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ABSTRACT The IoT, or Internet of Things has been a major talking point amongst technology enthusiasts
in recent years. The internet of thing (IoT) has been emerged and evolved rapidly, making the world’s fabric
around us smarter and more responsive. The smart home uses one such transformation of IoT, which seems
to be the wave of the future. However, with the increasing wide adoption of IoT, data security, and privacy
concerns about how our data is collected and shared with others, has also risen. To solve these challenges,
an approach to data privacy and security in a smart home using blockchain technology is proposed in this
paper. We propose authentication scheme that combines attribute-based access control with smart contracts
and edge computing to create a secure framework for IoT devices in smart home systems. The edge server
adds scalability to the system by offloading heavy processing activities and using a differential privacy
method to aggregate data to the cloud securely and privately. We present several aspects of testing and
implementing smart contracts, the differential private stochastic gradient descent algorithm, and system
architecture and design. We demonstrate the efficacy of our proposed system by fully examining its security
and privacy goals in terms of confidentiality, integrity, and availability. Our framework achieves desired
security and privacy goals and is resilient against modification, DoS attacks, data mining and linkage
attacks. Finally, we undertake a performance evaluation to demonstrate the proposed scheme’s feasibility
and efficiency.

INDEX TERMS Blockchain, smart home, access control, smart contract, differential privacy, cyber threats.

I. INTRODUCTION
Technologies have made it possible for residence building
with integrated Internet of Things (IoT) network offering
increased comfort, security and quality of life. As such,
an IoT infrastructure underpins a smart home network, which
connects various smart devices (such as smartphones, smart
metres, wearable gadgets, and so on). People’s ability to live
independently can be enhanced and enabled by smart home
technology. They include a variety of useful technologies,
such as those for monitoring and assessing health, which
appeals to both users and device manufacturers. The value
of the worldwide smart home market is expected to hit
$53 billion by 2022, which is not surprising. This prediction is
based on a nearly 21 percent annual growth rate predicted for
the market from 2018 to 2022 [1]. Although the advantages
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of smart homes to homeowners and stakeholders are well
documented, there are a number of concerns to be aware of,
including cyber-attacks and threats to user data security and
privacy [2].

Traditional techniques dealing with such threats rely on
centralised structures that are vulnerable to cyberattacks [3].
As a result, the access control function is critical for prevent-
ing unauthorised users from accessing resources by explicit
or implicit requirements and only allowing authorised parties
access to resources. Traditionally, access controls have been
handled by centralised systems that are relatively easy to
operate [4]. This means that all access restrictions, such as
assigning access privileges, managing access (e.g. updates,
revocations) and access verification, are handled by a cen-
tral server. However, there is a risk that the server may
fail as a result of ‘natural’ (functional) or external factors
(cyber-attack), compromise the access control mechanism.
Furthermore, IoT systems’ massive scale and distributed
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nature create challenges for centralised strategies to regulate
requests for access to the desired resource [4].

Some of the limitations of centralised networks can be
overcome by distributed access control networks. Rather than
employing a single server, these networks use several nodes
to handle access control activities. To provide trustworthy
and dependable access controls that can withstand mali-
cious attacks, the nodes ‘agree’ on the rights to be assigned,
the policies to provide access, and the verification results.
As a result, there is an interest in using emerging blockchain
technology for distributed and reliable access control.

The emerge of distributed and tamper-resistant ledger-
based blockchain techniques to protect data has opened up
new possibilities for smart home data privacy, security, and
integrity challenges. Blockchain is made up of a digital ledger
that records and shares transaction information in the net-
work. Each user has access to secure, cryptographic public
and private keys in order to interact with the system. One user
can initiate the transaction with his keys, and the other users
in the network can accept it with their own keys. Once the
nodes agree that the originating user possesses the data they
claim, the transaction will be accepted, else, it is rejected [5].

Blockchain technology has proven to be effective in a
variety of smart home applications, including control over
access to the home, exchanging data, and so on. The use of
blockchain in smart home networks is also justified because
it works independently of current heterogeneous protocols
commonly used in smart homes (such as Z-Wave, Zigbee,
Bluetooth, and Thread) [6]. Nonetheless, using blockchain
directly in a smart home is always a challenge due to the high
level of resources consumed during mining and consensus
procedures as well as the limitations of node resources in
smart home devices.

In turn, Edge computing provides an alternative and com-
plementary technique for managing proof-of-work (PoW)
challenges while also supporting blockchain applications
in the smart home. Edge computing extends the spread
of cloud-based resources and services by performing com-
putation at the network’s extremes (edges). It has a
multi-access system that allows users to access cloud-like
services for better computing, apps, and storage. As a
result, resource-constrained smart home appliances may be
able to expand their computational capabilities by outsourc-
ing mining and storage to specified edge servers. Hence,
the combination of blockchain with edge computing cre-
ates a decentralised system for outsourcing computation and
storage security for scalable and safety proof operations [7].

While blockchain is regarded as the future of data storage
due to its decentralized structure, several issues are still to
be resolved before it is implemented in daily life scenarios.
A significant parameter in blockchain applications that needs
further development is data preservation and transaction pri-
vacy. Blockchain user identification across the decentralized
network is supported by the public key. As a result, all
identities do not remain private or anonymous. An adversary
in the role of a third-party may analyse the transactions

on the network and potentially infer the identities of other
users. In addition, blockchain’s decentralized structure allows
unprotected blockchain scenarios to be observed. Moreover,
additional privacy features are needed to better protect per-
sonal data on the blockchain nodes.With financial blockchain
systems for instance, the transaction details are broadcasted
across the decentralized network whenever a transaction
takes place [8]. This broadcasting occurs to safeguard each
blockchain node with up-to-date information. Furthermore,
the ledger recording the transaction remains uniform across
the network. An adversary may use this information to mon-
itor an individual and go back through the transaction details
to discover transaction information. Moreover, with regards
to blockchain-based IoT devices, an adversary may compro-
mise the information exchange between devices for illegal
purposes.

Furthermore, there are also privacy risks associated apply-
ing blockchain in other sectors such as financial, real estate,
and asset management [9]. That is, blockchain’s distributed
nature means that the individual’s identity or personal infor-
mation may be leaked during transactions. To date, literature
in the field on how to preserve the individual’s privacy in
blockchain has mostly focused on anonymization strategies
and their derivatives [10]. However, Studies show [11] that,
anonymization cannot ensure total privacy because of the
potential to combine anonymized data with similar datasets
to discover personal information.

To overcome the above mentioned issues and provide pri-
vacy protections, it may be useful to integrate differential
privacy based on machine learning with the use of the lat-
est blockchain technology. Differential privacy is efficient
at preserving privacy in statistical databases and real-time
settings [12]. Differential privacy is an approach to preserve
the confidentiality of data without risking its leakage by
adding noise to data without influencing the correct output
of the data analysis result.

The use of differential privacy can create a level of indis-
tinguishability in statistical blockchain data, leaving the ana-
lyst unable to predict with any certainty the accessibility of
individual blockchain nodes. Differential privacy is a good fit
to be used in blockchain technology in order to preserve the
individual’s identity during a broadcast. While ensuring that
the information remains useful for completing transactions,
differential privacy can still perturb the person’s identity to
the network and an adversary will not be able to determine
the sender’s or receiver’s actual identity. Thus, differential
privacy can help to keep private sensitive/personal informa-
tion in a dataset. Therefore, differential privacy in blockchain
applications may prove to be beneficial to protect data
privacy [12].

To address the concerns discussed above and motivated
by the advantages of integrated blockchain technology and
edge computing, we present a novel lightweight Ethereum
blockchain based multi-tier, smart-edge home architecture.
In our framework, every single home hasmulti edge servers as
local blockchain miners and the smart contracts are utilized to
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apply the policies and rules in an automatedmanner and regu-
late the smart home IoT devices based on the Attribute Based
Access Control (ABAC) scheme. The edge servers aggregate
data from the IoT smart home devices to the cloud server
for further storage and analysis after applying a differen-
tial privacy mechanism and providing a privacy preservation
system.

In this paper, we extend our earlier work published in [13]
and expand the functional capabilities of our architecture by
adding differential privacy as a scheme to preserve privacy of
users. Hence, this paper presents a novel architecture involv-
ing authentication scheme based on Ethereum smart con-
tract [13], integrated edge computing and differential privacy
enhancement model. The main contributions in our paper are
based on the following:

• We design a privacy-preserving and secure decentral-
ized Stochastic Gradient Descent (SGD) algorithm using
blockchain.

• We apply machine learning on the differential privacy
mechanism to send data from private smart home to the
cloud.

• We present detailed analysis on our proposed scheme
and show how the proposed model can defend against
traffic analyses and data mining based attacks such as
linkage attacks.

• Complete design of the Ethereum smart contract includ-
ing implementation and testing scenarios are presented
to validate our proposed scheme.

• Performance evaluation of our proposed scheme is pre-
sented by comparing them with existing models with
respect to various performance metrics.

• Security analysis of our proposed scheme using threat
model to overcome Denial of Service (DoS) attack
scheme is presented by determining the efficiency of our
proposed model.

The remaining sections of this article are organized as
follows. Section II presents relevant background information
about core technology. Section III reviews existing works in
blockchain, smart home and differential privacy. The pro-
posed solution is implemented and described in Section IV.
We investigate the main results of security, privacy and
performance analysis in Section V. Finally, in Section VI,
we conclude the paper and provide direction for future works.

II. RESEARCH BACKGROUND
This section provides the background information needed
to understand the proposed framework. It discusses the key
concepts of smart home, access control, blockchain technol-
ogy, Ethereum with smart contracts, ERC 20 token, Edge
computing and differential privacy that set the stage for the
rest of this paper.

A. SMART HOME
Despite countless publications attempting to define the cri-
teria for a standard definition of smart home, there is still

no consensus on what represents a smart home. The term
‘‘smart home’’ is commonly used to describe a place of resi-
dence with technology capabilities to enable task automation,
monitoring of people and activities, and health-maintenance
mechanisms. All elements in a smart home can communicate
with one another across a network and can be controlled
both locally (from within the home) and remotely (through
the Internet). Given its wide range of applications, this type
of system has a lot of promise to improve security, pro-
vide a more energy-efficient alternative, and promote user
comfort [9]. In this paper, we use a holistic definition of a
smart home; one that uses Internet-connected devices to serve
a variety of functions. Smart TVs, smart temperature controls,
smart hubs, and other connected devices are examples of
smart home gadgets. Typically, companies that provide IoT
devices for smart homes need access to their interface in
order to control the devices. As a result, smart homes with
several devices from various manufacturers may have several
disconnected interfaces, necessitating well-defined device
management. Becausemost of the device’s resources are used
to perform other functions, IoT devices lack the resources to
carry out security actions [14]. Hence, a security mechanism
integrates the necessary processes to address current IoT
concerns without utilizing significant resources.

B. ACCESS CONTROL SCHEME
Access control systems are usually based on access control
lists (ACLs), which provide users access permissions. When
there is an increase in the number of users seeking resources,
ACLs become more difficult to govern. As a solution to
this limitation of ACL systems, designers have created Role
Based Access Control (RBAC) systems, [15] which add an
intermediate layer to the process of distributing role per-
missions rather than giving them directly to users and then
assigning them their roles. This strategy can considerably
reduce the time and effort required to monitor access con-
trol rules. This is even when the number of subject roles
and resources are increased, or when the system contains
many administrative fields. Attribute Based Access Con-
trol (ABAC) systems attempt to address the issues associated
with increase in the number of roles by allowing users to
apply the subject’s attributes directly, as well as resource and
environmental properties. This can be done to describe the
access policies and, as a result, reduce the number of rules or
rule updates. On the other hand, ABAC still requires to access
a consistent description of the field attribute and the definition
of attributes across many fields. [16].

Goyal et al. [17] demonstrate the applicability of
Attribute-Based Encryption to share of audit-log information
and broadcast encryption. In their scenario, the data is stored
on the server in an encrypted form while different users are
still allowed to decrypt different pieces of data according
to their security policy. This effectively eliminates the need
to rely on the storage server for preventing unauthorized
data access. Moreover, Hu et al. [18] publish a guide to
Attribute Access Control with a definition of ABAC and
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149 descriptions on the functional components of ABAC.
Also, the guide provides planning, design, implementation,
and operational considerations for employing ABAC within
a large enterprise with the goals of improving informa-
tion sharing while maintaining control of that information.
Furthermore, attribute based access control has been used
in blockchain architecture. Zhu et al. [19] present a new
digital asset management platform, called DAM-Chain, with
Transaction-based Access Control (TBAC) which integrates
the distribution ABAC model and the blockchain technol-
ogy. They take transaction as a bridge to integrate ABAC
and blockchain into a new platform for resource distribution
and sharing. They claimed that their proposed platform sup-
ports flexible and diverse permission management as well
as, verifiable and transparent access authorization process in
blockchain based architecture.

Also, Rouhani et al. [20], propose a distributed
Attribute-Based Access Control (ABAC) system based on
blockchain to provide trusted auditing of access attempts.
Besides auditability, the system presents a level of trans-
parency that both access requestors and resource owners can
benefit from it. They present a system architecture with an
implementation based on Hyperledger Fabric, achieving high
efficiency and low computational overhead. They validated
their solution through a decentralized access control
management application in digital libraries.

This paper examines attribute based access control in par-
ticular, because, it is deemed to be an appropriate decen-
tralised model for IoT setup and provides scalability, flexible
and strong dynamics. Our access control scheme is different
from [21], in which the authors used three types of access
control procedures; device-to-device (D2D) access control,
device-to-user (D2U) access control, and device-to-fog server
(D2FS) access control to authenticate users in (internet of
Everything )IoE. Our access control is based on different
policies which combines a set of subjects (users), a set of
Objects (IoT devices) and a set of Actions to state that this
user can perform the action in the IoT device. The policy is
invoked whenever there is an access request from any user
or device in the network using the smart contract. Moreover,
we integrate the token mechanism to further finalize the per-
mission to access the IoT devices. The smart contract checks
the policies and then tracks the token amount to ‘who owns’
and ‘how much’ of that particular token to access certain IoT
device.

C. BLOCKCHAIN TECHNOLOGY
Blockchain is defined as a decentralised, distributed, and
immutable ledger that maintains a record of assets and
transactions on a peer-to-peer (P2P) network [8]. Thou-
sands of network-based mining nodes register and validate
each transaction digitally in the blockchain. All the trans-
actions are stored and organised in ‘blocks’ using time-
stamps. Several blocks are then linked together to form a
‘blockchain’. To ensure the authentication and integrity of the
data, the blockchain uses elliptic curve cryptography (ECC)

and SHA-2 hashing technique for robust cryptographic proof.
Bitcoin is awell-known example of blockchain infrastructure.
In general, the blockchain architecture that supports Bitcoin
is the same architecture that powers most cryptocurrencies.
In turn, the Ethereum blockchain’s growth and use of smart
contracts result in infinite number of cryptocurrencies [22].

D. ETHEREUM WITH SMART CONTRACT
Ethereum includes smart contract features as part of its decen-
tralised platform. The Ethereum smart contract, invented
by Vitalik Buterin in 2013, supports event-directed, tur-
ing complete scripting functionalities for verifying and pro-
cessing complex transactions to demonstrate the contract’s
validity [23]. ) In terms of the smart contract, it works
similarly to an event-directed script in that it executes the
script automatically once the pre-defined criteria are met.
All relevant functions and processes must be in place before
the smart contract can be executed [24]. Externally Owned
Accounts (EOA) and Contract Accounts are the two types
of accounts in Ethereum. Each account type has its own
unique address, which is a 20-byte hexadecimal string. The
EOA, which includes an ether balance, is controlled by the
owner’s private key, which also transmits transactions (for
example, sending a message to prompt the initiation of a
smart contract). An EOA does not have a code assigned to it.
On the other hand, a contract account with an ether balance
also has a related code that is activated by another smart
contract or a transaction.

E. ERC-20 TOKEN
ERC-20 stands for ‘‘Ethereum Request For Comments,’’ and
the number 20 serves as a unique identifier to differentiate
from the other standards. It is a protocol that defines a set of
standards and rules for token issues on the Ethereum network
and is used to create blueprints for smart contracts based on
Ethereum. As a technical standard, ERC-20 has become one
of the most important and widely used tokens for all smart
contracts on the Ethereum blockchain [25]. ERC-20 defines
a set of six functionalities within the Ethereum system for the
benefit of other tokens.

1) totalSupply (): to figure out how many tokens were
created and exist in the system.

2) balanceOf (address owner): to returns the number of
tokens in an account for a given address.

3) allowance (address tokenowner, address spender): The
user’s balance is one of the most critical data needed
to complete a transaction. To carry out a transac-
tion, the user must have a certain number of tokens.
If the user does not have the required number of
tokens, the allowance () function is used to cancel the
transaction.

4) approve (address spender, unit tokens): The con-
tract owner allows collecting the required amount
of tokens from the contract’s address once the user
has the required amount of tokens for a transaction
and the balance has been checked. By comparing the
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transaction to the total token supply, this function
ensures that there are no additional or missing tokens.

5) transfer (address to, unit tokens): This transfer()
function enables the contract owner to send tokens.
It enables the contract owner to transfer amounts of
the token to other addresses. Also enables a definite
number of token transfer between the total supply and
a user account.

6) transferFrom (address from, address to, uint256
tokenId): The contract owner can transmit tokens using
the transfer() function. It allows the contract owner
to send token amounts to different addresses. Also it
allows a certain number of tokens to be transferred from
the overall supply to a user account.

F. EDGE COMPUTING
The ability of cloud computing to provide limitless pro-
cessing, data storage, and systems administration resources
has led to the development of many cloud-based apps and
the rapid expansion of Internet-based corporations such as
Amazon in recent years. The trend recently has been to move
cloud functions to network edges [26]. This is dependent on
delay-sensitive applications (for example, virtual reality) with
strict delay requirements. Edge computing has putmore strain
on cloud resources and services in order to provide mobility,
location detection, and lower latency. As a result of these
benefits, network edge technology is critical to realise the
future IoT [27].

The edge computing structure has three levels: end device
(front-end), edge server (near-end), and core cloud (far-end).
The three-level hierarchy depicts the elements’ computing
capacity as well as their edge computing characteristics.
Sensors and actuators on the front-end provide extra and
improved user responsiveness. The resource requirements
have to be dispatched to the server, however, given their
restricted capacity, near-end edge servers handle most net-
work traffic and a variety of resource needs (such as real-time
data processing and computation offloading). As a result of
deploying edge servers, end users benefit from improved
computation performance at the cost of increased latency.
Far-end cloud servers provide greater processing power (e.g.,
big data analytic) and additional data storage space. The
objective of this system architecture is to enable the edge
network to support computation-intensive and time-critical
applications. Furthermore, certain edge server apps offer data
synchronisation via cloud communications.

G. DIFFERENTIAL PRIVACY
One of the efficient privacy preservation strategies is dif-
ferential privacy which is used to maintain the confiden-
tiality of data without risking data loss or data leakage.
In 2006, C. Dwork first introduced additional noise to the
data as a way to preserve privacy [28]. In terms of statistical
databases, attempts are made to protect privacy based on
differential privacy techniques adding noise to the data prior
to query assessment. Researchers subsequently started to use

differential privacy-related concepts in other domains to pre-
serve privacy in the user’s personal data. To achieve this
outcome, differential privacy perturbs sensitive data through
the addition of a specified (calculated) noise value. As such,
differential privacy can guarantee that the presence or absence
of a participant in a dataset will not affect the output results of
database query. Researchers have also applied the concept of
differential privacy in other applications such as health data
monitoring in real-time and IoT data etc. Additionally, to pro-
tect data from IoT nodes in the context of blockchain-based
IoT systems, they use data perturbation mechanisms using
differential privacy [29].

When including differential privacy in data, it is important
to consider two key parameters: sensitivitymeasurements and
suitable noise additions. The added noise may conceal the
critical value leaving the adversary unable tomake an approx-
imation of a particular individual’s presence or absence. The
sensitivity value typically varies according to the specifics of
the scenario; for instance, applications that need high level
privacy utilise large sensitivity values and those needing low
level privacy utilise small sensitivity values. Other solutions
have also been proposed by researchers including the choice
of dynamic sensitivity values where sensitivity values vary
automatically based on analyst and data provider require-
ments [30]. However, a high level of noise needs a high
sensitivity level. The use of a high sensitivity value reduces
data usefulness. Hence, a suitable trade-off between the need
for privacy and the need for truthfulness must be maintained
via adjustment to the sensitivity value. Moreover, the noise
addition method is essentially a protective event involving
minimum noise value calculations needed to protect data
privacy. The noise output is related to the sensitivity value.
The base function in this method needs the input to be of a
certain parameter to calculate the amount of noise.

There are three noise addition methods that researchers
use when calculating the noise value: Laplace mechanism,
Exponential mechanism, and Gaussian mechanism. As with
sensitivity, best choice noise addition method depends on
the nature of application. If it is a numerical output for
instance, the Laplace and Gaussian method will typically
be used, whereas, the Exponential method is applied for
non-numerical output [31]. In this paper, we consider the
definition of differential privacy as follows:
Definition: ε-differential privacy [28]: A randomized

mechanism f: D→R satisfies (ε, δ)-differential privacy if for
any adjacent datasets D and D’ and for any subset of outputs
S ⊂ R where R is the output space of f

Pr(f (D) = S)
Pr(f (D′) = S)

≤ eε + δ (1)

H. PRIVACY ISSUES IN BLOCKCHAIN-BASED
INTERNET OF THINGS
Blockchain technology relies on authentication and encryp-
tion services to preserve data security (i.e., secure
transactions). Cryptography and the use of a public key
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encryption are linked to such blockchain services. This
means that users must have access to both the public and
private keys in order to manage their transactions. Public key
cryptography works on the basis of two key types: public
keys, also known as distributed network keys, and private
keys, also known as personal individual keys. Public key
infrastructure is the most frequent technique providing key
management functions for cryptography in the blockchain.
(PKI) techniques based on blockchain are decentralised,
which eliminates the need for a centralised access point
or a trusted third-party [12]. Furthermore, these methods
do not require trustworthiness to be established via nodes
or system users in order to make the public system more
visible. Instant Karma PKI, Blockstack, and Certcoin are
only a few of the blockchain approaches that have been
mentioned in the literature to enable PKI encryption and
transaction security on blockchain nodes. Blockchain privacy
and security, on the other hand, are only now beginning to
be fully addressed. As explained by S. Nakamoto in [32]
any exposure of the private key owner’s identity can lead to
the disclosure of additional transactions by that owner using
linking techniques. Furthermore, when exposed to certain
types of attacks, the anonymity of blockchain users may be
compromised [33].

Moreover, as a means of privacy in Ethereum, Ethereum
uses cryptographic hash functions and transactions are
secured using cryptographic mechanisms-based privacy.
However, since Ethereum is a public ledger, all users may
access the decentralized ledger. The transaction data is
available online, and the inclusion of these cryptographic
frameworks does not guarantee full privacy. Deanonymiza-
tion attack is the most well-known privacy attack on
Ethereum, in which data from a distributed ledger is
deanonymized by linking and tracing features with other
databases [34].

Hence, the methods for preserving privacy in blockchain
applications is an important research issue. Some researchers
have sought to improve blockchain privacy through the use
of different strategies such as the use of two-level anonymity.
Additionally, Christidis and Devetsikiotis in [35] focused on
resolving confidentiality issues based on public blockchain
transaction to enhance blockchain trustworthiness. Another
potential solution is the use of a differential privacy pre-
serving strategy that utilises data perturbation methods for
the protection of private data in the blockchain. Differential
privacy provides the functionality of adding noise to the
stored distributed ledger records to address this problem.
Differential privacy’s randomness noise can be used in a
variety of ways such as adding the noise for non-trusted users
or users without a clear task in the network. It may be possible
to only allow query evaluation in the public ledger to analyze
any record or previous transaction and add noise to this query
evaluation to protect privacy. Also, Ethereum’s smart contract
gives developers the ability to add differential privacy to their
truncation’s [34]. The flexibility of choosing suitable way to
add noise based on privacy and utility requirements make the

use of differential privacy optimal to overcome the privacy
issues in blockchain based architecture.

III. EXISTING WORKS IN BLOCKCHAIN
Data security and privacy with IoT devices in a smart home
is one of the major challenges as connected IoT devices
are vulnerable to various attacks and they lack basic secu-
rity features. To address these issues, numerous centralized
solutions have been proposed [36]. Amadeo et al. [37],
proposed an information-centric network-based system for
smart home services with a three-layered architecture includ-
ing remote cloud, fog layer with smart home servers and
end devices. The platform enables real-time systems to be
deployed, including smart monitoring and control applica-
tions. Another framework proposed in [38] integrate exist-
ing IoT architecture components. They looked at IoT smart
home challenges and solutions in order to bridge the gap
between current state-of-the-art smart home applications and
the possibility of integrating them into an IoT-enabled world.
Also, Sun et al. [39], promote the vision of Smart and Con-
nected Communities (SCC). They integrate IoT with cyber
physical cloud computing and big data for smart tourism
to enhance a community’s preservation, liveability, revitali-
sation, attainability, and security. However, all these works
are based on central architecture where the communica-
tion and processing overhead, access control and a single
point of failure are major challenges. Therefore, various
researchers [12], [32]–[35] have turned-out the atten-
tion towards distributed Frameworks and proposed popu-
lar blockchain based solutions for various IoT use cases.
Furthermore, because in the design of blockchain-based IoT
systems, privacy is not pre-enforced and private data can be
leaked using certain attacking approaches. Researchers pro-
posed various privacy preservation strategies such as differ-
ential privacy for different applications of blockchain based
on cloud computing and machine learning [49]–[61].

A. BLOCKCHAIN AUTHENTICATION, ACCESS CONTROL
AND EDGE COMPUTING IN SMART
HOME APPLICATION
Authors in Lee et al. [3], looked at the concerns surrounding
‘gateways,’ or connections between IoT devices, claiming
that such centralised arrangements present several security
risks such as integrity, certification, and availability. The
authors responded by proposing a blockchain-based smart
home gateway network that can protect against potential
gateway attacks. The blockchain technology network, which
is made up of three layers: device, gateway, and cloud,
is utilised at the gateway layer to facilitate decentralisation
by storing and exchanging data blocks. This maintains data
integrity both inside and outside the smart home and avail-
ability through authentication and communication between
network users. On the other hand, their architecture has some
limitations in terms of the computing complexity imposed by
blockchain operations at the gateways.
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Moreover, in [40] authors integrates both blockchain and
group signature to anonymously authenticate group mem-
bers, as well as message authentication code to efficiently
authenticate home gateway without leaking information in
smart home scenario. In HomeChain, all request records
from group members (or revocation requests from the group
manager) will be chained into the blockchain. Due to the
immutability of blockchain and traceability of group signa-
ture, these records are not easy to be tampered or deleted and
hence may provide reliable auditing. however, there was no
access control policy but, they adopted a revocation list to
revoke authorities of malicious users.

The benefits of using Ganache, Remix, and web3.js archi-
tecture for smart home based IoT blockchain (SHIB) to over-
come the difficulties of data privacy, trust access control, and
the ability to extend the systemwere advocated by the authors
in [41]. They presented an IoT gateway for connecting a smart
home’s cluster of IoT devices to a blockchain network. Their
work is complicated by the fact that each user and IoT device
must be assigned to one and only one subject-object pair
due to the fact that, gateway may not have enough computer
power to handle large transactions.

In [42], authors presented a private blockchain-based
access control (PBAC) approach to solve data security and
privacy issues while using smart devices in smart home sys-
tems. Within the IoT system, the proposed PBAC provides
‘‘an unforgeable and auditable foundation’’ that can prevent
unauthorised data access, protect data security from threats,
and enable accurate, robust, and instant access to information.
They only recommended one internet server as an adminis-
trator. However, the entire system fails if the administrator is
inactive.

Authors in [36] proposed utilising a blockchain-based
approach based on Proof-of-Authority to develop a consensus
mechanism for better managing home appliances in a decen-
tralised framework. When compared to a standard Proof-
of-Work based system, the authors demonstrated additional
features to improve the effectiveness of a blockchain method
using Proof-of-Authority as the consensus mechanism to
address security concerns.

The implementation of IoT and blockchain-based
Multi-Sensory Frameworks in the context of in-home quality
of life (QOL) for recently diagnosed cancer patients was
studied in [43]. Multiple medical and ambient intelligent
IoT sensors can capture QOL data from the smart home
environment and securely share it with a specified com-
munity of interest using the authors’ suggested blockchain
and off-chain based framework. The in-home secure mon-
itoring system captures QOL data, such as transactional
records and multimedia-based big data (e.g. physiological
and mental state data), which the authors may manage using
blockchain-based data analytics.

In [14], the author suggested a lightweight blockchain-
based architecture for IoT that considerably decreased the
overheads of traditional blockchainwhile retaining themajor-
ity of its security and privacy benefits. The design allows

high-resource devices to create an overlay network in order
to use a publicly available distributed blockchain that ensures
end-to-end security and privacy. Furthermore, it employs a
distributed trust to provide excellent security and privacy for
IoT applications, it minimizing the time necessary to execute
block validation. However, no information on the establish-
ment of this scalable blockchain or the security certificates
was provided.

In [44] the author implemented IoT-based architecture in
tandem with BC (Hyperledger Fabric) to assess the validity
of the communicating devices whether normal or malicious.
They tested their scheme in a smart home-based scenario.
However, the transaction size in Fabric are larger than other
blockchain platform because they also carry the certificate
information for approval. Therefore, the latency gets worse
with increase in block size in their scenario.

In [45] authors proposed an Attribute-Based Access
Control (ABAC) framework for IoT systems by using the
emerging Ethereum smart contract technology. The frame-
work consists of four different smart contracts to manage
ABAC policies, attributes of subjects and objects and perform
access control. However, the main drawback of their frame-
work is that, the average time for access control is high due to
complex interactions between the access control contract and
other smart contracts for retrieving attributes and policies.

In [46] authors propose a smart contract-based frame-
work, which consists of multiple access control contracts
(ACCs), one judge contract (JC) and one register contract
(RC), to achieve distributed and trustworthy access control
for IoT systems. However, one ACC is deployed for only
one subject-object pair. Therefore, the gas cost will increase
linearly as the number of subject-object pairs of the sys-
tem increases which indicate a higher cost to implement the
framework. In our work, we address all these issue by imple-
menting Ethereum smart contract to decrease the transaction
size and the latency. We also proposed two smart contracts
to avoid the complexity and consume less gas and better cost
compared with other frameworks.

B. INTEGRATING DIFFERENTIAL PRIVACY
INTO BLOCKCHAIN
Blockchain data training using machine learning algorithms
are currently being used to generate useful solutions by
providing better insights to the available data across most
fields including, bioinformatics and wireless communica-
tion [47]. In addition, a machine learning based approach
combines many practical applications including blockchain
and healthcare. This creates new possibilities in data
analytics. Machine learning includes the use of an avail-
able dataset to train a computer. Traditionally, the dataset
has a centralized information but, when used in blockchain,
the training occurs in a decentralized distributed informa-
tion source with multiple computing nodes involved in the
learning process [48]. Because, data are distributed across
all computing nodes, learning can be supported by a privacy
preserving strategy. To resolve this issue, Chen et al. [49]
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recommended a decentralized approach to machine learning
based on differential privacy that protects user privacy by
utilising stochastic gradient descent (SGD). Referred to as
‘‘LearningChain’’, the authors claim that the strategy facil-
itates both private learning and a reduction in error rates.
The strategy relies on the process of perturbing normalized
local gradient information prior to it being mined into the
blockchain. As such, data are protected and made tamper-
proof, and only targeted and protected records are mined in
the blockchain. The authors also utilise a public blockchain
and conduct consensus via the use of a proof-of-work (PoW)
consensus tool.

To ensure that the system remains protected against byzan-
tine attacks, an l-nearest aggregation algorithm is applied
providing protection to private data prior to and during the
collection by rendering it impossible to differentiate from
its neighbours. An Ethereum network is used to develop the
final model and is analysed via the use of MNIST [50], and
Wisconsin breast cancer datasets [51]. Kim et al. [52] also
discuss differential privacy integration in machine learning
scenarios using blockchain. Their work improves usability
and transaction latency as well as provide privacy protections
by conducting experiments to add noise repeatedly using
differential privacy. Repeated-additive noise is utilised along
with local gradient to protect the privacy of blockchain users.
A private blockchain was used by the authors to mine the
blocks with a PoW consensus tool. According to the authors,
the trust users have in distributed machine learning can be
strengthened with the introduction of an efficient perturba-
tion tool using differential privacy. Furthermore, the authors
stated that it increases user participation by overcoming
attacks across the blockchain network. With this in mind,
it may be concluded that a differential privacy protection
strategy is an efficient way to protects the privacy of users in
scenarios related to machine learning using a decentralized
blockchain.

Advances in smart grids are also developed and deployed
leading to new challenges in research and technology. One
challenge for instance is how to manage and perform smart
grid operations (e.g. communication, energy trading, renew-
able energy management, and so forth) effectively [53]. The
research field is currently investigating how to address these
challenges while also supporting the smart grid transfor-
mations to manage the challenges. A potential solution to
improve the management of smart grid operations is to inte-
grate it with blockchain technology. Various scenarios are
currently under consideration such as; the deployment of
blockchain at specific layers of the smart grid (e.g. consump-
tion layer and generation layer) to make the technology more
secure for users. Researchers in [54] provide a case study
of the implementation of a blockchain-based micro-grid in
Kazakhstan, focusing on its potential to improve the nation’s
energy trading possibilities via blockchain. Indeed, there is
a wide discussion in the literature regarding smart grid and
blockchain integration. However, it is also clear that the liter-
ature often neglects to focus on privacy preservation issues

in such scenarios. As a public distributed ledger, the inte-
gration of privacy protection in these types of models is
paramount.

Most operations conducted via smart grid scenarios are
regarded as real-time data analytic. Hence, the integration
of differential privacy noise-additive tool is a possible solu-
tion to these challenges. The authors in [55] conducted
several scenarios related to private energy trading in
blockchain-based smart grids. A private energy tradingmodel
was developed by the authors by applying basic differential
privacy implementation and by comparing their model with
current methods of differential privacy. The model relies on
a blockchain-based token bank to perform and store trans-
actions. In addition, the model provides differential privacy
by inhibiting linkages and circumventing data mining with
minimal consumption of computational power. Moreover,
the integration of differential privacy into a de-regulated
blockchain-based smart grid is presented in [56]. The authors
enhanced the proof-of-authority (PoA) mechanism through
its integration with PageRank to generate reputation ratings.
Laplace noise was added to enhance user privacy protections
and thus promote user participation. According to the authors,
user trust is enhanced in their strategy by overcoming issues
of similarity, and double-spending attacks. These examples
demonstrate that user privacy should be a key issue of
focus when integrating blockchain with smart grid. Hence,
additional research is also needed to generate evidence that
blockchain-based smart grids can be trusted.

C. INTEGRATION OF DIFFERENTIAL PRIVACY,
MACHINE LEARNING AND BLOCKCHAIN
Cloud computing is increasingly utilised by all industries.
In turn, researchers continue to enhance this practice with
the development of more advanced cloud computing models.
An example of such a model is edge/fog computing and its
capacity to provide fast access to critical tasks [57].

Researchers have also developed models that use machine
learning algorithms to extract co-related features on data
in the cloud. Moreover, efforts are being made to improve
data storage, network access and control reliability, and
large-scale server functionality by integrating blockchain
with edge computing [7]. This has prompted researchers to
investigate edge and cloud computing based on blockchain
to improve efficiencies and reduce time-delay [58]. Not with-
standing these efforts, some researchers point to privacy leak-
age as an issue in cloud systems based on blockchain [59].
To address these flaws, researchers now look to employ
strategies around the integration of privacy protection with
blockchain-based cloud as a possible solution. In [60],
authors undertake the integration to distribute autonomous
privacy budget when mining in blockchain. The integration
resulted in increased work-load while executing queries,
with the authors claiming that the method both provides
answers to queries more effectively as well as protect
user privacy. Researchers also utilise private/permissioned
blockchain models with byzantine fault tolerant (BFT)
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consensus mechanisms to guarantee the cooperation and con-
trol of authorized nodes.Moreover, the researchers also assert
that, their mechanism manages all re-identification attacks
effectively as a result of data perturbation. Zhao et al. [61],
also present their exploration of federated learning-based
edge computing. Hence, considering the points discussed
above, it is evident that edge and cloud computing based
on blockchain is not fully secured and private. As a result,
further research is required to improve privacy outcomes in
decentralized cloud scenarios.

However, many of these works lack real implementation
and are established only in theory. Others still have limita-
tions in regards to communication and computation cost. In a
smart home scenario, there is a lack of privacy enhancement
mechanisms and in particular, when such systems are con-
nected to the cloud. Conversely, our work focus on devel-
oping and implementing an architecture which integrates the
access control scheme using two smart contracts deployed in
multi-edge servers to achieve a secure distributed blockchain
for smart home IoT devices. The use of many edge servers
provides a complementary way to overcome the computation
cost and single point of failure. We also investigate one of the
popular blockchain technology, Ethereum smart contract and
ERC-20 token generation for implementing a real smart home
scenario. To enhance the privacy in our model, we introduce
the concept of differential privacy using Stochastic Gradient
Descent (SGD) algorithm. To the best of our knowledge, this
is the first work that aims to implement a privacy preserv-
ing strategy by integrating differential privacy mechanism
with a machine learning algorithm in blockchain smart home
scenario.

IV. PROPOSED ATTRIBUTE BASED ACCESS
CONTROL SCHEME FOR SMART HOME
The following section explains the key architecture and
design details of our proposed blockchain based architec-
ture, in which Ethereum smart contracts are used to register,
and manage Home user, IoT smart home devices and edge
servers.

A. SYSTEM ARCHITECTURE
Fig.1 shows the proposed system architecture which consists
of four participants with access to Ethereum smart contracts
through the Internet: end users (home users, services acces-
sors), IoT smart home devices, edge servers, and the cloud
servers. All the participants have a unique Ethereum Address
with public and private keys. The edge servers and the cloud
node connect directly with the smart contract through an
Ethereum client, while end users connect through a wal-
let/front end application. The following summarizes the key
role of different architectural elements:

1) End user: Request access permission through the smart
contract to access a certain smart home device. The
home user device could be PCs, tablets, and smart-
phones that can request a service from the servers

FIGURE 1. Proposed system architecture.

such as checking the home temperature. Also, there are
service accessors involving service providers such as
health care, police or other parties who need to access
the smart home data to provide services to the end
users.

2) IoT devices: The IoT devices primarily include sensors
and actuators that can observe home data (e.g., tem-
perature) or perform some operations (changing the air
conditioner status).

3) Smart home multi-edge servers (Admin Edge): An
Edge node is a device or a cluster of devices that
communicate directly with the IoT devices and the
cloud. It provides a range of services such as collecting
home data from the sensors and sending commands
to actuators to perform a task. Also, it can request or
store data in the cloud. Edge nodes process all incom-
ing and outgoing transactions and use a shared key
for local communications with IoT devices and local
storage. It maintains the smart contracts that manage
registering the end users and IoT devices, authenticates
end users to access the IoT devices. The mining work
is only done by the edge servers which have more
resources than the IoT devices. Moreover, the edge
servers propagate the data to the cloud for further stor-
age or analysis using differential privacy enhancement
mechanism.

4) Cloud: Infrastructure which provides long-term data
analytic and storage. The resources in the cloud can
also be configured as nodes on blockchain to ensure
privacy and integrity of data in the system.
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B. ATTRIBUTE BASED ACCESS CONTROL
AND SMART CONTRACTS
The proposed framework comprises of two Ethereum smart
contracts; the Register contract and the Access contract,
to avoid the complexity of a single smart contract. The first
contract stores and manages the subject and object attributes,
as well as policies (e.g., updating, adding, removing). The
Access contract controls IoT device access by producing
ERC-20 tokens and finalising authorisation to access IoT
devices. The smart contract’s description is as follows:

1) Register contract: The policy is used to register and
maintain the attributes of individuals and IoT devices
on the blockchain. This contract can only be executed
by the administrator. Users, devices, and policies can
all be added by administrators as shown in Fig.2.
Each user and IoT device has its own unique identi-
fier (Ethereum account address) and a set of attributes
related to it. This contract includes functions for
adding, deleting, and changing subject and object
attributes. In addition, based on the user type, this
contract describes the policy associated with each user
and IoT device as described in Fig.3.
A policy is a statement that states which user can do an
action on an IoT device by combining a set of subjects
(users), a set of Objects (IoT devices), and a set of
Actions. Table 1 is an example of a policy.

2) Access Contract: This contract governs access requests
from users (subject) to IoT devices (object). As shown
in Fig.4, the user executes this contract to request a

FIGURE 2. Add and delete user functions.

FIGURE 3. Request access function.

TABLE 1. Example of user attributes, IoT attributes and permissions.

FIGURE 4. Main access contract function.

token in order to communicate with an object. This con-
tract includes functions for validating subject attributes
and checking policy; theAccess Contract (AC) assesses
whether the subject has rights to do an action on the
object based on the policy received, and then sends a
token to the subject. The main functions of the contract
are Check attribute(), Get policy() and TransferToken().
This contract is also in charge of generating ERC-20
tokens. Fig.5 illustrates how to use some Access con-
tract functionalities. To prevent a valid user from flood-
ing the network with access control requests, each
user has a specific number of valid tokens at a time
dependent on user type.

FIGURE 5. Example of access contract functions execution.
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FIGURE 6. Typical transactions in proposed scheme.

C. SYSTEM DESIGN
The proposed system provides authentication for users
using an attribute based access contract and token distribu-
tion. Fig.6 illustrates typical attribute-based access contract
transactions with this authentication mechanism. Users can
remotely access or control home devices using the fresh
generation token that only the requester is able to receive
the response from the legitimate home admin. There are
four phases in our system through which the transactions are
carried out; Initialization, Request Control, State Delivery
and Chain Transaction.

1) Initialization: For the sake of demonstration, we’ll
assume that family members make up a group of users
from whom a group administrator is picked. To add
more users and IoT devices, an admin uses the Register
Contracts command. For signing transactions, users
assign their Ethereum Address (EA) and private keys.
In turn, each home admin is in charge of the group pub-
lic key, which is used to verify transactions. To avoid a
single point of failure, the admin is run on many edge
nodes through the miners associated with these nodes.

2) Request Access: A token is generated for a specific
period and with exact access time when a user wishes
to publish an access or control request with the home
admin. To avoid replay attacks and profiling, this is the
recommended strategy. The user constructs the trans-
action from his or her requirements after getting the
token by activating the TransferToken () from Access
Contract. For example, If a user requests the room tem-
perature, the transaction is computed when the user is
redirected to the smart contract and asks a token. In that
contract, three primary functions are invoked: Check
attribute(), Get policy(), and TransferToken ().The user
then sends the admin the received valid token along
with the request for access. If the user has a valid
token, theywill be permitted access. The output of valid
and invalid user requests for accessing data on room
temperature is shown through the screen shots in Fig.7.

3) State Delivery: The smart contract is monitored by the
home admin for new requests. If the transaction passes
verification after a user asks new access or service,

FIGURE 7. User request for room temperature data.

the home admin validates the token validity and allows
or denies access to the IoT device.

4) Chain Transaction: Admin nodes (miners) are in charge
of obtaining transactions from the smart contract, and
they compete to be the first to solve the PoW for
chaining the data block to the blockchain. Once the
PoW is solved, the miner broadcasts the solution to
the blockchain network in order to establish consensus.
The mining reward is given to the first miner who
successfully mines a block that reaches consensus.

D. DIFFERENTIAL PRIVACY ENHANCEMENT MECHANISM
In this paper we implement privacy-preserving classifica-
tion using edge computing and blockchain scenario. As a
privacy-preserving Machine learning throughout, it fulfills
learning accuracy. The proposed mechanism trains the
Machine learning model accurately to suit all IoT smart home
data. Themodel also classifies a given packet to an IoT device
in the smart home scenario as shown in Fig.8.

FIGURE 8. Classification model.

The aim is to provide a privacy-preserving data aggregation
method, in the context of Smart Homes that agree to provide
their data to a cloud server, so that the cloud can learn
privately from data produced from IoT devices inside the
home and then deliver these data to external entity in order
to provide better services for home users.

As Fig.9 shows, we consider that a number of edge nodes
have private data from the IoT devices in the smart home
and collaborate with each other to return the results to the
cloud. These edge nodes assist the smart home in shar-
ing their data with the cloud by learning the model and
train the data before sending final result to the cloud. The
edge nodes first calculate the gradients based on the current
model while attempting to limit the privacy leakage. They
employ a differential privacy scheme to perturb their data.
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FIGURE 9. Edge node functions for data privacy scheme.

The cloud collects the gradients broadcasted by the edge
nodes and perform their desired scheme to analyse the data.
In the proposed model, we consider two different methods to
train the model using a machine learning algorithm on the
prepared data. First, without considering privacy, we train
a neural network with one-layer on the data and analyze
accuracy of the proposed scheme. We call this approach as
a ‘‘plain algorithm’’. Second, we train the same one-layer
neural network on our data based on the scenario explained
before. We use Stochastic Gradient Descent (SGD), as one
of the most popular optimization algorithms [49]. Stochastic
gradient descent (SGD) algorithms have received significant
attention recently because they are simple and satisfy the
same asymptotic guarantees as more computationally inten-
sive learning methods [62]. We call the second algorithm
‘‘Private algorithm’’.

1) PLAIN ALGORITHM
As mentioned before, this algorithm is without considering
any privacy and the data is completely handed over to the
cloud server as described through the algorithm in Fig.10. The
algorithm specification is as follows:
• Model: K-fold-one-layer neural network
• Loss function: categorical cross entropy
• Optimizer: adam (adaptive moment estimation)
• Number of epochs (training rounds): 10

FIGURE 10. K-fold-one-layer neural network-plain algorithm.

2) PRIVATE ALGORITHM
The basic idea of this approach is presented in Fig.11. The
scheme called differential private stochastic gradient descent
(DP-SGD), modifies the gradients used in stochastic gradient
descent (SGD), which lies at the core of almost all deep
learning algorithms. Models trained with DP-SGD provide

FIGURE 11. K-fold-one-layer neural network-private algorithm.

provable differential privacy guarantees for their input data.
We made the following two modifications to the SGD algo-
rithm in order to accommodate privacy aspects with the data:
• First, the sensitivity of each gradient needs to be
bounded. In other words, we need to limit how much
each individual training point sampled in a mini batch
can influence gradient computations and the resulting
updates applied to model parameters. This is done by
clipping each gradient computed on each training point.

• Random noise is sampled and added to the clipped gradi-
ents to make it statistically impossible to know whether
or not a particular data point was included in the training
dataset by comparing the updates which SGD applies
when it operates with or without this particular data point
in the training dataset.

• We select following parameters and specifications in the
design of our algorithm:
– Model: k-fold-one-layer neural network
– Loss function: categorical cross entropy
– Optimizer: DP-SGD (differentially private

stochastic gradient descent)
– Number of epochs (training rounds): 10
– l2-norm-clip: 1.5
– noise multiplier: 2

3) DATASET
The experiment has been conducted to detect and classify a
type of device in a private blockchain of the Smart home. One
such way is to observe how machine learning techniques on
captured packets (Stored in files like pcap files) are applied in
order to distinguish between different devices in the network.
The dataset was produced by generating a pcap file using
Wireshark to capture the network packets in our private net-
work. Our synthetic dataset consists of n = 11,000 samples.
Using Tshark, we then filter the captured packets and extract
the headers of each packet. Then, processing and creating
the dataset is done using the Python script. We selected our
dataset based on network traffic generated by our private
Ethereum network, thus providing accurate representations of
the devices we use in the experiment.

4) IMPLEMENTATION
Our system is developed on a secure network. The approach
is based on a private Ethereum network that consists of one
laptop (Dell XPS) that serves as an edge server, with two
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miners connected to two single-board computers (Raspberry
Pi 3 Model B). The temperature sensors attached to the LEDs
and one home user laptop are then utilised to simulate the
aforesaid scenario. The edge server has four independent
CPU cores and 16 GB of RAM. One processor core is
dedicated to the mining environment, while the remaining
processor cores are dedicated to the edge computing service.
The miner has a 3.5 GHz CPU, 8 GB RAM, and 1 TB storage
capacity. Two Raspberry Pis with a 1.2 GHz CPU, 1 GB
RAM, and 32 GB storage are included in our IoT devices,
together with accessorymodules such as a temperature sensor
and an LED sensor. As a home user, we configure one laptop
with a 2.2 GHz CPU, 16 GB RAM, and 256 GB storage.

The smart contract is developed on the edge server using
G0-ethereum as blockchain framework and Solidity as pro-
gramming language. The contracts are written and com-
piled using the Remix integrated development (IDE) (Remix
2020). The model additionally employs Web3.js (Ethereum
JavaScript API) for contract deployment and compilation,
as well as contract status monitoring. The HTTP connection
is used to interact with the corresponding geth client via
JavaScript. A basic html web page supports the interface
between the home users and the devices. The Raspberry Pis
run the Raspbian operating systemwithGo-Ethereum towork
in light modewithout blockmining functions. The first laptop
in the testbed supports two edge service providers and a
block miner that solves a PoW puzzle. The Raspberry Pis
and the second laptop function as blockchain clients, creating
and submitting resource requests transactions to the edge
server. According to the preceding configurations, the edge
server functions as a ‘‘complete’’ blockchain node, storing
all transactions, executing predefined smart contracts, and
mining new blocks. IoT devices, on the other hand, function
as ‘‘light’’ blockchain nodes that store transaction data.

The private blockchain is set up through number of stages
that include choosing a compatible version of Ethereum,
launching geth with Windows power shell, and requiring
each node to meet numerous conditions before joining. This
includes: (1) creating the first block using the genesis file
(Test.json), (2) connecting to the same blockchain using the
network ID and (3) creating the private blockchain using the
geth command. For each node, the miner creates an account
with a private and public key and indexes it according to its
address, from which it can communicate with other nodes
and smart contracts. The geth on each node is then started
with a command that includes various flags for various func-
tionalities. All nodes have the ‘‘no discovery’’ flag set to
prevent them from being exploited by external attackers. As a
result, they are unable to connect to other peers unless they
have specified addresses. The node ID is then retrieved via a
specific command, allowing syncing to take place. To build
a private blockchain with completely synchronised nodes,
the last step is repeated with the two Raspberry Pi and the
home user laptop.

The smart contracts assign varying permissions to different
devices based on the user type, with the edge server having

full access to all functionalities while other users and IoT
devices are only allowed to use a subset of them. If a user
or several vulnerable devices are compromised, this setting
limits the impact of the attacker’s malicious activity.

V. EVALUATION AND ANALYSIS
This section provides a discussion on the security, privacy and
performance analysis of the Attribute based smart contract
edge computing scheme. We also present the performance of
our integrated scheme using differential privacy enhancement
model.

A. THREAT MODEL
Our goal is to collect Smart Home data from the edge nodes
and analyze efficiency of our proposed scheme using different
threat models. Since all data stored in blocks will be available
to all blockchain users, we assume that, the adversary in
our model may have full access to the data. We focus on
side channel attacks where, adversaries use machine learning
algorithms to infer information of smart home IoT devices
by monitoring the incoming/outgoing network traffic from/to
smart home. We would like to emphasize that, traffic patterns
extracted from the IoT data may provide the adversaries
to correlate their side information on some residents, thus
giving adversaries prior information aid in lunching inference
attack on the system. As a result, the adversaries can create
a profile about smart home residents and launch subsequent
sophisticated attacks such as the linkage attack.

In addition, we also consider other threats associated with
the malicious user where adversaries steal identity informa-
tion such as the geographical data about the edge node and
allowing the adversary to steal specific tasks the edge node
execute. Also, another assumption is the adversary can legally
communicate with the edge node and as a result, leaking
geographical information. Attackers can easily measure the
communication time and estimate the physical distance from
measuring/ comparing latency.

We assume that the cloud server deployed is secured as it
is one element of the described architecture in section Fig.1.
The classification model is trained on different edge nodes
with a tailored machine learning algorithm to classify a given
packet to one of the IoT devices in the smart home.

B. SECURITY ANALYSIS
Confidentiality aims to ensure unauthorised users are pre-
vented from gaining access to IoT devices and their data and
making sure that private data is delivered only to the intended
users. One approach to achieve confidentiality is message
encryption using SSL session after authenticating the user
successfully [22]. As a powerful feature of blockchain, our
framework assigns a unique 20-byte Ethereum Addresses
(EA) directly to authorised node (including IoT devices) with
almost no collision. EA has asymmetric public key pairs that
can be used to establish secure SSL session for communica-
tion between any authenticated nodes such as authenticated
user or IoT device. During the private network formation,
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the miner distributes private and public keys associated with
EA for each node. The temperature sensor or the LED, as the
sender node, utilises the private key to provide a digital
signature allowing the requested transaction to be broadcast
across the entire network.

In terms of availability, our architecture leverages inherent
properties of the block chain technology which offer relia-
bility and robustness. Because of the decentralised structure
of the blockchain and the ledger replication in multiple loca-
tions, there is no possibility for a single point of failure and
that all data is circulated via multiple nodes. A copy of the
transaction history is stored in each admin node, enabling it
to be verified and linked back to the initial transaction. More-
over, to increase smart home availability, IoT devices are
protected from malicious requests by limiting the accepted
transactions to those users who have a valid token. So, every
transaction received is authorised by the admins before for-
warding it to the IoT devices.

Furthermore, the use of valid Token increases the level of
security in our architecture. That can be observed as only the
admins can issue a valid token and only the intended user can
use that Token. Fig.12 shows the revert error when anyone
other than the admin tries to create a user or issue a token.
Also, token’s owner cannot transfer the token to any other
users, so if the public key of a user is compromised, the smart
contract construction prevents token transfer. The admin will
allow only transaction that has a valid Token associated with
a valid user to be accepted in the network.

1) Denial of service (DOS) Attack: In this attack,
the attacker sends a large number of transactions to
the target in order to disrupt its availability. The use
of attribute-based access control smart contracts in
our architecture reduces the effect of this attack since
only authorized transactions would be accepted. The
admin has to examine the address and policy for
each user and device to issue a valid Token to send
a transaction. If the admin receives several unsuc-
cessful access requests from an unauthorized entity,
it can block that transaction and reject it. Furthermore,
the policy is enforced automatically by the smart con-
tracts. If adversaries compromise and control the IoT
devices for malicious activities, such as making con-
tinuous resource requests, or initiating denial of service

FIGURE 12. Revert transaction.

attacks, the smart contracts will execute automatically
based on the preprogrammed policies of the total token
supply, the access time and duration. For example,
in our scenario we specify the total token supply by
100 form each user, if users or devices request an
access, the request contract will issue one valid token
at a time and if the requests are exceeded the number
of their token supply, the transaction will be rejected.

2) Modification attack: In this attack, the attacker may
try to alter or delete stored data of a particular user or
device. To launch this attack, the attacker has to com-
promise the local storage security. Different cases of
modification attacks have been discussed in blockchain
based information sharing frameworks. Authors in
[63], [64] claimed that the implementation of smart
contract protocol prevent the adversary from breaking
the security of their proposed scheme. Similarly, in our
scheme only the admin has the right to store, delete
or update the data based on the policy in the smart
contracts. All the information about users, devices and
policy are shared between the edge nodes and the cloud,
assuming adversary wants to change or modify the ID
of a user or any device. The change will be detected by
the edge nodes since every block contains its previous
hash block and change in one block will result in a
break in the chain.
The next class of threat is against authentication and
access control. It has been claimed by [9] that, it is
possible for an attacker to take control of a smart home
device or introduce a fake device to a home network.
Our design employs a hierarchical defence mechanism
against these attacks. First, there is an admin node
which controls all incoming and outgoing transactions
and prevents smart home devices from being directly
accessed from the Internet. If the admin detects a trans-
action that does not follow the policies defined by the
contract, the transaction is dropped.
The second defence is that all devices in the home
are required to have a unique address and follow the
same genesis transaction in the local blockchain that
allows them to initiate communication with the admin
and other devices. A device without a corresponding
address and genesis transaction is isolated from the
network. This prevents an attacker from introducing
unauthorized devices to the network.

C. PRIVACY ANALYSIS
In our proposed model, we assume that all participants have
a verified identity that is managed and issued by the access
control scheme in the smart contract in a private blockchain.
Therefore, the identity privacy in our framework is out of the
scope of our work. We only consider privacy leakage from
data when a learning process runs.

We present security analysis on the proposed differen-
tial privacy-based blockchain system, which are associated
with the pre-defined threat environment given in the threat
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model section. Based on the threat assumption, adversaries
have full access to all data stored in blocks. In our model,
for the first type of threat, without adding noise, adver-
saries can easily obtain real identities and behaviour of users
through mining information or launching a linkage attack.
Fortunately, our model uses a differential privacy protection
method (Gaussian distribution mechanism) to add noise into
the real data, such that a distortion is made to protect the
target set.We observe that, using the gaussian mechanism can
successfully screen and classify the IoT devices while insure
and guarantee the privacy of all data.

In data mining-based attacks, from the adversary’s per-
spective, adding the noise can escalate the complexity of the
feature extraction and information retrieval. Moreover, added
noise is also essential to defend users’ and IoT devices’ iden-
tities to prevent the second type of threat, as matching data
are hardly done between blockchain data and other supportive
databases for processed data. Thus, our model can efficiently
improve the privacy-preserving capability.

D. PERFORMANCE ANALYSIS
To evaluate the performance of the proposed model, we con-
duct experiments in a private Ethereum network where,
the edge server represents the home admin to add home user,
and the two sensors (temperature and LED). The home user
requests room temperature to turn on/off the AC (change the
state of LED) based on temperature. The admin checks the
user validity and then gives access to the user as described
previously in the system design section. We simulate two
types of transactions in a smart-home setting i.e. store and
access. Here, we investigate the store transaction (adding a
new user or IoT devices using the register contract) and the
request access transaction to invoke some data (using access
contract). We evaluate the block size, gas cost and time cost
by comparing our scheme with the works in [40], [44], [45]
and [46].

1) Block size: The block size in Ethereum’s is based on the
contracts being run and associated number of transac-
tions known as a Gas limit per block, and the maximum
can vary slightly from block to block. Depending on
howmuch gas each transaction spends, transactions are
combined in the form of blocks. We find that, 1MB
block contains 280 store and 300 access transactions.
The sizes calculated are 2.80KB for store and 4.00KB
for access transactions. The average size of a block
is 130KB and each block can store up to 200 user or
device registrations.
Since, the size of the block is the key factor that impacts
the overall latency, in our experiment, we find block
size varies between 118 KB to 145 kB based on the
contract being executed. We evaluate the interaction
delay of register contract and access contract which are
important to ensure system effectiveness.
Fig.13 shows the time for one transaction to be com-
pleted is less than 30ms in the Register contract

FIGURE 13. Time to complete one transaction.

and 50ms for the Access contract. Such a delay
should satisfy the latency requirement of the real-time
applications.
However, the latency gets worse with register contract
as the block size is increased. The latency increases due
to the increased time needed to include the transaction
in the block and the increased bandwidth required to
propagate a bigger block in the network. However,
the completion of new block validation and the trans-
mission is faster since the edge server has more com-
puting and bandwidth resource. On the other hand,
when comparing with [44], IoT-BC is based on Fabric
architecture which in general has a larger transaction
size because they carry the certificate information for
approval. As a result, the total increase in transaction
latency in IoT-BC is 22.45% while in our scheme it is
around 20.23%.
The CPU and memory usage are also explored as illus-
trated in Fig.14. We realize that a very low percentage
of CPU resource is taken by the regular transactions
while the memory usage is slightly greater since the

FIGURE 14. Resource usage for single transaction.
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TABLE 2. Calculated gas cost.

blockchain client uses 8% even in normal state time.
However, we note that in a real smart home environ-
ment, the number of IoT devices connected will be
increased and that will have a possible impact on the
blockchain overhead. Since the miner is located at the
edge server, mining, verifying and storing new blocks
will increase the computing resources use. Therefore,
specifying the number of IoT devices to be managed by
one edge server, or launching more VM as the miners
to share the load of computation are recommended.

2) Gas cost: The deployment of smart contracts on the
blockchain and execution of these contracts ABIs
(Application Binary Interface) require a fee to be paid
to the miner which mines the block. A unit called gas
is utilized by Ethereum to measure the amount needed
to complete a task, e.g. implementing a smart contract
or executing an ABI. In general, more gas is consumed
with a more complex task. Gas has a price that differs
with time. Thus, the fee needed to be paid for complet-
ing a task is the result of the amount of used gas and
the gas price. Table 2 lists the amount of gas paid for
some functions, like adding a subject/object or policy,
deploying the AC and executing the AC. In our pro-
posed scheme, the gas amount required for deploying
the access contract is 1,377,071, which is more than the
existing schemes compared here. We can observe from
the table that the proposed ABAC framework in [45]
consumes less gas than our scheme. This increased
value is due to the relatively complex interactions in our
scheme for retrieving attributes and policies between
the Access contract and Admin policy smart contract
and Authority contract.
However, in [46] one ACC is deployed for only one
subject-object pair. The gas cost increases linearly
as the number of subject-object pairs of the system
increases. While in our proposed system there is no
need to deploy a new Access contract when the subject
and object increase. This results in less gas consumed
and hence, less cost. Moreover, when comparing the
gas cost for performing functions such as add user or
add policy, our proposed scheme consumes less gas for
the same functions in the scheme [45].

3) Time cost: The approximate time cost for executing the
Access Contract is 40 seconds in our proposal which
is, more than 36 seconds of average time for ABAC as
presented in [45]. This is due to the time for invoking
token in our proposal scheme and the extra time needed
to check token validity and call other smart contracts.

However, the fresh onetime token generated during
each Access request is used for securing the session
and this ensures data confidentiality which is worth the
difference of few seconds. Note that the execution time
of the ABI fluctuates depending on several aspects such
as the system’s computing power, network architecture,
timing of mining, etc. so the execution time may vary
within different Ethereum network.
Furthermore, the time of deploying our access smart
contract is around 185.83 seconds compared to the
framework deployed in [40]. This is due to smart
contract invocations (i.e., getRequest, getRL, upload-
Response, and getResult). Moreover, our framework
uses Differential privacy to further improve the privacy
and decrease information leak. Differential Privacy is
the most suitable technique for big data as it doesn’t
allow degradation of system’s speed compared to other
techniques [65].

E. DIFFERENTIAL PRIVACY ENHANCEMENT
MODEL EXPERIMENT RESULT
We utilize the confusion matrix as a way of comparing the
performance of both machine learning algorithms presented
in the previous section as shown in Fig.15, the possible
outcomes of a classification, which in our case is either ‘0’,
for the PC, ‘1’ for the Temperature sensor or ‘2’ for the LED
sensor, against the actual values of the class feature already
present in the evaluation (testing) dataset.

FIGURE 15. The confusion matrix of device classification.

There are four parameters presented in the confusion
matrix, True Positive (TP), where the classifier has correctly
measured the number of packets that are correctly classified
to a device type, True Negative (TN), similar to TP but the
value of the class feature is negative, False Positive (FP),
where the classifier measures the number of packets that are
incorrectly classified as a device type and False Negative
(FN), which measures the number of packets that are incor-
rectly not classified as a device type. One metric is created
by combining the TP, TN, FP, FN values, namely Accuracy
which we can use to evaluate the Classifiers. Accuracy rep-
resents the probability that a record is correctly identified as
one of the device types. The Accuracy (Overall Success Rate)
is calculated using the following equation:

OSR = (TN + TP)/(TP+ FP+ TN + FN ) (2)

For the classification stage, we use the python in google
colab environment for applying a well-known machine
learning algorithm. We illustrate the approach using k-fold
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cross-validation on the neural network model to ascertain the
efficiency of our proposed scheme.

Fig.16 shows the accuracy of the model before (plain
algorithm) and after (private algorithm) adding the noise.

FIGURE 16. 10-fold validation results.

As shown in Table 3, the plain model, has an average
accuracy close to 0.95 (95%) while in the private model the
accuracy is close to 0.93 (93%).

TABLE 3. Calculated accuracy.

Our experiment shows that the accuracy of our private
model is very close to that of the plain one when the pri-
vacy budget is 0.7 because the private method with noise
disturbance is relatively small. Therefore, the accuracy of this
classificationmethod is close to that of the plain classification
method. It is shown in the experiment that, the private model
has the same accuracy as the plain model in classifying the
device type. Thus, our results demonstrate the feasibility
of differential privacy guarantees without significant loss in
terms of accuracy. Thus, edge nodes aggregate noisy data to
the cloud while preserving smart home privacy and provide
accurate data for further analysis.

However, there is a trade-off between accuracy and privacy
that directly links to add noise to the scheme. To increase the
level of privacy, we increase the amount of noise. But, on the
other hand this may result in loss of data accuracy. Therefore,
efficient measurements are required to achieve the best result.
However, it is outside of the scope of this work and we leave
it for future work. In our future work, we will conduct further
analysis to measure the differential privacy guarantee to reach
improved privacy protection without losing accuracy.

VI. CONCLUSION
This paper evaluates a real-time interaction model between
home users and a fully validating private blockchain node
through the use of attribute-based access control scheme to
authenticate smart home users and IoT devices. We also

integrate differential privacy scheme in our proposed model
to preserve data privacy. By combining the blockchain tech-
nology with attribute-based access control, differential pri-
vacy and edge computing, our proposed model solves the
problem of the traditional access control method which is
based on the centralized design and meet the access control
requirements in IoT. In this paper, we develop Ethereum
blockchain, multiple smart contracts and our implementation
demonstrates a better performance of our proposed scheme.
Compared with the existing scheme, our proposed scheme
achieves more fine-grained access control with freshly token
generation and less computing cost with edge computing. Our
framework also achieves desired security and privacy goals
and is resilient against modification, DoS attacks, datamining
and linkage attacks. Our work is an ongoing research, and
we are currently working on testing our proposed model with
differential privacy in a wider scale with different classifier
algorithms as a proof of concept. Also, we aim to conduct fur-
ther research to achieve a better privacy guarantee to highly
protected smart home data with better accuracy.

REFERENCES
[1] I. C. Vidal, F. Rousseau, and J. C. Machado, ‘‘Achieving differential pri-

vacy in smart home scenarios,’’ in Proc. 34th Anais Principais do Simpósio
Brasileiro de Banco de Dados. Fortaleza, Brazil: SBC, 2019, pp. 211–216.

[2] M. Moniruzzaman, S. Khezr, A. Yassine, and R. Benlamri, ‘‘Blockchain
for smart homes: Review of current trends and research challenges,’’
Comput. Electr. Eng., vol. 83, May 2020, Art. no. 106585.

[3] Y. Lee, S. Rathore, J. H. Park, and J. H. Park, ‘‘A blockchain-based smart
home gateway architecture for preventing data forgery,’’ Hum.-Centric
Comput. Inf. Sci., vol. 10, no. 1, pp. 1–14, Dec. 2020.

[4] Y. Nakamura, Y. Zhang, M. Sasabe, and S. Kasahara, ‘‘Capability-based
access control for the Internet of Things: An Ethereum blockchain-
based scheme,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2019, pp. 1–6.

[5] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, ‘‘An overview
of blockchain technology: Architecture, consensus, and future trends,’’
in Proc. IEEE Int. Congr. Big Data (BigData Congr.), Jun. 2017,
pp. 557–564.

[6] J. Mao, Q. Lin, and J. Bian, ‘‘Application of learning algorithms in smart
home IoT system security,’’ Math. Found. Comput., vol. 1, no. 1, p. 63,
2018.

[7] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, ‘‘Integrated blockchain and
edge computing systems: A survey, some research issues and challenges,’’
IEEE Commun. Surveys Tuts., vol. 21, no. 2, pp. 1508–1532, Feb. 2019.

[8] Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, ‘‘A survey on
privacy protection in blockchain system,’’ J. Netw. Comput. Appl., vol. 126,
pp. 45–58, Jan. 2019.

[9] W. Ejaz and A. Anpalagan, Internet of Things for Smart Cities: Technolo-
gies, Big Data and Security. Cham, Switzerland: Springer, 2019.

[10] L. Axon, ‘‘Privacy-awareness in blockchain-based PKI,’’ CDTTech. Paper,
Oxford, U.K., Tech. Rep. 21, 2015.

[11] Y.-A. de Montjoye, L. Radaelli, V. K. Singh, and A. Pentland, ‘‘Unique
in the shopping mall: On the reidentifiability of credit card metadata,’’
Science, vol. 347, no. 6221, pp. 536–539, 2015.

[12] M. U. Hassan, M. H. Rehmani, and J. Chen, ‘‘Differential privacy in
blockchain technology: A futuristic approach,’’ J. Parallel Distrib. Com-
put., vol. 145, pp. 50–74, Nov. 2019.

[13] A. Qashlan, P. Nanda, and X. He, ‘‘Security and privacy implementation in
smart home: Attributes based access control and smart contracts,’’ in Proc.
IEEE 19th Int. Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom),
Dec. 2020, pp. 951–958.

[14] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, ‘‘Blockchain for
IoT security and privacy: The case study of a smart home,’’ in Proc. IEEE
Int. Conf. Pervas. Comput. Commun. Workshops (PerCom Workshops),
Mar. 2017, pp. 618–623.

VOLUME 9, 2021 103667



A. Qashlan et al.: Privacy-Preserving Mechanism in Smart Home Using Blockchain

[15] A. Alnemari, S. Arodi, V. R. Sosa, S. Pandey, C. Romanowski, R. Raj,
and S. Mishra, ‘‘Protecting infrastructure data via enhanced access control,
blockchain and differential privacy,’’ in Proc. Int. Conf. Crit. Infrastruct.
Protection. Cham, Switzerland: Springer, 2018, pp. 113–125.

[16] S. Gusmeroli, S. Piccione, and D. Rotondi, ‘‘A capability-based security
approach to manage access control in the Internet of Things,’’ Math.
Comput. Model., vol. 58, nos. 5–6, pp. 1189–1205, 2013.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘‘Attribute-based encryption
for fine-grained access control of encrypted data,’’ inProc. 13th ACMConf.
Comput. Commun. Secur. (CCS), 2006, pp. 89–98.

[18] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone, ‘‘Guide to
attribute based access control (abac) definition and considerations (draft),’’
NIST Special Publication, vol. 800, no. 162, pp. 1–54, 2013.

[19] Y. Zhu, Y. Qin, Z. Zhou, X. Song, G. Liu, andW. C.-C. Chu, ‘‘Digital asset
management with distributed permission over blockchain and attribute-
based access control,’’ in Proc. IEEE Int. Conf. Services Comput. (SCC),
Jul. 2018, pp. 193–200.

[20] S. Rouhani, R. Belchior, R. S. Cruz, and R. Deters, ‘‘Distributed attribute-
based access control system using a permissioned blockchain,’’ 2020,
arXiv:2006.04384. [Online]. Available: http://arxiv.org/abs/2006.04384

[21] B. Bera, A. K. Das, M. Obaidat, P. Vijayakumar, K.-F. Hsiao, and Y. Park,
‘‘AI-enabled blockchain-based access control for malicious attacks detec-
tion and mitigation in IoE,’’ IEEE Consum. Electron. Mag., early access,
Nov. 25, 2020, doi: 10.1109/MCE.2020.3040541.

[22] R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, and K. Salah,
‘‘A user authentication scheme of IoT devices using blockchain-enabled
fog nodes,’’ in Proc. IEEE/ACS 15th Int. Conf. Comput. Syst. Appl.
(AICCSA), Oct. 2018, pp. 1–8.

[23] S. Huh, S. Cho, and S. Kim, ‘‘Managing IoT devices using blockchain
platform,’’ in Proc. 19th Int. Conf. Adv. Commun. Technol. (ICACT), 2017,
pp. 464–467.

[24] H. Guo, E. Meamari, and C.-C. Shen, ‘‘Multi-authority attribute-based
access control with smart contract,’’ in Proc. Int. Conf. Blockchain Tech-
nol., Mar. 2019, pp. 6–11.

[25] V. Buterin and F. Vogelsteller. (2015). ERC20 Token Standard. [Online].
Available: https://theethereum.wiki/w/index.php/ERC20Token Standard

[26] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[27] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[28] C. Dwork, ‘‘Differential privacy: A survey of results,’’ in Proc. Int. Conf.
Appl. Models Comput. Berlin, Germany: Springer, 2008, pp. 1–19.

[29] M. U. Hassan, M. H. Rehmani, and J. Chen, ‘‘Privacy preservation in
blockchain based IoT systems: Integration issues, prospects, challenges,
and future research directions,’’ Future Gener. Comput. Syst., vol. 97,
pp. 512–529, Aug. 2019.

[30] E. ElSalamouny and S. Gambs, ‘‘Differential privacy models for location-
based services,’’ Trans. Data Privacy, vol. 9, no. 1, pp. 15–48, 2016.

[31] C. Dwork and A. Roth, ‘‘The algorithmic foundations of differential pri-
vacy,’’ Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4, pp. 211–407,
2014.

[32] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ Manubot,
Seoul, South Korea, Tech. Rep., 2019.

[33] J. Herrera-Joancomartí and C. Pérez-Solà, ‘‘Privacy in bitcoin transac-
tions: New challenges from blockchain scalability solutions,’’ in Proc. Int.
Conf. Modeling Decisions Artif. Intell.Cham, Switzerland: Springer, 2016,
pp. 26–44.

[34] H. Chen, M. Pendleton, L. Njilla, and S. Xu, ‘‘A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses,’’ ACM Comput.
Surv., vol. 53, no. 3, pp. 1–43, 2020.

[35] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for
the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303, 2016.

[36] P. K. Singh, R. Singh, S. K. Nandi, and S. Nandi, ‘‘Managing smart
home appliances with proof of authority and blockchain,’’ in Proc. Int.
Conf. Innov. Community Services. Cham, Switzerland: Springer, 2019,
pp. 221–232.

[37] M. Amadeo, A. Molinaro, S. Y. Paratore, A. Altomare, A. Giordano, and
C. Mastroianni, ‘‘A cloud of things framework for smart home services
based on information centric networking,’’ in Proc. IEEE 14th Int. Conf.
Netw., Sens. Control (ICNSC), May 2017, pp. 245–250.

[38] B. L. R. Stojkoska and K. V. Trivodaliev, ‘‘A review of Internet of Things
for smart home: Challenges and solutions,’’ J. Cleaner Prod., vol. 140,
no. 3, pp. 1454–1464, 2017.

[39] Y. Sun, H. Song, A. J. Jara, and R. Bie, ‘‘Internet of Things and big data
analytics for smart and connected communities,’’ IEEE Access, vol. 4,
pp. 766–773, 2016.

[40] C. Lin, D. He, N. Kumar, X. Huang, P. Vijayakumar, and K.-K.-R. Choo,
‘‘HomeChain: A blockchain-based secure mutual authentication system
for smart homes,’’ IEEE Internet Things J., vol. 7, no. 2, pp. 818–829,
Feb. 2020.

[41] T. L. N. Dang and M. S. Nguyen, ‘‘An approach to data privacy in smart
home using blockchain technology,’’ inProc. Int. Conf. Adv. Comput. Appl.
(ACOMP), Nov. 2018, pp. 58–64.

[42] J. Xue, C. Xu, and Y. Zhang, ‘‘Private blockchain-based secure access
control for smart home systems,’’ KSII Trans. Internet Inf. Syst., vol. 12,
no. 12, pp. 6057–6078, 2018.

[43] M. A. Rahman, M. Rashid, S. Barnes, M. S. Hossain, E. Hassanain, and
M. Guizani, ‘‘An IoT and blockchain-based multi-sensory in-home quality
of life framework for cancer patients,’’ in Proc. 15th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Jun. 2019, pp. 2116–2121.

[44] J. Ali, T. Ali, S. Musa, and A. Zahrani, ‘‘Towards secure IoT com-
munication with smart contracts in a blockchain infrastructure,’’ 2020,
arXiv:2001.01837. [Online]. Available: http://arxiv.org/abs/2001.01837

[45] M. Yutaka, Y. Zhang, M. Sasabe, and S. Kasahara, ‘‘Using ethereum
blockchain for distributed attribute-based access control in the Internet of
Things,’’ inProc. IEEEGlobal Commun. Conf. (GLOBECOM), Dec. 2019,
pp. 1–6.

[46] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, ‘‘Smart contract-
based access control for the Internet of Things,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 1594–1605, Apr. 2019.

[47] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, ‘‘Channel state information
prediction for 5G wireless communications: A deep learning approach,’’
IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, pp. 227–236, Jan. 2020.

[48] W. Xiong and L. Xiong, ‘‘Smart contract based data trading mode
using blockchain and machine learning,’’ IEEE Access, vol. 7,
pp. 102331–102344, 2019.

[49] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, ‘‘When machine learning meets
blockchain: A decentralized, privacy-preserving and secure design,’’ in
Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2018, pp. 1178–1187.

[50] L. Deng, ‘‘The MNIST database of handwritten digit images for machine
learning research [best of the web],’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[51] A. Asuncion and D. Newman, ‘‘UCI machine learning repository,’’ School
Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep., 2007.

[52] H. Kim, S.-H. Kim, J. Y. Hwang, and C. Seo, ‘‘Efficient privacy-
preservingmachine learning for blockchain network,’’ IEEE Access, vol. 7,
pp. 136481–136495, 2019.

[53] M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci, and
M. Radenkovic, ‘‘Integrating renewable energy resources into the smart
grid: Recent developments in information and communication technolo-
gies,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 2814–2825, Jul. 2018.

[54] D. Orazgaliyev, Y. Lukpanov, I. A. Ukaegbu, and H. S. V. S. K. Nunna,
‘‘Towards the application of blockchain technology for smart grids in
kazakhstan,’’ in Proc. 21st Int. Conf. Adv. Commun. Technol. (ICACT),
Feb. 2019, pp. 273–278.

[55] K. Gai, Y. Wu, L. Zhu, M. Qiu, and M. Shen, ‘‘Privacy-preserving energy
trading using consortium blockchain in smart grid,’’ IEEE Trans. Ind.
Informat., vol. 15, no. 6, pp. 3548–3558, Jun. 2019.

[56] O. Samuel, N. Javaid, M. Awais, Z. Ahmed, M. Imran, and M. Guizani,
‘‘A blockchain model for fair data sharing in deregulated smart grids,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–7.

[57] J. Moura and D. Hutchison, ‘‘Game theory for multi-access edge comput-
ing: Survey, use cases, and future trends,’’ IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 260–288, Aug. 2018.

[58] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
‘‘Untangling blockchain: A data processing view of blockchain systems,’’
IEEE Trans. Knowl. Data Eng., vol. 30, no. 7, pp. 1366–1385, Jul. 2018.

[59] S. Pavithra, S. Ramya, and S. Prathibha, ‘‘A survey on cloud security
issues and blockchain,’’ in Proc. 3rd Int. Conf. Comput. Commun. Technol.
(ICCCT), Feb. 2019, pp. 136–140.

[60] M. Yang, A. Margheri, R. Hu, and V. Sassone, ‘‘Differentially private
data sharing in a cloud federation with blockchain,’’ IEEE Cloud Comput.,
vol. 5, no. 6, pp. 69–79, Nov./Dec. 2018.

103668 VOLUME 9, 2021

http://dx.doi.org/10.1109/MCE.2020.3040541


A. Qashlan et al.: Privacy-Preserving Mechanism in Smart Home Using Blockchain

[61] Y. Zhao, J. Zhao, L. Jiang, R. Tan, and D. Niyato, ‘‘Mobile edge com-
puting, blockchain and reputation-based crowdsourcing IoT federated
learning: A secure, decentralized and privacy-preserving system,’’ 2019,
arXiv:1906.10893. [Online]. Available: https://arxiv.org/abs/1906.10893

[62] S. Song, K. Chaudhuri, and A. D. Sarwate, ‘‘Stochastic gradient descent
with differentially private updates,’’ in Proc. IEEE Global Conf. Signal Inf.
Process., Dec. 2013, pp. 245–248.

[63] S. K. Dwivedi, R. Amin, S. Vollala, and R. Chaudhry, ‘‘Blockchain-based
secured event-information sharing protocol in internet of vehicles for smart
cities,’’ Comput. Electr. Eng., vol. 86, Sep. 2020, Art. no. 106719.

[64] S. K. Dwivedi, R. Amin, and S. Vollala, ‘‘Blockchain based secured
information sharing protocol in supply chain management system with
key distribution mechanism,’’ J. Inf. Secur. Appl., vol. 54, Oct. 2020,
Art. no. 102554.

[65] S. H. Begum and F. Nausheen, ‘‘A comparative analysis of differential
privacy vs other privacy mechanisms for big data,’’ in Proc. 2nd Int. Conf.
Inventive Syst. Control (ICISC), Jan. 2018, pp. 512–516.

AMJAD QASHLAN received the master’s degree in information and
communication technology from the University of Wollongong, in 2012.
She is currently pursuing the Ph.D. degree with the Faculty of Engineering
and IT (FEIT), University of Technology Sydney (UTS). Her doctoral
research investigates developing a blockchain security solution for smart
home systems. She is examining the use of blockchain technology and
machine learning in order to increase the IoT smart home network security
and privacy.

PRIYADARSI NANDA (Senior Member, IEEE)
is currently a Senior Lecturer with the Univer-
sity of Technology Sydney (UTS), with more than
27 years of experience specialising in research
and development of cybersecurity, the IoT secu-
rity, Internet traffic engineering, wireless sensor
network security, andmanymore related areas. His
most significant work has been in the area of intru-
sion detection and prevention systems (IDS/IPS)
using image processing techniques, sybil attack

detection in the IoT-based applications, and intelligent firewall design.
In cybersecurity research, he has published over 80 high quality refer-
eed research articles, including IEEE TRANSACTIONS IN COMPUTERS, IEEE
TRANSACTIONS IN PARALLEL PROCESSING AND DISTRIBUTED SYSTEMS (TPDS),
Future Generations of Computer Systems (FGCS), and many ERA Tier A/A
conference papers. He has successfully supervised eight HDR at UTS (five
Ph.D. and three Masters) and currently supervising eight Ph.D. students.
In 2017, his work in cyber security research has earned him and his team the
prestigeous Oman Research Council’s National Award for Best Research.

XIANGJIAN HE (Senior Member, IEEE) is cur-
rently the Leader of the Computer Vision and
Pattern Recognition Laboratory, Global Big Data
Technologies Centre (GBDTC), University of
Technology Sydney (UTS). He was an IEEE sig-
nal processing society student committee mem-
ber. He was involved in a team who received a
UTS Chancellor’s Award for Research Excellence
through Collaboration, for a project funded by
SydneyTrains and RMCRC, in 2018. He has also

been awarded Internationally Registered Technology Specialist by Interna-
tional Technology Institute (ITI). He led UTS-PolyU joint research project
teams wining the 1st Runner-Up Prize for the 2017 VIP Cup, and the Cham-
pion for the 2019 VIP Cup, awarded by IEEE Signal Processing Society.
He has been carrying out research mainly in the areas of image processing,
network security, pattern recognition, computer vision, andmachine learning
in the previous years. He has recently been leading his research teams for
deep-learning-based and/or machine-learning-based research in the areas
of human behavious recognition, human counting in a crowd, tiny object
detection, 3D medical image restoration, image processing based on hexag-
onal structure, authorship identification of a document and a document’s
components, such as sentences and sections, network and cyber security, car
license plate recognition of high speed moving vehicles with changeable and
complex background, and video tracking with motion blur. He has played
various chair roles in many international conferences, such as ACM MM,
MMM, ICDAR, IEEE BigDataSE, IEEE TrustCom, IEEE CIT, IEEE AVSS,
IEEE ICPR, and IEEE ICARCV.

MANORANJAN MOHANTY received the Ph.D.
degree in computer science from the National
University of Singapore, Singapore, in 2014.
He is currently a Lecturer with the Center for
Forensic Science, School of Mathematical and
Physical Science. He comes from computer sci-
ence background. His research interests include
digital forensics and cybersecurity, with current
focus mainly on source camera attribution, child
explicit content detection, fake food detection,

privacy-aware forensics, cloud and the IoT forensics, and application of
deep learning and blockchain for forensics. After that, he spent a year as
an ERCIM Alain Bensoussan Research Fellow with SICS Swedish ICT,
Sweden, and two years as a Research Fellow with New York University.
Before joining UTS, he was a Lecturer in digital security with the University
of Auckland, New Zealand.

VOLUME 9, 2021 103669


