ture locations and descriptors addresses via Avalon Bus
to the LES Controller (slave). At this moment, local
LES stereomatching is able to perform stereomatching
by the LES Top module. The correspondences are for-
mulated as 3D points. Alike the SIFT features, these
points are also written to the SDRAMs by the LES
Controller (master) via Avalon Bus. Nios II (slave)
receives the 3D points data addresses, facilitating the
execution of the same procedure for the next stereo
images.

4) As long as two stereo images are completely gone
through SIFT and matching, the LES Controller (slave)
is initialized by the Nios II (master) to match frame-
to-frame features. This step is not only similar to the
previous step, but the same hardware modules are also
used. Followed by the need to store 3D correspon-
dences, Nios II (slave) receives the storage addresses
from the LES Controller (master).

5) With the two sets of 3D correspondences, Nios II (mas-
ter) transfers the data to the ICP Controller (slave) via
Avalon Bus. The ICP Top module is subsequently trig-
gered to give relative pose estimations. The poses are
stored to the SDRAMs from the ICP Controller (mas-
ter) via Avalon Bus, where the poses outputs can be
taken by the Nios II (slave).

6) Finally, the whole process repeats until all the images
from the Flash memory are completely performed.
At this moment, Nios II processor is allowed to pack
all the poses associated to each frame as a compressed
text file using the zip file system. The compressed file
is then transferred to the host computer via the USB
cable for displaying the trajectory results.

III. PARALLEL IMAGE PYRAMID
The FPGA-based SIFT algorithm released in [19] efficiently
gives promising features from an image. However, to fur-
ther boost its performance, we propose a new structure of
an image pyramid as shown in Figure. 2 (a) and (b). The
former and the latter respectively show the software and
hardware implemented image pyramid. In this paper, 6 levels
of images are used. In software, Gaussian blur is processed
to create Gaussian images Gs,0, . . . ,Gs,5 sequentially using
their corresponding scales σs,0, . . . , σs,5. Each scale is com-
puted based on the base scale σs,0. In contrast, the parallel
assignments of scales to each level of imageGh,0, . . . ,Gh,5 in
hardware have to bewell-defined. If improper scales are used,
the Gaussian blurring outcomes computed by hardware could
share low similarities to the ones computed by software. This
could implicitly lead to feature unreliability. Hence, this paper
formulates such an issue as a two-step optimization problem,
and a genetic algorithm is used as the solver to find the
optimal scales for the hardware implemented parallel image
pyramid, namely, σh,0, . . . , σh,5.
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FIGURE 2. Image pyramid implemented by software and hardware.
(a) Sequential Gaussian blurring in software. (b) Parallel image pyramid
proposed in this paper.

FIGURE 3. Blurring effectiveness with respect to scales using different
mask sizes.

1) First Step: To define the scale values for most of
the scenarios, we use numerous images from datasets
like KITTI and TUM [25] with various scenes. The
images are calibrated and rectified, and all the image
size is restricted to 640 × 480. Then, the scale of top
level of the image σs,5 that shows the largest blurring
effectiveness with respect to the raw image is derived
using different mask sizes including 7×7, 11×11, and
13× 13. The result is presented in Figure. 3, where the
difference of intensities between the original image and
the blurring image with respective to the scale using
three masks is given. It can be clearly seen that all
the three masks are able to provide maximal blurring
with σ5 approximate be 10. However, the larger the
mask size, the more blurring is contributed. This is
intuitive because larger mask convolves more image
data with a Gaussian kernel. However, instead of using
a 13×13 mask, considering the limited memory usage

in hardware, this paper uses 7 × 7 masks identical
to [19]. As a result, the main purpose in this step is to
find the scales of every image level in software, where
σs,5 maps to σh,5 = 10 that gives the minimal rela-
tive scales between levels with respect to the original
SIFT algorithm. Moreover, the problem is subject to
an inequality where the error of Gaussian blur images
between Gs,5 and Gh,5 is smaller than a predefined
threshold T . This formulates a constrained optimiza-
tion problem that solves the optimal values of σs,0 and
k , denoted by σ ∗s,0 and k

∗, respectively, as shown below.

σ ∗s,0, k
∗
= argmin

σs,0,k

4∑
n=0

(∣∣1σ̂n+1,n∣∣− ∣∣1σn+1,n∣∣)
s.t.

640∑
j=1

480∑
i=1

∣∣Gs,5 − Gh,5∣∣ < T ,

σh,5 = 10 (1)

where k , defined as follows, is the variable of σs,n that
determines the extent of scaling with respect to the base
scale in level n of the pyramid.

σs,n =

√(
knσs,0

)2
−
(
kn−1σs,0

)2
=σs,0kn−1

√
k2−1

(2)

In (1), 1σ̂n+1,n and 1σn+1,n are respectively the rela-
tive scale between the level n+ 1 and n of the original
SIFT and software (Figure. 2 (a)), namely,

1σn+1,n = σs,n+1 − σs,n. (3)

Hence, given σh,5 = 10, the constrained minimization
of (1) focuses on the optimal continuity of the scales
of the levels of image pyramid by giving proper val-
ues of σs,0 and k , accordingly yielding σs,1, . . . , σs,5.
As a result, even though σs,0 is not 1.6 as suggested
by the author of the SIFT algorithm, and the blurring
effectiveness of the final Gaussian image Gs,5 is not as
much as the original SIFT does, the continuity of scales
among all Gaussian images is similar. This allows bet-
ter construction of difference of Gaussian for interest
points extraction in the SIFT algorithm.

2) Second Step: With the optimal base scale and k ,
the second step targets the derivation of a set of opti-
mal scales from level 2 to level 5 used in hardware,
i.e., σh,1, σh,2, . . . , σh,4, given σh,5 = 10 and σs,0 =
σh,0. To do so, we minimize the error summing up the
differences of Gaussian image intensities from level 2
to level 5 obtained by the software and the hardware in
the pyramid. This formulates a non-constrained opti-
mization for obtaining the optimality of σh,1, . . . , σh,4
denoted as σ ∗h,1, . . . , σ

∗

h,4 shown below.

σ ∗h,1, . . . , σ
∗

h,4 = argmin
σh,1,...,σh,4

5∑
m=2

640∑
j=1

480∑
i=1

∣∣Gs,m−Gh,m∣∣
(4)
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Using a genetic algorithm, two optimization prob-
lems can be solved easily, and the parameters used by
the parallel hardware image pyramid can therefore be
assigned prior to implementation.

IV. SIFT CONTROLLER AND SIFT TOP MODULES
With the proper parameters of image pyramid, the SIFT Top
module along with its corresponding SIFT Controller module
can be developed. The architecture is shown in Figure. 4.
The SIFT Controller module consists of several modules
including Master and Slave Interface, SIFT Slave, and SIFT
Interface Control. When it is initialized by the Nios II proces-
sor, SDRAMs addresses of gray images and hardware settings
such as image size, addresses of output SIFT features, are
received by Slave Interface to the SIFT Slave module. The
SIFT Slave module coordinates the input data to either a
DCFIFO named DCFIFO#1 in the Interface Control module
or the finite state machine (FSM) control. Because SDRAMs
have a limited frequency bandwidth, reading image data from
it while simultaneously writing feature data to it would not
allow all the data being read or written continuously at once.
Furthermore, the SIFT module in [19] does not have a data
valid signal design, meaning that input data discontinuity
cannot be handled. Hence, the DCFIFO#1, with 32-bit input
and 8-bit output, acts as a buffer, storing image data for the
SIFT Top module to read. Since SIFT Top module reads
only one fourth of the data width from the DCFIFO#1 at
one clock cycle, with substantial large size of DCFIFO#1 the
SIFT module is able to receive continuous gray image data.
We leave the addition of a data valid signal to the SIFT
Top module as one of our future works, as discussed in
section VIII.

As for the FSM control, it manages the data flow between
the SIFT Controller, SIFT Top, and Nios II processor in a
FSM manner. Whether the data is required to be read from
SDRAMs or be written to the SDRAMs is decided by the
FSM Control which sends a read/write signal to the SIFT
Slave module for allocating the associated data address of
SDRAMs.

As long as DCFIFO#1 has certain amount of data, SIFT
Controller sends a permission to the SIFT Top, allowing the
SIFT Top to read image data from DCFIFO#1. Once the
SIFT Topmodule extracts one feature, the feature data includ-
ing 128 dimensions of SIFT descriptors as well as feature
locations, is stored in another DCFIFO named DCFIFO#2.
Detecting any data stored in DCFIFO#2, the FSM control
module enables writing the feature to the SDRAMs by Mas-
ter Interface via Avalon Bus based on the corresponding
addresses provided by the SIFT Slave module.

Composed of SIFT, Buffer 1312 to 32, and SIFT LES Con-
troller modules, the SIFT Top module extracts SIFT features
based on the input image data. The SIFT LES Controller is
in charge of coordinating the data input and output of the
SIFT Top, as well as the communication with the LES Top
module. Similar to our previous work [18], one dimension
of a SIFT feature descriptor is encoded by 10 bits, and thus

FIGURE 4. SIFT Controller and SIFT Top modules.

a descriptor is 1280-bit long. Concatenated with its image
location encoded by 32-bit, a feature is represented totally by
1312 bits. However, DCFIFO#2 used in the SIFT Controller
module is 32-bit input and 32-bit output. Therefore, a Buffer
1312 to 32 module is required for sequentially transferring
32-bit data 41 times to the DCFIFO#2. As the SIFT Top
completes the extraction, a 1-bit terminal signal packed in a
32-bit data is transferred to the DCFIFO#2. This allows Nios
II processor to acknowledge when it is required to pass the
SDRAMs storage addresses to the LES modules.

Note that the frequency of Nios II processor is 50 MHz,
and SDRAMs as well as SIFT Controller operates at
94 MHz. As for the SIFT Top module, it operates at
100 MHz. Although the low frequency used in the Nios II
processor could decrease the overall system efficiency, in the
proposed master-slave design system, Nios II only deals with
data transfer and hardware module coordination, and thus it
does not potentially influence the system performances. Also,
the asynchronization of SIFT Controller and SIFT Top shows
the need of using DCFIFOs rather than SCFIFOs.

V. LES CONTROLLER AND LES TOP MODULES
Analogous to SIFT Controller and SIFT Top modules, LES
Controller and LES Top modules have respectively similar
architectures, as shown in Figure. 5. As SIFT features are
completely extracted from the stereo images, Nios II pro-
cessor initializes the LES Controller module by transferring
SDRAMs feature data addresses and the number of features.
These data are received by Slave Interface to the Match Slave
module via Avalon Bus, and are subsequently stored in a
DCFIFO named DCFIFO#3. Alike the FSM Control in the
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SIFT Interface Control module, FSM Control in Figure. 5 is
also in charge of controlling the read/write of data between
modules and the SDRAMs. No matter it is a stereo matching
or a frame-to-frame matching, a feature from one image is
first read from the SDRAMs, followed by all the features
from another image being read also from the SDRAMs. This
enables the LES Top module to start matching the features.

Different from Figure. 4 where there is a controller in the
SIFT Top module, LES Top modules does not have one.
Instead, the Buffer 32 to 1312 first packs the 32-bit data read
from DCFIFO#3 into a 1312-bit data including a 1280-bit
feature descriptor and a 32-bit feature location. The feature
location is passed to the Coordinate Hold module, while the
whole 1312-bit feature data is given to the LES Matching
module. In the LES Matching module, local LES matching
algorithm is used. The locality of stereo matching is con-
strained by the epipolar geometry. However, since SIFT fea-
tures are stored sequentially from left to right and top to down
of the image, it is not able to directly retrieve features satisfy-
ing epipolar constraints using only the SDRAMs addresses.
In other words, the locations of features are known only after
it is read from the SDRAMs. As a result, taking stereo match-
ing for example, to achieve local matching, we sequentially
read the feature according to the first right image feature
address to the one that has the location exceeding a certain
window size of the left feature location. Only the right feature
with locations satisfying the epipolar constraint is employed
for LES matching. As long as a right feature with location
exceeding a certain window size of the left feature location,
the rest of the right features are not necessarily read, for
they are definitely not the candidates on the epipolar line.
Such a mechanism also applies to frame-to-frame matching,
where the locality constraint is a window of a feature rather
than a epipolar line. Using local LES matching, unrelated
features are avoided for correspondences, thereby increasing
both computational efficiency and matching reliability.

As for the Coordinate Hold module, feature locations are
hold, waiting for the instruction from the LESMatchingmod-
ule. Only if a pair of stereo features is successfully matched
does the Coordinate Hold compute the corresponding 3D
points. The Euclidean space dimension (x, y, z) of a 3D point
is encoded respectively by 12-bit, 11-bit, and 12-bit, and
all three dimensions are signed binary numbers. Therefore,
a buffer is included in the Coordinate Hold module that
decomposes 45-bit 3D point data into two 32-bit data written
to DCFIFO#4.

The instruction from the LES Matching module is also
given to the Buffer 1312 to 32 module when stereo matching
is processing, where the matched left feature data is written
to DCFIFO#4. Note that for frame-to-framematching, it does
not need to compute 3D points in Coordinate Hold, and the
Buffer 1312 to 32 module is not used. Rather than writing
the outputs of the Buffer 1312 to 32 module to DCFIFO#4,
frame-to-frame matching only has to write the 3D matches.
Therefore, a multiplexer is involved in LES Top that selects
the inputs from either Coordinate Hold or Buffer 1312 to 32

FIGURE 5. LES controller and LES top modules.

modules respectively for frame-to-frame matching and stereo
matching.

Alike the SIFTController, once there is data in DCFIFO#4,
FSM Control sends a write request to Match Slave, and the
matches are then written to the SDRAMs by Master Inter-
face via Avalon Bus. A terminal signal is also written to
the DCFIFO#4 when the matching finishes. Hence, Nios II
processor is able to continuously detect the value of the
terminal signal SDRAMs address to investigate whether the
it is allowed to retrieve the matching results and proceed to
the next step.

Overall, during matching, Nios II processor is only respon-
sible for sending and receiving SDRAMs addresses as well
as hardware settings. Therefore, the LES Top module can be
processed at 200 MHz, while the LES Controller operates at
the same frequency as SIFT Controller which is 96 MHz.

VI. LES CONTROLLER AND LES TOP MODULES
The controller module for the pose estimation has very high
similarities to the SIFT and the LES Controller modules.
The ICP Controller connected with the ICP Top module is
presented in Figure. 6. The ICP Top module contains a ICP
FSM Control, governing the operations of the rest of the
modules of the ICP Top. Because each 3D point is 45-bit
and the ICP algorithm requires lots of multiplications and
divisions, data could be loss during integer arithmetic com-
putation. Thus, each point is enlarged to 64 bits. However,
there could be hundreds or even thousands of 3D matches,
to handle such a large amount of data requires lots of memory
storage. To avoid such a problem,we do not use on-chip RAM
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FIGURE 6. ICP Control and ICP Top modules.

to store all the 3D matches data when they are processed by
either Normalize or Transform module. Instead, the outputs
of these twomodules are stored back to the SDRAMs through
a Buffer 45 to 32 module as well as DCFIFO#6. Likewise, the
inputs are read from the SDRAMs through DCFIFO#5 and
Buffer 32 to 45. This is quite different from SIFT and LES
blocks where data would not be read again once it is stored
in the SDRAMs. Although such a read/write procedure in
the ICP block could consume extra time, the burst read/write
mode service offered by Avalon Bus still allows the system to
perform efficiently. Furthermore, a large amount of on-chip
hardware resources can be saved.

Providing frame-to-frame 3D points correspondences by
the LES block, in the beginning of the ICP block, the Nios II
processor transfers SDRAMs addresses of 3D points and
output poses as well as the number of matches to the ICP
Controller by Slave Interface via Avalon Bus. The matches
are stored in DCFIFO#5 where it is later read by the ICP
Top module. When DCFIFO#5 has at least two 32-bit data,
a pair of 32-bit is enveloped to a 45-bit three dimensional
point data by the Buffer 32 to 45 module. The Normalize
module is used to normalize all the 3D matches, and the
output is later returned to the ICP FSMControl module before
being stored to the SDRAMs through DCFIFO#6. Note that
in the Normalize module, the matches are read twice from the
SDRAMs. The first time is read so that all matched points can
be summed up. Another time is read to divide the summation
for normalization.

After normalization, the normalized matches are read from
the SDRAMs to the Transform module. The Transform mod-
ule is responsible for transforming the 3D points in the current
camera coordination to the ones in the previous camera coor-
dination given a camera pose. In this paper, the initial pose
of the ICP algorithm is defined based on constant motion
assumption of visual odometry. As soon as a point is trans-
formed, it is stored back to the SDRAMs.

Followed by the Transform module, the Cross CovMat
module is used to derive cross covariance matrix. After that,
the camera rotation matrix can be obtained by finding the
closest orthogonal matrix of the cross covariance matrix in
order for the rotation matrix to meet the properties of special
orthogonality SO(3). Generally in the ICP algorithm, SVD
is used. However, carrying out SVD on an FPGA requires
large memory size to achieve precise integer arithmetic and
the performance degrades if operational frequency is not high
enough, as can be seen from [27]. Furthermore, SVD is
only used to compute the nearest orthogonal matrix in the
proposed system even though it is a powerful tool. Therefore,
this paper proposes a hardware oriented iterative approach
algorithm based on [28] that approximates the closest orthog-
onal matrixMCOM of M using

MCOM =M(
√

MTM)−1. (5)

The tricky part of using (5) is the square root of MTM.
Among all the possible solutions, non-closed-form methods
such as Newton’s iterative algorithm, Meini’s algorithm [29],
Denman-Beavers (D-B) algorithm, eigenvalue approach, and
so on, appear to be easier for hardware implementation due
to its simple use of matrix addition, multiplication, and inver-
sion. Newton’s method requires a good initial guess, and thus
the solution is likely to diverge. Meini’s and D-B algorithms
are preferable choices, for they not only provide satisfactory
convergence rate, the computations are also simple. Never-
theless, investigating both algorithms it is found that Meini’s
approach demands 4 matrix multiplications in each itera-
tion, while D-B algorithm does not need any multiplication.
Instead, only matrix additions are required. Considering inte-
ger computation used in the proposedVO system,matrixmul-
tiplication could indirectly enlarge integer arithmetic errors,
not to mention that Meini’s method is an iterative algorithm.
Hence, this paper utilizes D-B method for the matrix square
root, without the need of intricate floating point arithmetic
in hardware. Consequently, the expression in (5) can be
rewritten to

MCOM ,p =M(
√
MT

pMp)−1, (6)

where p is the iteration index of the D-B algorithm,

MT
p+1Mp+1 =

1
2

(
MT

pMp + N−1p
)

(7)

Np+1 =
1
2

(
Np + (MT

pMp)−1
)
, (8)

VOLUME 9, 2021 103273



C.-H. Chien et al.: Multiple Master-Slave FPGA Architecture of Stereo VO

and when p = 0, Mp and Np be the initial cross covariance
matrix computed in the Cross CovMat module and the iden-
tity matrix, respectively.

However, [29] conducted numerical experiments and
reported that Meini’s method is the fastest and reliable
method. It is true that DB method does not converge as
fast as Meini’s, thereby increasing the risk of accumulating
integer arithmetic error asmore iteration is used. Nonetheless,
as mentioned earlier, implementing Meini’s method on hard-
ware could lose data duringmatrix computations. Henceforth,
we still use D-B algorithm in this paper, but we additionally
employ a Taylor series approach for approximating the near-
est orthogonal matrix after MCOM ,p, with p be an arbitrary
integer obtained in (5), is already nearly orthogonal in order
to speed up the approximation procedure. This reformulates
(6) as

MCOM ,p+1−λ = λMCOM ,p + (1− λ)MTS , (9)

where λ is set to 1 initially such that the closest orthogonal
matrix of M is computed by (6). When the orthogonality of
MCOM ,p with p be an arbitrary integer satisfies the following
1-norm residual criteria,∥∥Zp∥∥ = ∥∥∥MT

COM ,pMCOM ,p − I
∥∥∥ < δ, (10)

λ becomes 0, enforcing MCOM ,p to be further approximated
to MCOM ,p+1 by means of MTS which is derived using the
residual in (10) and a Taylor series approximation to the
second order,

MTS = MCOM ,p(MT
COM ,pMCOM ,p)

−
1/2

= MCOM ,p(I+ Zp)−
1/2

≈ MCOM ,p

(
I−

1
2
Zp +

1
8
ZTpZp

)
. (11)

In (11), when
∥∥Zp∥∥ < 1, the convergence ofMTS is locally

uniform and normal; hence the value of δmust be set below 1.
Using (9) with MCOM ,p and MTS defined respectively in
(6) and (11), the hardware implemented closest orthogonal
matrix solver can be easily achieved without the loss of
data during integer arithmetic computation and the need of
large on-chip memory capacity. Equations (6) and (11) are
respectively done in the Denman-Beavers module as well
as the Taylor module shown in Figure. 6. Note that since
the translation matrix in an ICP algorithm is simple, it is
implemented together in the Taylor module. Another notice is
that the above-mentioned closest orthogonal matrix approach
is different from our previous work [18] in that a variable λ is
involved in, and the criteria of orthogonality given in (10)
is proposed. Moreover, the hardware architecture is totally
different as well.

After the camera pose is completely derived, the data is
sent back to the SDRAMs via Buffer 45 to 32, DCFIFO#6,
and Master Interface. Finally, Nios II is capable of retrieving
data from the SDRAMs addresses of the pose.

VII. EXPERIMENTS
A. EXPERIMENTAL SETUP
To evaluate the proposed multiple master-slave HW/SW co-
design FPGA design of a VO system, Altera DE2i-150
Cyclone IV FPGA board is employed. To compare the run-
time of aVOwith a general desktop PC, an i7 CPUof 4.2GHz
as well as a 4.00 GB RAM is involved in. Additionally,
considering the operating speed, comparisons are made with
various prior works including VO and VIO systems.

Regarding the proposed hardware implemented parallel
image pyramid, parameters used in the genetic algorithm of
the first and second steps of the optimization is provided
in Table 1. Because the number of parameters used for opti-
mization in the second step is greater than the first step,
the required number of iterations of the second step problem
is greater. Moreover, the terminal fitness value in the first
and second steps are respectively the relative scale and sum
of difference of Gaussian image intensities. Verifications of
the optimization results are provided bymeans of peak signal-
to-noise ratio (PSNR) between software and hardware, where
images used in the optimization include the ones from the
EuRoC dataset [30], KITTI dataset, TUM dataset, and [18].
The total number of images is 50, and the final optimal
solution is taken from the average of all the optimality.

TABLE 1. Parameters used in the genetic algorithm.

As for the robustness of the proposed system in terms
of VO pose estimations, KITTI dataset is adopted due to
its fruitful and challenging outdoor scenarios. The KITTI
images are prior to be cropped into a resolution of 640×480.
Additionally, due to limited storage of the Flash memory
on the DE2i-150 FPGA board, the number of stereo images
in one sequence loaded into the Flash memory is restricted
to no more than 248 images. Therefore, the experiments
conducted by the stereo VO in this paper performs only from
the first image to the maximal 248th one. Metrics for the esti-
mation accuracy include relative pose estimation (RPE) and
absolution trajectory error (ATE). Two timestamps 1t = 2
and 1t = 5 of relative poses in RPE are investigated in
the experiments. Also, to testify that the proposed hardware
design achieves comparable results with respect to the PC
software, estimation error between hardware and software is
also concerned. Note that since we are unable to acknowledge
what accuracy metrics were used in [10], [15] and [26], and
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the number of images is limited in our experiments, compar-
isons with prior works cannot unfortunately be made.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) HARDWARE IMPLEMENTED PARALLEL IMAGE PYRAMID
In the first step of the optimization problem, the best optimal
solutions of σs,0 and k are respectively 0.7 and 1.258. Because
the scale of the top level image in the parallel pyramid is
fixed to 10, the base scale is not 1.6 as suggested by the
original SIFT algorithm.However, the relative scales between
levels are similar, as can be seen clearly from the scale curve
shown in Figure. 7. To show that the base scale assigned as
1.6 is not a preferable case given σh,5 = 10, Figure. 7 also
plots the scale curve where σs,0 = 1.6, where it does not
hold high similarities with the original SIFT algorithm. Note
that in Figure. 7, the scale of the top level image of the best
solution does not exceed 1.5. It is recognized in Figure. 3 that
the difference of intensities with respect to the original image
when the scale is 1.5 is lower than the case when the scale
is above 4. Therefore, approximating the scales of parallel
image pyramid using software shown in Figure. 2 (a) imposes
the reduced blurring effectiveness such that the condition
of σh,5 = 10 can be satisfied. Nevertheless, according to
the author of the SIFT algorithm [3], as long as an image
pyramid is built with proper relative scales, it suffices to
reliable feature matching. Hence, the optimal solutions are
used in the proposed hardware system.

FIGURE 7. Scale curve of the image pyramid obtained in the first step of
optimization.

As for the second step, the best scales of level 1 to level 4 of
the hardware parallel image pyramid along with the PSNR
value of each level of image is presented in Table 2, where
σh,5 = 10 and σh,0 = 0.7 are obtained from the first step. The
PSNRvalues shown in the table are all above 45,meaning that
there is no significant difference of Gaussian image intensi-
ties provided by the software and hardware. Consequently,
these scales are used for the hardware implemented parallel
image pyramid.

2) RUNTIME EFFICIENCY
The efficiencies of the SIFT, LES, and ICP blocks in terms
of fps compared to a desktop PC are shown in Table 3. The
software PC implements SIFT, LES, and ICP from scratch
without using packages such as OpenCV. Therefore, the

TABLE 2. Optimal scales of levels of parallel image pyramid and their
PSNR valies.

TABLE 3. Efficiency comparisons of the SIFT, LES, and ICP blocks
compared to a desktop PC.

TABLE 4. Efficiency comparisons of the proposed system and other
publications.

algorithm is fully operated in sequential manner. In the table,
the runtime of the SIFT block is the scenario when 1,968 fea-
tures are extracted. On the other hand, the LES block used
for stereo and frame-to-frame matching performs 1968 to
2103 feature matching and 312 to 338 features, respectively.
From the comparisons, it is clear that the proposed hardware
based VO provides 43.2 fps, which is around a speedup
of 4,955× compared to the PC.
Aside by comparing FPGA hardware with a software

PC, Table 4 shows further efficiency comparisons between
the proposed system and recent prior works including a
HW/SW co-design feature based VO system [15] and var-
ious feature-based VIO systems including [10], [12], [14],
and [17]. Although different dataset scenarios are used in
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TABLE 5. Required hardware resources of the proposed VO system.

these methods, the image size is similar. Also, the number of
tracked features among these approaches is also comparable,
except [15] where huge amount of features is needed to be
tracked due to little textures provided in the Mars rover envi-
ronment. Since [15] proposed five different pipeline imple-
mentation, Table 4 gives the average outcome (1.31 fps) and
the result of the least runtime required pipeline (1.77 fps).
As for [14], its computational time depends on its running
frequency, where the fastest case (142 fps) runs at its max-
imum frequency while the lowest one (20 fps) runs at the
rate of which sensor data is captured. Given that a CCD
camera compatible with the platform used in this paper runs at
133MHz, we are able to firmly state that the proposed system
can also be applied to online operation in 33.2 fps. Hence,
consider real applications, the proposed method outperforms
other existing works according to Table 4.

3) HARDWARE RESOURCE REQUIREMENTS
The on-chip resource usage of the hardware platform in
this paper is listed in Table 5. The utilization of DSP ele-
ments comes from specific circuits loaded from Altera’s
packages, such as signed and unsigned dividers. From the
table, it is clear that because of the off-chip memory that
help storing feature data, the overall design is capable of
fitting in one DE2i-150 board. Moreover, the amount of logic
elements (LEs) takes around only 63.52% of the capacity.
Therefore, the proposed design is not only highly reconfig-
urable, but also demands limited hardware resources, leaving
substantial supports for future developments.

4) ROBUSTNESS OF THE PROPOSED VO SYSTEM
Using 11 sequences of the KITTI dataset, the proposed FPGA
implemented VO provides accurate relative pose estimations,
as can be seen from Table 6. Note that in our experiments
only 248 images are performed due to limited Flash mem-
ory storage. The RPE metric demonstrates that the proposed
FPGA-based VO is capable of reliably estimating the relative
pose, yielding an average RPE error of 0.517 and 0.8 meters

TABLE 6. RPE and ATE of the proposed VO system.

FIGURE 8. Trajectory comparisons of the sequence 09.

FIGURE 9. Trajectory comparisons of the sequence 10.

for all KITTI sequences when 1t = 2 and 1t = 5,
respectively. ATE, in contrast, shows greater error because
of the accumulated errors posted by the VO. Nevertheless,
comparisons made with the PC software reveals that the
proposed FPGA design still provides sufficient estimation
accuracies, with an average of 2.7%.

As mentioned in Section II, as the ICP block finishes
computing camera poses, the output data is packed in a
compressed file by Nios II and is transferred to the host com-
puter for display. Specifically, we use MATLAB to plot the
trajectories. The following figures show selected estimation
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outcomes of sequence 09 and 10, where green and red tra-
jectories respectively represent the ground truths and the
FPGA outputs. In sequence 09, there is no significant shift
from the ground truths to the estimations, yet the errors are
accumulated clearly at the end of the trajectory. As for the
sequence 10, the estimation drifts are gradually significant as
the camera explores the environment. Nonetheless, according
to Table 6, in terms of ATE, an average of 1.084 meters is
given by the proposed hardware design.

VIII. CONCLUSION AND DISCUSSIONS
In this paper, a multiple master-slave HW/SW co-design
architecture of a VO is proposed. The master-slave structure
allows the overall system to be highly reconfigurable and eas-
ily managed. The use of a Nios II processor built in the hard
core organizes the pipeline computation of hardware modules
only, whereas primary computations are made in hardware.
To determine scales of Gaussian images for hardware design
of parallel image pyramid, genetic evolutionary algorithm is
employed to optimize both the relative scale between levels
with respect to the original SIFT algorithm, and the difference
of intensities obtained by software and hardware. LES block
for stereo and frame-to-frame correspondences is proposed
to give robust and efficient local feature matching. Pose
estimations are made by the 3D-3D points ICP algorithm,
where a hardware design of a nearest orthogonal matrix
algorithm is proposed to prevent the reliance on SVD. This
saves lots of memory storage while simultaneously providing
accurate integer arithmetic computation. Experiments show
that 33.2 fps of runtime efficiency can be achievedwithout the
need of huge hardware resources requirements. Also, using
the KITTI dataset, the proposed VO system is capable of
providing 0.66 and 1.084 meters of estimation errors in terms
of RPE and ATE, respectively.

There are several challenges that remain open for future
works. These include adding a data valid signal to the
SIFT Top module such that the memory capacity of
DCFIFO#1 shown in Figure 4 can be reduced. In addition,
a hardware implemented RANSAC algorithm used to remove
false feature correspondences in the LES Top module can
help improve the ICP estimation accuracies. Furthermore,
using a real stereo camera on the FPGA board allows the
proposed system to perform in real environments. As demon-
strated in our experiments, this also prevents the problem of
limited storage of number of gray images in the SDRAM.
Therefore, in our future works, it is worthwhile to further
strengthen the proposed system by reducing the usage of
hardware resources of the SIFT Top module, excluding out-
liers of feature matching in the LES Top module, and design
an stereo camera input circuit for capturing images from the
real environments.
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